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Quantum entanglement is a critical physical process in quantum mechanics and 
quantum information theory. It is a required process in quantum computing, quantum 
teleportation, and quantum cryptography. Entanglement detection affects the 
performance of quantum information processing tasks. Entanglement detection has 
grown in popularity over the years, and various entanglement detection methods are 
available, though some have application and system scale limitations. This scoping 
review sought to identify various measurement methods for entanglement detection 
in both bipartite and multipartite entanglement systems. Secondary resource indexed 
literatures were selected based on specific keywords from literatures published 
between 2017 and 2021. The goal of this study is to present a proposed conceptual 
framework of entanglement detection based on previous work as a guidance and 
reference founded on one’s specific requirements. 
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1. Introduction 
 

Quantum entanglement is one of the most studied aspects of quantum mechanics [1], as well as 
one of the most important resources in quantum information processing, as interests in this resource 
has been growing and utilized in various quantum technologies namely quantum computation and 
quantum teleportation [2-10]. Entanglement occurs when two or more objects become entangled 
and remain correlated despite their distance [11]. In quantum computation, quantum entanglement 
is critical in demonstrating the advantages and capabilities of a quantum computer over a classical 
computer. Quantum entanglement has piqued the interest of a wide range of stakeholders in recent 
years. Though quantum entanglement has been known for decades, knowledge of the subject is 
extremely limited, especially in higher pure and mixed qubit state dimension systems [1,12].  
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Entanglement detection, which is the process of determining whether a particular state is 
entangled or not, has proven to be difficult, especially in high-dimensional systems [12,13]. 
Entanglement detection is required to fully understand the structure of a state system, making it a 
hot topic in quantum technology [14]. The methods for detecting entanglement are considered 
sorted in a low qubit-dimension pure state system but not in a mixed state system [15]. Some well-
known entanglement detection methods include extended and compounded entanglement witness, 
mutually unbiased bases (MUBs), mutually unbiased measurements (MUMs), general symmetric 
informationally complete measurements (GSIC-POVMs), randomness distillation, uncertainty 
relations, Bell inequality with semidefinite program (SDP) hierarchy, supervised machine learning-
based approach, autoencoder neural network, tangle and entanglement measures based on fidelity, 
quantum Fisher information, separability criterion (positive partial transpose), tensor product 
decomposition of the coefficient vectors (ascending lexicographical order) and permutations of 
qubits, controlled SWAP (c-SWAP) test, genuine entanglement detection and genuine multipartite 
entanglement concurrence, additive entanglement of formation (EOF), k-partite entanglement and 
k-nonseparability, norms of the correlation tensors and multipartite concurrence. 

This study aims to identify various existing entanglement detection methods used in previous 
research and provide a conceptual framework of entanglement detection as a guidance for future 
work based on one’s specific requirements. This paper presents extended and combined 
entanglement detection methods that cover bipartite to multipartite quantum states and low to 
high-dimensional systems. The paper is organized as follows: The research methodology is detailed 
in Section 2. The results and entanglement detection methods are discussed in Section 3. Section 4 
concludes the paper. 
 
2. Methodology  

 
This section discusses the method for retrieving literatures on entanglement detection. The study 

examined literatures on entanglement detection using a scoping review, which is a method that 
serves as an overview, revealing the fundamentals and theories underlying a research topic [16]. 
Peters et al., [16] proposed a scoping review that includes five key phases:  

 
i. formulation of research questions 

ii. inclusion and exclusion criteria 
iii. search strategy 
iv. screening and selection 
v. data extraction and analysis.   

 
2.1 Formulation of Research Question  

 
The research questions were developed based on the key context and concept of entanglement 

detection methods. The following research questions directed the review:  
 

i. What are the existing entanglement detection methods in quantum information 
processing?  

ii. What is the best alternate entanglement detection method for specific requirements?  
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These questions are consistent with the research goal of determining and providing a framework 
for the preferable entanglement detection method for specific conditions in quantum information 
processing. 

 
2.2 Inclusion and Exclusion Criteria 

 
The study established several inclusion and exclusion criteria (see Table 1). This scoping review 

examined indexed literatures and book series on entanglement detection published between 2017 
and 2021. The five-year time frame was chosen due to the subject’s maturity, which has seen 
increased interest in recent years as a result of numerous studies on the topic. As the focus of this 
review is entanglement detection, literatures on “entanglement quantification” and “entanglement 
classification” were excluded. Following that, only English-written literatures were considered to 
avoid conceptual misunderstandings and mistranslations on the subject. 

 
Table 1 
Inclusion and exclusion criteria 

Inclusion criteria  Exclusion criteria 
Literatures with the subject matter of “quantum 
entanglement” and “entanglement detection” 

Literatures written in a language other than English 

Literatures in indexed journals and book series Literatures related to subject matter of “entanglement 
quantification” and “entanglement classification” 

 Literatures published before the year 2017 
 

2.3 Search Strategy  
 
The literatures selected for the study were mainly drawn from Scopus and the Web of Science 

(WOS). Both databases are regarded as powerful search engines in research across a wide range of 
disciplines. Scopus is an abstract and citation database with over 30,000 journals from over 11,000 
publishers worldwide, while WOS is an established, comprehensive, high-quality database platform 
with over 171 million reference records. As previously stated, the selected literatures span five years, 
from 2017 to 2021. An extensive search was conducted using the search field tags “TITLE-ABS-KEY” 
(title, abstract and keywords) in Scopus and “TS” (topic) in WOS using specific keywords, namely 
quantum detection, quantum entanglement and quantum measurement. Figure 1 depicts the search 
results on Scopus and WOS.  

 

 
 

 
 

Fig. 1. Search results on Scopus and WOS 
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2.4 Screening and Selection  
 
In the first stage of the review process, 1934 literatures were identified and extracted from the 

search results. 1847 literatures were excluded due to duplications by title reviews, and abstract 
reviews. In the second stage, the 87 remaining literatures were examined and validated to ensure 
that they met the inclusion and exclusion criteria, removing 33 publications in the process. In the 
third stage, the remaining 54 literatures were thoroughly reviewed again, resulting in 28 literatures 
being excluded by the inclusion and exclusion criteria. Finally, a total of 26 literatures are left for the 
study analysis. Figure 2 depicts the literature selection process. 

 

 
Fig. 2. Literatures selection process 

 
 

  

Literatures identified 
through Scopus (n=1387) 

Literatures identified through WOS 
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Total literatures identified 
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2.5 Data Extraction and Analysis 
 
The 26 selected literatures that correspond to the research questions were thoroughly examined. 

Through an in-depth reading of the literature, relevant and appropriate data were extracted in three 
steps. First, the abstract was read to see if there was any pertinent information. Following this, the 
conclusion and body of the literature were read.  

The literatures were analysed to identify relevant themes and methods. The extracted data were 
tabulated in Microsoft Word. The literatures were grouped based on the year of publication (see 
Figure 3). One study was published in 2017, followed by four studies published in 2018, three studies 
were published in 2019, a total of eight studies were published in 2020 and lastly ten studies were 
published in 2021. 

 

 
Fig. 3. The number of literatures based on the year of publication 

 
The extracted data was then used to identify themes by observing methods used in the selected 

literatures. The identified themes are extended and compounded (additional variables or adaptation) 
entanglement witness; MUBs; MUMs; GSIC-POVMs; supervised machine learning-based approach; 
autoencoder neural network; randomness distillation; uncertainty relations; Bell inequality with 
semi-definite-program (SDP) hierarchy; tangle and entanglement measures based on fidelity; 
quantum Fisher information; separability criterion (positive partial transpose); tensor product 
decomposition of the coefficient vectors (ascending lexicographical order) and permutations of 
qubits; controlled-SWAP test; genuine entanglement detection and genuine multipartite 
entanglement concurrence; additive entanglement of formation (EOF); k-partite entanglement and 
k-nonseparability; and norms of the correlation tensors and multipartite concurrence. 

       
3. Results  

 
This section discusses the identified themes from the literature analysis (see Table 2). Based on 

the findings, a conceptual framework of entanglement detection was proposed for future work (see 
Figure 5). 
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3.1 Entanglement Detection Methods 
 
Table 2 shows 27 entanglement detection methods used in previous studies. Some of these 

methods are extended and compounded (additional variables or adaptation) to facilitate the 
detection entanglement process. 

Entanglement witness was used as a ground basis for extended and compounded entanglement 
detection methods in [13,17-21]. According to Baccari et al., [1], the entanglement witness concept 
lacks generality on its own, hence the derivation of the concept to adapt to certain requirements is 
beneficial. Sen et al., [14], Zhijin et al., [22] and Sen et al., [23] also used entanglement witness as a 
ground basis and employed a similar measurement-device-independent approach. The 
measurement-device-independent concept was introduced as a contrast to the device-dependent 
concept, providing entanglement detection with increased robustness and loss tolerance. Similarly, 
the device-independent concept was used by Baccari et al., [1] but with a different measure setting, 
Bell inequality with SDP hierarchy.   

The entanglement detection methods developed by Shen et al., [24], Hiesmayr et al., [25] and Lu 
Liu [26] are based on three related measurement concepts: MUB, MUM and GSIC-POVM. Due to its 
limitations, the concept of MUBs was then generalized to MUMs. Similarly, the symmetric 
informationally complete positive operator-valued measures (SIC-POVMs) were generalized to GSIC-
POVMs. These measurements were effective as they are based on a few local measurements.   

Other established entanglement detection methods include: 
 

i. supervised machine learning-based approach 
ii. autoencoder neural network 

iii. randomness distillation 
iv. uncertainty relations 
v. tangle and entanglement measures based on fidelity 

vi. quantum Fisher information 
vii. separability criterion (positive partial transpose) 

viii. tensor product decomposition of the coefficient vectors (ascending lexicographical order) 
and permutations of qubits 

ix. c-SWAP test 
x. genuine entanglement detection and genuine multipartite entanglement concurrence 

xi. additive EOF 
xii. k-partite entanglement and k-nonseparability 

xiii. norms of the correlation tensors and multipartite concurrence. 
 
The reviewed entanglement detection methods are divided into three clusters. Cluster 1 contains 

entanglement witnesses, Cluster 2 contains MUBs, MUMs, GSIC-POVMs, and Cluster 3 contains other 
methods. Figure 4 depicts the clusters of entanglement detection methods. 
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Table 2 
Entanglement detection methods used in previous studies  

Source Methods Qubit 
System 

Quantum State Remarks 

BP MP PU MX AR 
[1] Bell inequality with SDP hierarchy  

 
 

 
 Up to 29 qubits 

[12] Supervised machine learning-based 
approach 

 
  

  Up to 8 qubits 

[17] Entanglement witness through lossy 
compression  

 
 

   

[13] Optimal entanglement witness with 
separability criterion  

 
  

  4 qubits 

[24] MUMs, GSIC-POVMs 
 

 
 

   

[18] Witness operator (for local model new 
genuinely multipartite entanglement) 

 
  

   

[14] Measurement-device-independent 
entanglement witnesses (MDI-EW)  

 
 

   

[22] Measurement-device-independent universal 
entanglement witness (MDI-UEW)  

 
   

 

[23] Measurement-device-independent 
entanglement witness (MDI-EW)      

  

[27] Autoencoder neural networks 
 

   
 

Can be extended 
beyond 2 qubits 

[19] An optimal entanglement witness from 
random homodyne measurements  

   
 

 

[20] Entanglement witness on graph state  
   

  

[21] Entanglement witnesses with local 
measurement settings 

 
  

  Up to 15 qubits 

[25] MUBs 
 

 
 

   

[26] MUBs, MUMs, GSIC-POVMs  
 

  
 

Qudit system and 
arbitrary high 
dimensional system 

[28] Randomness distillation 
 

 
 

   

[29] Uncertainty relations   
   

 Up to 6 qubits 

[30] Tangle and entanglement measures based 
on fidelity     

  

[31] Quantum Fisher information  
  

  Arbitrary different local 
dimensions (N-qudit) 

[32] Separability criterion (positive partial 
transpose) 

 
  

  Up to 4 qubits 

[33] Tensor product decomposition of the 
coefficient vectors (ascending lexicographical 
order) and permutations of qubits 

 
  

  3 qubits and above 

[34] c-SWAP test 
   

  2 qubits and above 

[35] Genuine entanglement detection and 
genuine multipartite entanglement 
concurrence 

 
   

  

[36] Additive EOF  
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[37] k-partite entanglement and k-
nonseparability 

 
 

 
 

 Up to 10 qubits 
 
Extendable to arbitrary 
high dimensional 
system 

[38] Norms of the correlation tensors and 
multipartite concurrence 

 
   

 4 qubits and above 
 
N-partite qudit state 

BP = Bipartite MP = Multipartite PU = Pure State  MX = Mixed State  AR = Arbitrary State 
 

 
Fig. 4. Clusters of entanglement detection methods 

 
3.2 The Proposed Framework of Entanglement Detection  

 
The primary goal of this study is to propose a conceptual framework of entanglement detection 

in bipartite and multipartite systems based on previous work. Each method was evaluated 
individually to fully understand the concept of entanglement detection measurements. The 
framework was designed according to specific requirements identified in previous work, namely the 
quantum qubit system and quantum state. Due to its critical role in quantum information processing, 
the conceptual framework was built on the quantum qubit system ground, bipartite and multipartite 
qubit systems (see Figure 5). 
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Fig. 5. Proposed conceptual framework of entanglement detection 
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4. Conclusions 
 
Entanglement detection is a challenging task, especially in higher qubits and higher-dimensional 

systems. Some established methods from previous studies have been identified and presented. A 
proposed conceptual framework of entanglement detection in bipartite and multipartite qubit 
systems was developed and presented as a reference for future entanglement detection research 
based on one’s specific requirements. Based on the proposed conceptual framework, more research 
on entanglement detection methods is required to produce an absolute universal entanglement 
detection measurement in higher qubits and higher-dimensional systems. 
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