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ABSTRACT

The COVID-19 global pandemic, brought on by the rapid spread of the new
coronavirus (SARS-CoV-2), has developed into one of the healthcare industry's most
significant challenges in recent memory. Early detection of positive patients is
essential to prevent the further spread of the COVID-19 virus. Chest x-ray (CXR)
images of patients reporting shortness of breath initially led clinicians to suspect the
presence of this novel virus. On CXR images, among the alterations detected in the
lungs are indications of cloud region, also known as Ground-Glass Opacity.
Consequently, the primary objective of this study is to develop a robust segmentation
and to acquire an accurate segmented lung region in a CXR image, as this is a
necessary step for accurate diagnosis using computer-aided diagnostic systems
(CADS). The proposed methodology employs a multi-level segmentation strategy to
improve the performance of lung region segmentation, where Lazy Snapping is
utilized as pre-segmentation step to automatically remove the bone of the chest area,
followed by clustering to achieve the complete segmentation. Furthermore, the
advantage of fast k-means (FKM) clustering has also been utilized to obtain the
desired lung region. The proposed strategy using Lazy Snapping and FKM was
experimented on 150 CXR images and has achieved an average accuracy, sensitivity of
and specificity of 92.38%, 85.23% and 96.27%, respectively. Based on the results
obtained, this approach demonstrated efficacy in lung segmentation in chest x-ray
images and has a significant potential for clinical use.
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1. Introduction

The first incidence of COVID-19 in Wuhan was identified in December 2019. As of April 8, 2022,
there were 494,587,638 confirmed cases of COVID-19 and 617,0283 reported deaths worldwide.
Malaysia reported to the WHO 4,292,585 confirmed cases of COVID-19 from 3 January 2020 to 20
April 2022, with 35,228 fatalities. It is vital to diagnose positive cases as soon as possible to prevent
the COVID-19 virus from spreading further around the world. Additionally, to those who are
susceptible to infection and weak. Medical professionals began to suspect that people with
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shortness of breath who had chest X-rays (CXR) might have this unique virus as soon as the illness
was discovered. Anomalies in the lungs include evidence of the cloud region known as Ground-
Glass Opacity (GGO) on CXR imaging. CXR, however, has several drawbacks. The difficulty in
manually analysing CXR images is the issue. Because the cloud region creation in COVID-19 images
and pneumonia appears to be similar, radiologists have trouble producing CXR images for patients
with both conditions. Therefore, numerous studies have been conducted to aid medical
professionals in diagnosing COVID-19 disease and pneumonia more accurately so that patients who
are infected can receive thorough and prompt treatment [1-3].

Imaging techniques for the diagnosis of heart illness, such as CT angiography, echocardiography,
and heart MRI, have advanced significantly during the previous 25 to 30 years. The initial imaging
examination, however, was carried out using a chest x-ray for individuals with heart disease. It is
simple for radiologists to use and is now widely available. A chest X-ray makes it relatively simple to
monitor heart disease patients and, in some circumstances, to determine the disease's severity [4].
The diagnosis of COVID-19 is greatly aided by chest X-rays (CXR) and the assessment of the extent
of lung damage caused by the virus regarding the practical advantages and widespread availability.
The focus of this research was to use in-depth learning-based methods to automate the
classification of COVID-19 from common and viral pneumonia on CXR based on the GGO.

In patients with COVID-19 disease and pneumonia disease, the characteristic radiographic uses
chest CT scan and Chest X-Ray to obtain. Chest X-rays can also be used to monitor patients that
have COVID-19 and pneumonia [5] . Compared to a chest X-ray, a chest CT scan provides a more
detailed and accurate view of the chest, revealing the exact location and type of abnormality in a
3D image. While an X-ray gives a 2D image of solid tissues, CT scans capture bones, soft tissues, and
blood arteries simultaneously. X-ray equipment is simpler and smaller than CT scanners, which
rotate around the patient. A chest X-ray is an inexpensive first-look exam, but a chest CT scan may
be necessary for a clearer image to proceed with diagnosis and treatment [4].

Image segmentation is a technique that divides a digital image into smaller groups, called
segments, to simplify analysis. Labels are assigned to pixels, with each category having a unique
name. Segmentation reduces complexity and speeds up object detection by feeding only a portion
of the image into the detector. Two approaches to image segmentation are similarity and
discontinuity. It is critical and urgent to develop automatic methods for medical image
segmentation. Researchers have therefore made numerous attempts over the past few decades to
propose diverse methodologies for medical image segmentation. Consequently, numerous research
has been suggested. Elaziz et al., [6] method approach uses the generalized extreme value (GEV)
distribution to improve the density peaks clustering (DPC). The proposed model is validated on
twelve COVID-19 CT images. It was compared to traditional k-means and DPC techniques as well,
and it outperformed them on a number of criteria like PSNR, SSIM, and Entropy. As the result,
suggested method reached 89% of SSIM while the DPC and K-means only reached 82% and 76% of
SSIM in 11 out of 12 images, respectively.

In the 2021 study by Dixit et al., a classifier that merges Differential Evolution (DE) with Particle
Swarm Optimization (PSO), incorporates KM clustering as its segmentation algorithm for lung
region identification in chest X-ray images [7]. This integration leverages the unsupervised nature of
KM clustering, which uses the Euclidean distance between pixel intensities to form clusters, with
the number of clusters fixed at 2. Comparative analysis against the Expectation Maximization with
Gaussian Mixture Model (GMM-EM) showed that KM clustering, within the DE-PSO framework,
yielded a marginally higher accuracy of 87.43%, as opposed to GMM-EM's 85.45%. This outcome
highlights the effective application of KM clustering in the DE-PSO classifier, proving its capability to
deliver precise segmentation in medical imaging.
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Besides, previous researchers also implement KM clustering to segment out the lung regions
from the CXR images based on the texture features extracted through the texture histogram and
grey level co-occurrence matrix (GLCM) [8]. This research has segment 75 of COVID-19 negative and
positive infected cases CXR images, while also achieving the accuracy of 92%.

Khatibi and Shahsavari [9] proposed a strategy to mitigate the disease burden by utilising CXR
images for tuberculosis detection. The present study (CCNSE) introduces an innovative model for
multi-instance classification that relies on Convolutional Neural Networks (CNNs), complex
networks, and stacked ensembles. The performance metrics for the type of MC/SZ yielded an AUC
of 99.000.28/98.000.16 and an accuracy of 99.260.40/99.220.32. The study utilised a fivefold cross-
validation approach. The results indicate that the proposed method outperforms the alternative
techniques in comparing tuberculosis diagnosis using chest X-ray images.

As an optimisation model for COVID-19 diagnosis, Anter and Oliva [10] developed a modified
Slime Mould Algorithm (SMA) based on L'evy distribution and adaptive Fuzzy C-means (AFCM). An
SMA optimizer, which was used to build the best path for food connectivity, is provided. Weights
will be adjusted in oscillation mode, simulating the propagation wave's process of producing both
positive and negative feedback. In light of these findings, the accuracy of the suggested model is
about (ACC = 0.96, RMSE = 0.23, Prec. = 0.98, F1 score = 0.98, MCC = 0.79, and Kappa = 0.79).

Ranjbarzadeh et al., [11] have proposed a method for detecting and classifying COVID-19
infection from CT images utilising a two-route convolutional neural network (CNN) that extracts
global and local properties. The proposed approach integrates fuzzy c-means clustering and
regional directional pattern (LDN) encoding methodologies to represent the input image distinctly.
The results indicate that the proposed framework achieved a precision rate of 96%, a recall rate of
97%, an F-score, an average surface distance (ASD) of 2:80:3 mm, and a volume overlap error (VOE)
of 5:61:2%.

A fully automated segmentation method that can swiftly perform quantitative analysis of
computed tomography images and is resistant to a number of density-enhancing lung problems has
been proposed by Gerard et al., [12] . The suggested lung segmentation technique was
quantitatively assessed on 87 COVID-19 CT images using semi-automated and manually corrected
segmentation. The outcomes showed a Dice coefficient of 0.985 mm and an average symmetric
surface distance of 0.495 mm and 0.011 mm, respectively. The annotated dataset's accessibility is
severely hampered by the fact that the disease is currently spreading at various rates throughout
the world.

The segmented CXR image that was obtained will aid medical professionals in making accurate
diagnoses. As a result, knowledge of the lung segments enables us to measure lung characteristics,
such as size, that may be important for medical evaluation. The challenge of accurately segmenting
lungs in chest X-rays arises from the presence of opacities or consolidation, which can result from
overlaps between the lung region and severe abnormalities caused by pulmonary diseases, fluid, or
bacterial infection [13] . Computer-aided diagnosis (CAD) systems are known to generate reliable
segmentation outcomes owing to the distinct contrast observed between the lung region and its
surrounding area in healthy individuals. In cases of pulmonary disease, the differentiation between
the impacted lung region and the surrounding area on the film is often indistinct, leading to a
decrease in the precision of segmentation. This is especially significant as accurate segmentation is
imperative in such scenarios. Consequently, the undertaking of lung segmentation is significantly
more difficult and complex.

Based on the summary of the previous works, there is a demand for detection and
segmentation of lung region in CXR image as this step is important towards accurate diagnosis using
computer-aided diagnostic systems (CADs). To resolve the challenges listed above, this study
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proposed a computerised approach to increase lung segmentation accuracy by utilizing Lazy
Snapping algorithm as pre-segmentation step to automatically remove the bone of the chest area,
followed by segmentation using clustering to accurately segment the desired lung area. To achieve
and highlight the obtained result, the processes are summarized as follows:

i. The raw CXR images utilized in this study were obtained from Covid19-Radiography and
Chest-Xray-Images (Pneumonia) datasets.

ii. The images were pre-segmented using Lazy Snapping to initially remove the bone of the
chest area.

iii. Modified global contrast stretching was employed to increase the significant contrast
between the lung and the bone of chest region.

iv. K-means and fast k-means clustering were used to accurately segment the desired lung
area.

v. To evaluate the performance, six metrics were computed: accuracy, sensitivity,
specificity, precision, recall and F-score.

2. Methodology
2.1 Data Source and Description of Chest X-Ray Images

The Covid19-Radiography-Dataset and Chest-Xray-Images (Pneumonia) datasets, both of which
are published in Kaggle, are two publicly accessible datasets and online sources that were used in
this work. These datasets were selected because CXR images can reveal GGO patterns in the virus
infected lung tissues, which is an important feature for medical imaging diagnosis. Typically, normal
CXR images exhibit clear, darker areas representing the lung fields, whereas pneumonia shows the
GGO patterns at the infected lung tissues only [14] . In contrast, COVID-19 often results in
widespread GGO across the lungs, reflecting the virus's extensive impact [15]. The datasets include
a variety of CXR image sizes. For this study, 150 CXR images were used, including 50 normal, 50
pneumonia, and 50 COVID-19 cases, to analyse the differences in lung appearances. These images
serve as a representative sample for the investigation, with examples of normal, pneumonia, and
COVID-19 CXR images illustrated in Figure 1.

Normal CXR image Pneumonia CXR image COVID-19 CXR image
Fig. 1. Samples of CXR images for normal, pneumonia and COVID-
19 images

2.2 Image Pre-Processing and Segmentation of Chest X-Ray Images
2.2.1 Pre-segmentation of chest x-ray images using lazy snapping

A CXR image consists of a lung region which is referred as the region of interest, surrounded by
the bone of chest regions (shoulder, scapula, diaphragm and thorax). For accurate learning and
classification in the next processing stage, lung segmentation requires eliminating the surrounding
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areas from the chest radiograph. Increasing segmentation accuracy in medical imaging enables
more accurate disease identification. By referring to the CXR images in Figure 1, it is noticeable that
the pixel values of the thoracic structure are similar to the soft tissues surrounded the lung region.
Furthermore, the signs of the cloud region known on CXR imaging as Ground-Glass Opacity (GGO)
are among the abnormalities that can be seen in the lungs for diagnosis the presents of COVID-19.
Therefore, lung segmentation is crucial to obtain a good segmented image as the present of GGO
might cause the under/over segmented images as the GGO area might be mistakenly segmented as
part of thoracic structure. To overcome these shortcomings, lung region segmentation based on
Lazy snapping algorithm has been proposed as pre-segmentation step to automatically remove the
shoulder, scapula, diaphragm, and thorax regions from the CXR images.

Based on a graph cut, lazy snapping [16] employs interactively drawn lines to define which
portions of the image should be maintained (referred to as the foreground) and which should be
cut (referred to as the background). To minimise the Gibbs Energy E(X) on a graph concerning the
user-defined hard restrictions, Graph Cut assigns labels to each node xi (such as 1 for foreground
and 0 for background). The isolated zones are calculated and presented for each new line that the
user draws on the foreground and background areas of the image [17]. The user may properly crop
the right area with just a few lines. Lazy Snapping employed the watershed approach as its initial
step to pre-segment images. Next, a weighted directed graph was built by rendering the partitioned
regions as nodes, and the graph partition problem was then solved using the maximum flow-
minimum cut algorithm. Finally, to improve the segmentation results, a manual adjustment
strategy is used.

The Lazy Snapping algorithm is comprehensively expounded in reference [16]. The requirement
for interactive speeds in lung segmentation, especially when dealing with a high volume of images
to be segmented, renders implementing a standard graph cut impractical. This is due to the user's
need to select foreground and background regions for each input image manually. This study
proposes an updated manual marking stage that utilises the location information of the lung on
each input image to differentiate between the background and foreground regions, thereby
overcoming the restriction above. Before analysing image data in this study, background and
foreground regions were standardised to account for the varying proportions of the images used.
Consequently, only the foreground portions could be automatically removed. Figure 2 displays a
comparison between the original image and the image generated through the utilisation of the lazy
snapping technique. From Figure 2(b), which depicts an appearance consisting of distinct regions,
the foreground and background are automatically identified by the red and green frames,
respectively.

(a) Original COVID-19 (b) Designated regions (c) Lazy Snapping
Fig. 2. The designated regions and segmentation results of Lazy
Snapping on CXR images

As mentioned earlier, lazy snapping algorithm utilized watershed algorithm as it first step to
pre-segment images. As watershed uses the gradient information of grayscale images, this may
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result on over-segmentation image, in where the number of regions of the pre-segmentation
results is still large. Therefore, the resultant segmented image needs to under two additional steps,
which are contrast stretching and clustering to improve the segmentation performance of the
detection lung region.
2.2.2 Image enhancement by using modified global contrast stretching technique

The chest radiograph images captured from the radiography device could have various flaws,
including blurriness or low contrast, hence requires an enhancement process. This is typically done
to highlight image details that may be difficult for a human viewer to recognize. Generally, image
enhancement aims to enhance the diminishing features of the image, thus improving the image
quality to be used for training the model. However, the purpose of using image enhancement is
slightly different for this study, where it is used to increase the significant contrast between the
lung and the bone of chest regions for easing the segmentation process.

Thus, a contrast enhancement technique namely modified global contrast stretching (MGCS)
[18] is utilized to improve the image quality and increase the contrast of CXR image. Contrast
stretching is known to enhance the image by widening the range of scene illumination. This
technique attempts to improve the contrast in an image by extending the image's intensity values
to cover a desired range of values, usually the entire range of pixel values permitted by the image
type. As for MGCS, the updated stretching methods for the modified version are analogous to the
minimum-maximum values of the conventional global and linear contrast stretching [19] . The CXR
image will be improved by performing the MGCS approach with 25% as the minimum percentage,
minp, and 25% as the maximum percentage, maxp, values. By using these settings, the pixel within
the range of minp and maxp will be mapped and stretched to a wider range, while the remaining
pixels will be compressed. Thus, the bone of chest area becomes brighter, while the lung area
becomes darker, hence the contrast between these two regions is raised while simultaneously
simplifying the image segmentation process.

2.2.3 Lung segmentation using variant K-means based clustering techniques

Once the CXR image was enhanced, the lung segmentation process was repeated using a
clustering approach. For this purpose, an adaptive unsupervised segmentation technique based on
k-means and fast k-means clustering algorithms will be utilized for easily segmenting the lung
region.

K-Means (KM) Clustering [20] : is one of the most commonly used unsupervised learning
algorithms due to its straightforwardness and computational efficiency. It is particularly effective
for large datasets, making it suitable for medical imaging analysis, including lung segmentation. K-
means divides an unlabelled data set into K clusters, where each level value should be assigned to
the cluster with the closest cluster centre after calculating the Euclidean distance between each
level value and the cluster's centre. The clusters were constructed using its similarity. In order to
analyse the number of clusters towards lung segmentation, different number of clusters have been
analysed consisting of K=2, 4, 6, 8 and 10. The aim of k-means clustering is to minimized the
objective function as shown in Eq. (1):
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When Xi is the i-th sample, k is the number of clusters, n is the quantity of data, and cj is the j-th
cluster center. Each element of data in this study will be divided into three groups for all analyses.
The KM clustering algorithm for image segmentation can be implemented as follows:

i. The clustering of the pixels is done by choosing k points at random from the space. The
initial cluster centre, cj, is represented by these points.

ii. Each data should be given to the closest centre.
iii. Recalculate the new centre location once all the data have been assigned.
iv. Once the centres are no longer moving, repeat steps 2 and 3 once again. As a result, the

item will be divided into groups from which the metric that needs to be minimized can
be calculated.

Fast K-Means (FKM) Clustering [21] : Lung segmentation is a crucial step since it isolates the
objects of interest which is referred to the lung region for later processing or recognition steps.
Since CXR images are downloaded from the internet, object elements with different intensities may
result in lighter and darker regions, which may compromise the precision of conventional image
segmentation. Therefore, FKM clustering is preferrable as compared to the conventional KM as it
offers more benefits in terms of segmentation performance as wells as its timing [21,22] . FKM
clustering can minimize the time required to train image cluster centres and solve the problem of
retraining cluster centres. The following is a precise explanation of the FKM clustering steps:

i. The histogram discrete function value is h(rR,i1, rG,i2, rB,i3 ) where i1, i2, i3 = 1, 2,... L or
call all the pixels to have colour level rR,i1, rG,i2, rB,i3. This assumes that an RGB image
database (R, G, and B) comprises N images and the j-th.

ii. If there are K clusters and n centre vectors per cluster, then:

�� = (��,1, … , ��,�) (2)

where � = 1,2, . . , K.
iii. Determine the closest cluster centre by calculating the Euclidean distance between each

level value and it. The k-th cluster vector's level value r and cluster centre ck are
separated by the following Euclidean distance:

� �, �� = �1 − ��,1
2 +…+ �� − ��,�

�
(3)

where � = 1,2, . . , �. The cluster ck of its nearest cluster centre is given the colour scale
value r.

iv. By calculating the mean of each cluster level, create a new centre for each cluster.
v. Until the new cluster centre is equal to the starting database, repeat steps 1 through 3.

The image chosen for FKM has single colour components. Thus, the histogram discrete function
value will be h(r_i1,r_i2,r_i3… r_in) until all of the pixels in the image are analysed. Because the
value of 'k' is set to 2, the images will only be segmented into two clusters. Let’s K value is set to 2,
then the precise of two centre points will be constructed. The processes will be repeated to
determine the precise two centre spots. The Euclidean distance between each level value and the
cluster centre C_k is then calculated. Following that, each level value will be sorted and clustered to



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 54, Issue 1 (2025) 138-153

145

the cluster centre point that is nearest to it. The new centre point will be determined using the
mean value. Then, all noises and unwanted images are removed to make sure the image of the
lungs is white, with a black background and no visible bone shape.

2.2.4 Image post-processing for chest x-ray images

The segmented image produced from the previous step may consists some unwanted objects
attached to the border of segmented image. Hence, the unwanted objects were discarded by
removing all objects that are less than 50000 pixels in size. Finally, the surface of segmented lung
region and boundary was smoothened by using a disk-shaped structure element with a radius of 25
pixels in close morphology.

3. Results and Discussions

In this study, lung region segmentation that can automatically remove the bone of the chest
area by utilizing Lazy Snapping and clustering segmentation approach has been proposed.
Comparisons between two approaches by applying multi-level segmentation (Lazy Snapping and
clustering) and single segmentation (clustering only) were conducted for recognizing the
significance of applying each segmentation approaches on CXR image. To assess the impact of lung
segmentation, The major criterion for evaluating the performance of each segmentation strategy is
based on its capacity to produce fully segmented lung areas as well as remove the bone of chest
regions from the image. Both qualitative and quantitative criteria have been used to evaluate the
characteristics of segmented images.

In this study, the experiment was performed on 150 CXR images of COVID-19, pneumonia and
normal samples images. Figure 3 shows sample of CXR images, and the results obtained by
employing Lazy Snapping. In this study, the CXR image was pre-segmented by using Lazy Snapping
to initially remove the bone of chest regions from the image. This algorithm was used as an
additional step to improve the segmentation performance of the detection lung region. To perform
the pre-segmentation, each image was mark by specifying the lung and background regions
depending on the position information of the lung on each input image. The position of this
designated regions was standardized and suitable to be applied for overall 150 images.

Figure 3 represents the designated regions, where the red frame marks lung information, while
the green frame marks the background. The lung field was recovered from the image after
removing the shoulder and diaphragm regions based on the outcomes of lazy snapping. Hence, Lazy
Snapping proved to be efficient and reliable approach that could be used as pre-segmentation for
removing a larger part of bones region in the image. Nevertheless, it was noted that this particular
methodology exhibits a bias towards over-segmentation, given that the thoracic region persists in
the foreground, and the left and right lungs are predominantly not differentiated. The need for
more specification of the thoracic vertebra as contextual information during implementation of the
Lazy Snapping methodology resulted in the above outcome. Thus, a complex structural area like
this could be addressed by segmenting the result a second time using a clustering approach.
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(a) Original COVID-19 (b) Designated regions (c) Lazy Snapping

(d) Original pneumonia (e) Designated regions (f) Lazy Snapping
Fig. 3. The designated regions and segmentation results of Lazy
Snapping on CXR images.

To correct the condition caused by over-segmentation, the resulting image was furthered
enhanced using MGCS technique. This step is necessary to increase the significant contrast
between the lung and the bone of chest regions for easing the segmentation process. Figure 4
presents a sample of CXR image from COVID-19 patient that has undergo the MGCS process. By
applying the contrast stretching with high and constant values of minp=25% and maxp=25%, the
bone of chest area becomes brighter, while the lung area becomes darker, hence increasing the
contrast between these two regions. If the maximum value is higher than the minimum value, the
bone area will appear brighter. If the lowest value is higher than the highest value, the lung region
will seem darker. This enhancement step partially eliminates the intensity variations between the
lung and its background.

(a) COVID-19 sample
minp=5%,maxp=5%

(b) COVID-19 sample
minp=25%, maxp=25%

(c) Pneumonia sample
minp=5%,maxp=5%

(d) Pneumonia sample
minp=25%,maxp=25%

Fig. 4. Contrast enhancement based on MGCS applied to a CXR from a patient with COVID-19

Thereafter, a segmentation procedure employing KM and FKM clustering algorithms was
carried out to obtain a finer viewpoint for the region of interest, which is the lung area as presented
in Table 1 and Table 2. To examine the importance of each clustering approach for image
segmentation, segmentation has been performed using various numbers of clusters (segmented
regions). Table 3 and Table 4 illustrate the final results of the proposed segmentation approach. As
mentioned earlier, there are two different experiments (combination of Lazy Snapping and
clustering versus clustering only) were conducted for recognizing the significance of applying each
segmentation approaches on CXR image. By referring to the final results of single segmentation, KM
is unable to segment the lung region properly when using number of clusters of 4, as the left side of
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the lung region disappears after the image segmentation phase is complete. By observing the
results of KM clustering, the segmented regions produced by the five set of clusters vary as the
number of clusters varies. Furthermore, under-segmented lung region has been produced when
applying number of clusters equal to 4, 6 and 8. Thus, choosing the right number of clusters is
essential for appropriately segmenting the lung region with KM clustering.

Table 1
Results of lung segmentation of COVID-19 sample after applying KM and FKM clustering algorithms

2 clusters, read 1
region

4 clusters, read 2
regions

6 clusters, read 3
regions

8 clusters, read 4
regions

10 clusters, read 5
regions

KM

FKM

2 clusters, read 1
region

4 clusters, read 3
regions

6 clusters, read 5
regions

8 clusters, read 7
regions

10 clusters, read 9
regions

Lazy
Snapping
+ KM

Lazy
Snapping
+ FKM
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Table 2
Results of lung segmentation of pneumonia sample after applying KM and FKM clustering algorithms

2 clusters, read 1
region

4 clusters, read 2
regions

6 clusters, read 3
regions

8 clusters, read 4
regions

10 clusters, read 5
regions

KM

FKM

2 clusters, read 1
region

4 clusters, read 3
regions

6 clusters, read 5
regions

8 clusters, read 7
regions

10 clusters, read 9
regions

Lazy
Snapping
+ KM

Lazzy
Snapping
+ FKM

Interestingly for FKM, as the number of clusters increase to 10, each set of clusters has
produced homogeneous results and the segmented lung region are better compared to KM. Most
of the areas on the border of the lung that contain GGO feature for COVID-19 sample are still
available for FKM image. However, in terms of single image segmentation approach, it was also
observed that using KM and FKM alone have led to under-segmentation tendency in processing the
image as this clustering are sensitive to intensity variations of the input image. However, in case of
complex CXR images segmentation problems, which cannot be tackled effectively by using
clustering segmentation alone, applying multi-level segmentation is the most suitable approach.
After performing clustering on a segmented Lazy Snapping image, the left and right lungs could be
separated. It is evident from Table 3 and Table 4 that the proposed combination of Lazy Snapping
and clustering approach achieves very promising segmentation results in most of the images, under
the same position of this designated regions, as well as variety number of clusters, which is more
effective in practical applications.



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 54, Issue 1 (2025) 138-153

149

Table 3
Results of segmented lung of COVID-19 sample after post-processing

2 clusters, read 1
region

4 clusters, read 2
regions

6 clusters, read 3
regions

8 clusters, read 4
regions

10 clusters, read 5
regions

KM

FKM

2 clusters, read 1
region

4 clusters, read 3
regions

6 clusters, read 5
regions

8 clusters, read 7
regions

10 clusters, read 9
regions

Lazy
Snapping
+ KM

Lazy
Snapping
+ FKM

To further compare and evaluate the segmentation quality of each segmentation approach, the
statistical values of the segmented CXR images are compared with the ground truth images by
picking sensitivity, specificity, accuracy, precision, recall and f-score. Using 3D-Paint, each CXR
image was manually segmented to produce the ground truth images. The comparison was made
using 150 CXR images, with 50 images each for COVID-19, pneumonia, and normal samples. The
segmentation performance has been reported for the different clustering approaches in Table 5.
Given that the goal of the segmentation is to precisely separate the targeted lung region from the
chest bone region, it can be seen that FKM in a combination with Lazy Snapping as the pre-
segmentation step outperformed the others with accuracy and F-score of 92.38% and 0.8739,
respectively.
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Table 4
Results of segmented lung of pneumonia sample after post-processing

2 clusters, read 1
region

4 clusters, read 2
regions

6 clusters, read 3
regions

8 clusters, read 4
regions

10 clusters, read 5
regions

KM

FKM

2 clusters, read 1
region

4 clusters, read 3
regions

6 clusters, read 5
regions

8 clusters, read 7
regions

10 clusters, read 9
regions

Lazy
Snapping
+ KM

Lazy
Snapping
+ FKM

It was further verified in Table 5 that Lazy Snapping has consistently improved the segmentation
performance for both KM and FKM clustering. Furthermore, single segmentation based on KM
clustering was worst-performing with accuracy and F-score of 83.72% and 0.7653. Additionally, it
can be seen that, when compared to KM, the FKM is the clustering technique that performs the
best for both single and multi-level segmentation. Overall, it is clear that the combination of Lazy
Snapping and clustering was the best-performing technique, both in terms of high sensitivity values
that surpassed the solo clustering and accuracy of segmentation performance. Therefore, the
results of the proposed segmentation approach reported in this study are proved to be efficient
and hence, a reliable approach that could be used in lung region segmentation for aiding COVID-19
diagnosis.
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Table 5
Differences of clustering techniques, the result of average segmentation performance of two different
segmentation techniques
Clustering Method Number of

Clusters
Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision Recall F-
score

K-Means 2 Cluster 58.09 98.38 86.04 0.9449 0.5809 0.7868
4 Cluster 55.73 98.54 85.34 0.9483 0.5573 0.7599
6 Cluster 49.86 98.85 83.72 0.9565 0.4986 0.7653
8 Cluster 54.39 98.57 85.00 0.9481 0.5439 0.7706
10 Cluster 53.43 98.78 84.81 0.9537 0.5343 0.7703

Fast K-Means 2 Cluster 59.09 98.33 86.36 0.9440 0.5909 0.7790
4 Cluster 59.53 98.50 86.43 0.9493 0.5953 0.7640
6 Cluster 62.58 98.50 87.37 0.9528 0.6258 0.7575
8 Cluster 59.13 98.57 86.39 0.9524 0.5913 0.7538
10 Cluster 57.88 98.61 86.07 0.9525 0.5788 0.7597

Lazy Snapping + KM 2 Cluster 77.24 98.36 91.36 0.9525 0.7724 0.8479
4 Cluster 87.66 94.27 91.76 0.8708 0.8766 0.8665
6 Cluster 76.78 98.02 91.02 0.9456 0.7678 0.8427
8 Cluster 85.46 94.91 91.59 0.8848 0.8546 0.8609
10 Cluster 84.90 95.86 92.04 0.9026 0.8490 0.8671

Lazy Snapping +
FKM

2 Cluster 77.45 98.34 91.42 0.9521 0.7745 0.8490
4 Cluster 88.08 94.01 91.72 0.8665 0.8808 0.8665
6 Cluster 78.56 98.05 91.48 0.9450 0.7856 0.8523
8 Cluster 83.05 97.04 92.21 0.9241 0.8305 0.8693
10 Cluster 85.23 96.27 92.38 0.9088 0.8523 0.8739

4. Conclusion

In this study, a multi-level image segmentation method based on Lazy Snapping and clustering is
proposed. The proposed methodology employs the Lazy Snapping algorithm as a pre-segmentation
technique to facilitate the automated removal of the bone from the chest region. Subsequently,
segmented clustering is employed as nodes to delineate the requisite lung area. By employing this
strategy, a better lung segmentation result has been achieved using multi-level segmentation
approach as compared of using a single clustering algorithm for image segmentation. The
experimental results show that the proposed approach can achieve segmentation with the accurate
desired region while retaining the important boundary details and shows good performance in
most evaluation indexes. From the results of numerical experiments, the performances of multi-
level segmentation using FKM is found to be slightly effective than the KM algorithm with average
segmentation accuracy and f-score values of 92.38% and 0.8739, respectively.

Future research directions will focus on advancing image classification techniques to diagnose
the COVID-19 disease automatically. Leveraging the groundwork laid by successful multi-level
segmentation, the next step would be exploring the integration of sophisticated image classification
algorithms, such as CNN and support vector machine (SVM), to refine the detection and analysis of
COVID-19 and other pulmonary conditions. An area of particular interest is the cross-modal analysis,
where segmented X-ray imagery will be synergized with clinical data, augmenting the predictive
capacity of classification models. This diagnostic tool not only facilitates fast and accurate disease
diagnose but also supports tailored treatment strategies, marking a significant leap forward in the
domain of lung disease diagnostics.
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