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 ABSTRACT 

 
This paper studies the bifurcation analysis of a prey-predator model with Monod-
Haldane functional response with respect to the prey harvesting parameter. Both the 
prey and predator species are harvested using the conventional Catch-Per-Unit-Effort 
(CPUE) harvesting strategy. We study and supplement the proposed model by studying 
the bifurcation analyses of the system with respect to the harvesting parameter. We 
study the local stability criteria of the system via Routh-Hurwitz criterion. From the 
numerical simulations, the system undergoes Transcritical bifurcation, Hopf bifurcation 
and Bistability behaviour at different values of the prey harvesting parameter. The 
results imply that prey harvesting parameter is crucial to influence the persistence and 
extinction properties in the proposed system. 
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1. Introduction 
 

In ecology, studying the relationship between the predator and prey species remains the primary 
concern among researchers. Mathematical researchers are interested in examining the stability 
properties of ecological models by investigating the persistence of both predator and prey species 
via mathematical approaches [1-3]. 

To understand the inherent relationship between the predator and prey species, the research on 
functional response is essential in mathematical ecology. A functional response of predator species 
can be defined as the per capita feeding rate of predator species on prey abundance [4]. A series of 
work has been done to investigate the stability and bifurcation results of prey-predator models with 
several Holling type functional responses. Mukherjee and Maji [5] found that a predator-prey model 
with Holling type II functional response and prey refuge exhibited rich dynamics such as Transcritical, 
saddle-node, Hopf as well as Bogdanov-Takens bifurcations around the interior equilibrium. The 
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research of Shaikh et al., [6] and Baisad and Moonchai [7] focused on the stability analysis of 
predator-prey models with Holling type III functional response. 

However, it is proven in some experiments that the inhibitory effect in predator-prey interaction 
may be obvious when the nutrient concentration increases [8]. Therefore, Holling type IV functional 
response or Monod-Haldane function is proposed to model such inhibitory effect in predator-prey 
models. Few literatures incorporated Monod-Haldane functional response into predator-prey 
models to investigate the dynamical behaviours with respect to the direct measure and inhibitory 
effect [9-13]. 

Apart from the studies of functional responses, many research studied the impacts of harvesting 
in predator-prey models to consider a farming effect on the harvested species. A series of work has 
been done to study harvested predator-prey models by considering the traditional Catch-Per-Unit-
Effort (CPUE) or constant proportion harvesting strategy [14-17]. Moreover, there are some 
researchers have been accomplished to study the dynamics of predator-prey models by 
incorporating nonlinear harvesting strategy [18-22]. In their research, the sustainability and 
extinction of the prey and predator populations in system is greatly influenced by the harvesting 
activity. 

The present paper aims to analyse the qualitative dynamical fluctuations of a predator-prey 
model subjected to Monod-Haldane type response function with respect to the harvesting 
parameter. 

 
2. Predator-Prey Model  

 
Referring to the work of Liu [23], a classical predator-prey model by incorporating the Monod-

Haldane functional response has been studied in a detailed way. In this paper, our main emphasis is 
to study and supplement the previous work done by Liu [23] using bifurcation analysis to observe the 
impacts of harvesting on the changes of qualitative dynamical behaviours. Therefore, we consider 
the following predator-prey model: 

 

 

𝑑𝑋

𝑑𝑡
= 𝑟1𝑋 (1 −

𝑋

𝐾
) −

𝑋𝑌

𝑎+𝑏𝑋+𝑋2 − 𝑐𝐸1𝑋,

𝑑𝑌

𝑑𝑡
= −𝑟2𝑌 +

𝑢𝑋𝑌

𝑎+𝑏𝑋+𝑋2 − 𝑑𝐸2𝑌.
          (1) 

 
In the above model Eq. (1), 𝑟1 stands for the growth rate of prey population. 𝐾 depicts the carrying 

capacity. The death rate of the predator species is 𝑟2 in the absence of the prey species. In the concept 
of Monod-Haldane functional response, parameter 𝑎 represents the half saturation constant while 
parameter 𝑏 represents the handling time. Parameter 𝑢 is the maximum growth rate of predator 
species without inhibitory effect. Both prey and predator species are harvested using independent 
harvesting strategy with 𝑐 and 𝑑 representing the catchability coefficients while 𝐸1 and 𝐸2 represent 
the harvesting efforts applied on prey and predator species, respectively. 

 
3. Equilibria and Stability Analysis  

 
Model Eq. (1) can be simplified by reducing the number of representative parameters through a 

rescaling process. By adopting the variables of 𝑥 =
𝑋

𝐾
, 𝑦 =

𝑌

𝑟1
 and𝜏 = 𝑟1𝑡, the non-dimensional 

predator-prey model is acquired as follows: 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 61, Issue 1 (2026) 1-9 

3 
 

𝑑𝑥

𝑑𝜏
= 𝑥(1 − 𝑥) −

𝑥𝑦

𝑎+𝛼𝑥+𝛽𝑥2
− 𝛿𝑥,

𝑑𝑦

𝑑𝜏
= −𝜎𝑦 +

𝜌𝑥𝑦

𝑎+𝛼𝑥+𝛽𝑥2
− 𝜀𝑦,

           (2) 

 

where 𝛼 = 𝑏𝐾, 𝛽 = 𝐾2, 𝛿 =
𝑐𝐸1

𝑟1
, 𝜎 =

𝑟2

𝑟1
, 𝜌 =

𝑢𝐾

𝑟1
 and𝜀 =

𝑑𝐸2

𝑟1
. All the parameters are assumed to be 

strictly positive. It is found that system Eq. (2) possesses three equilibria of 𝑃𝑖  in the form of (𝑥∗, 𝑦∗) 
where 𝑖 = 1,2,3: 

1. 𝑃1 = (0,0), 
2. 𝑃2 = (−𝛿 + 1,0), 

3. 𝑃3 = (𝑥̂,
𝜌

𝛽(𝜀+𝜎)2
{(𝜀 + 𝜎)[𝛽𝑥̂(1 − 𝛿) + 𝑎 + 𝛼𝑥̂] − 𝜌𝑥̂}), where 𝑥̂ is a root by solving 

𝛽(𝜀 + 𝜎)𝑥̂2 + [𝛼(𝜀 + 𝜎) − 𝜌]𝑥̂ + 𝑎(𝜀 + 𝜎) = 0. 
 

3.1 Stability of Extinction Equilibrium 𝑃1 
 
The corresponding Jacobian matrix for extinction equilibrium 𝑃1 is given by 𝐽𝑃1 =

(
−𝛿 + 1 0

0 −(𝜎 + 𝜀)
). 

 
Theorem 1. Equilibrium 𝑃1 is locally stable if the condition 𝛿 > 1 holds. 
Proof: The corresponding characteristic equation for equilibrium 𝑃1 is 
 

𝜆2 + (𝛿 − 1 + 𝜀 + 𝜎)𝜆 + (𝛿 − 1)(𝜀 + 𝜎) = 0.         (3) 
 

It can be seen that  +  is always greater than 0. Therefore, if the condition of 𝛿 > 1 holds, both 
(𝛿 − 1 + 𝜀 + 𝜎) and (𝛿 − 1)(𝜀 + 𝜎) are greater than 0, therefore, Routh-Hurwitz condition can 
prove the equilibrium 𝑃1 is locally stable. 

 
3.2 Stability of Predator Free Equilibrium 𝑃2 

 
The corresponding Jacobian matrix for equilibrium 𝑃2 is given by 𝐽𝑃2 =

(
𝛿 − 1

𝛿−1

𝛽(1−𝛿)2+𝛼(1−𝛿)+𝑎

0
𝜌(1−𝛿)

𝛽(1−𝛿)2+𝛼(1−𝛿)+𝑎
− 𝜎 − 𝜀

). 

 
Theorem 2. Equilibrium 𝑃2 is locally stable if both the conditions 1 > 𝛿 and (𝜀 + 𝜎)[𝛽(1 − 𝛿)2 +

𝛼(1 − 𝛿) + 𝑎] + 𝜌(𝛿 − 1) > 0 hold. 
Proof: The associated characteristic equation for equilibrium 𝑃2 is given by 
 

𝜆2 + {
(1−𝛿+𝜀+𝜎)[𝛽(1−𝛿)2+𝛼(1−𝛿)+𝑎]+𝜌(𝛿−1)

𝛽(1−𝛿)2+𝛼(1−𝛿)+𝑎
} 𝜆

+
(1−𝛿){(𝜀+𝜎)[𝛽(1−𝛿)2+𝛼(1−𝛿)+𝑎]+𝜌(𝛿−1)}

𝛽(1−𝛿)2+𝛼(1−𝛿)+𝑎
= 0.

              (4) 

  
From the above equation, we know that 𝛿 − 1 is one of the eigenvalues of equilibrium 𝑃2 and 

therefore 𝛿 < 1 must be strictly held. It is obvious that if the condition (𝜀 + 𝜎)[𝛽(1 − 𝛿)2 +
𝛼(1 − 𝛿) + 𝑎] + 𝜌(𝛿 − 1) > 0 holds together, both the coefficients of the characteristic equation 
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(4) are positive, thus by referring to Routh-Hurwitz criterion, we can ensure the local stability of 
equilibrium 𝑃2. 

From Theorems 1 and 2, we can notice that the local stability of equilibrium 𝑃1 implies that 
equilibrium 𝑃2 is unstable and vice versa. The reason is the local stability criterion of 𝛿 > 1 for 
equilibrium 𝑃1 is a contradiction to the local stability criterion of 𝛿 < 1 for equilibrium 𝑃2. 

 
3.3 Stability of Coexistence Equilibrium𝑃3 

 
The characteristic equation of interior equilibrium 𝑃3 is relatively complex and cumbersome to 

solve, therefore we study the stability and the dynamical behaviours of equilibrium 𝑃3 via numerical 
simulations in the next section. 

 
4. Numerical Simulation and Discussion  
4.1 Bifurcation Diagrams 

 
To identify the effects of prey harvesting parameter on dynamical behaviours, bifurcation 

analyses are performed by using XPPAUT and MatCont, respectively [24,25]. By taking the non-
dimensional parameter values 𝑎 = 0.2, 𝛼 = 0.9, 𝛽 = 0.9, 𝛿 = 0.05, 𝜎 = 0.4, 𝜌 = 0.9 and 𝜀 = 0.08, 
first, we perform bifurcation analysis of prey, 𝑥 against 𝛿 and the result is illustrated in Figure 1. In 
this case, both transcritical (T1, T2 and T3) and Hopf (H1) bifurcations exist. In the bifurcation 
diagrams, Equilibria E1 and E4 correspond to the predator-free equilibrium 𝑃2; equilibrium E3 
corresponds to the coexistence equilibrium 𝑃3 while equilibrium E5 corresponds to the extinction 
equilibrium 𝑃1 in Section 3. Three types of equilibria are obtained as 𝛿 varies:  

 
i. predator-free 

ii. coexistence of prey and predator  
iii. extinctions of both prey and predator equilibria.  

 
A stable predator-free equilibrium exists along E1 when 𝛿 < 0.1915. At 𝛿 = 0.1915, the stable 

predator-free equilibrium losses its stability and becomes unstable. Another stable equilibrium E2 
exists when 𝛿 > 0.1915. However, the equilibrium along E2 shows a negative value of predator. 
Hence, it is not biologically meaningful and it is not considered in our discussion. Coexistence of prey 
and predator occurs in the range 0.3556 < 𝛿 < 0.7251 (stable equilibrium E3). Further increase in 
𝛿 would lead to stable predator-free equilibrium E4(0.7251 < 𝛿 < 1). By referring to Theorem 1, 
equilibrium 𝑃1 = (0,0) is locally stable if the condition 𝛿 > 1 holds. This can be verified in Figure 1 
where the extinction of both prey and predator populations occurs when 𝛿 > 1 (stable equilibrium 
E5). 
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Fig. 1. Bifurcation diagram of prey, 𝑥 against 𝛿 

 
At 𝛿 = 0.3556, Hopf bifurcation occurs and the solution behaviour changes from stable 

equilibrium to oscillatory solution when0.1179 < 𝛿 < 0.3556. Bistable behaviour of the system can 
be detected in the small range of0.1179 < 𝛿 < 0.1915, where the solution can either converge to 
the predator-free equilibrium E1 or a limit cycle of coexistence equilibrium E3, depending on the 
initial conditions. For example, at initial condition 𝑥0 = 0.2 and at parameter 𝛿 = 0.2, oscillatory 
solutions of prey and predator are obtained. At the same value of 𝛿 = 0.2, the oscillatory solution 
changes to predator-free equilibrium if we are considering the initial condition of𝑥0 = 0.9. 

 
4.2 Time Series Diagrams 

 
To verify the three types of equilibria obtained in Figure 1, we plot several time series diagrams. 

First, we illustrate the bistable behaviour of the system. By considering 𝑥0 = 0.9, 𝑦0 = 0.9 and 𝛿 =
0.18, the system possesses predator-free equilibrium as shown in Figure 2(a). From Figure 2(a), 
initially, both prey and predator populations decrease sharply as time increases. When the extinction 
of predator population occurs(𝑦 = 0), the prey population starts to increase steeply until a stable 
equilibrium is attained. When we change the initial conditions to 𝑥0 = 0.2, 𝑦0 = 0.2 at 𝛿 = 0.18, the 
solutions exhibit oscillatory behaviour as illustrated in Figure 2(b). From Figure 2(b), it can be 
observed that both prey and predator populations oscillate between high and low values. It is 
observed that the prey population reaches its peak value before that of predator population. At high 
prey population, the predator population starts to increase and consume the prey population, 
thereby reducing the prey population. Since the food resource (prey population) available for 
predator consumption decreases, the predator population also decreases and reaches a low value. 
At low predator population, the prey population then increases. This process repeats and hence 
induces the oscillatory behaviour of the system. 
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Fig. 2. Bistable behaviours of the system where the solutions converge to (a) a predator-free 
equilibrium at 𝑥0 = 0.9 and 𝑦0 = 0.9, and (b) to a limit cycle of coexistence equilibrium at 𝑥0 = 0.2 
and 𝑦0 = 0.2 

 
Next, when we increase the value of 𝛿 from 𝛿 = 0.18 to 𝛿 = 0.6, coexistence of prey and 

predator is obtained in Figure 3(a). From Figure 3(a), initially, both prey and predator populations 
decrease. At low predator population, the prey population starts to increase. The predator 
population then increases gradually. Finally, both prey and predator populations reach a stable 
equilibrium. 

 

 
Fig. 3. (a) Coexistence of prey and predator at 𝛿 = 0.6. (b) The solutions approach to a 
predator-free equilibrium at 𝛿 = 0.9 

 
At higher prey harvesting 𝛿 = 0.9, the prey population decreases more sharply compared to that 

of predator population at the beginning of time as shown in Figure 3(b). It then approaches to a very 
low value. The predator population continues to decrease and finally converges to zero, i.e., the 
predator population extinct. With no predator population, the prey population begins to increase 
and reach a stable equilibrium. A predator-free equilibrium is obtained at high value of 𝛿. At 
extremely high level of prey harvesting, i.e, 𝛿 = 1.2, the prey population decreases more steeply 
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compared to that of predator population (Figure 4). Both the population sizes drop to zero and the 
extinction of the entire ecosystem occurs. 

 

 
Fig. 4. Extinctions of (a) prey and (b) predator at 𝛿 = 1.2 

 
4. Conclusions 

 
Mathematical modelling is one of the primary concerns to solve real-life problems [26]. In this 

study, the qualitative dynamical changes of a harvested predator-prey model incorporating Monod-
Haldane type response function has been studied in regards to the prey harvesting parameter. The 
trivial equilibrium together with non-trivial equilibrium are studied based on the local and global 
stability criteria. Bifurcation results showed that the prey harvesting parameter has a higher impact 
to influence the population dynamics by inducing transcritical and Hopf bifurcations as well as 
bistability phenomenon. It can be concluded that at low prey harvesting level, the system exhibited 
a bistable behaviour. This bistable behaviour occurs where the prey-predator system can possess 
both predator-free equilibrium or a limit cycle of coexistence equilibrium, based on the different 
initial conditions. At the intermediate level of prey harvesting, the bistablity behaviour diminished 
and the coexistence equilibrium becomes stable in terms of the global asymptotic perspective. The 
global asymptotically stable predator-free equilibrium implies the extinction of the predator species 
at relatively high level of prey harvesting. Finally, the extinction equilibrium is stable at extremely 
high level of prey harvesting. Overall, prey harvesting parameter is impactful in governing the 
dynamical behaviours in the proposed system. 
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