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System identification is concerned with the construction of a mathematical model 
based on given input and output data to represent the dynamical behaviour of a 
system. As a step in system identification, model structure selection is a step where a 
model perceived as adequate system representation is selected. A typical rule is that 
the model must have a good balance between parsimony and accuracy in estimating a 
dynamic system. As a popular search method, genetic algorithm (GA) is used for 
selecting a model structure. However, the optimality of the final model depends much 
on the optimality of GA. This paper introduces a novel mating technique in GA based 
on the chromosome structure of the parents such that a single parent is sufficient in 
achieving mating that demonstrates high exploration capability. In investigating this, 
four systems of linear and nonlinear classes were simulated to generate discrete-time 
sets of data i.e. later used for identification. The outcome shows that GA incorporated 
with the mating technique within 10% - 20% of the population size is able to find 
optimal models quicker than the traditional GA.  
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1. Introduction 
 

System identification (SI) is known as a field of study where a mathematical relation between 
variables and terms of a process is determined. This is done based on observed input-output data 
with the aim to enable better control of a system [1,2]. Modelling of system can be divided into 
continuous-time and discrete- time modelling. Many real-world systems, for example, in the fields of 
mechanics, electricity, chemistry, economics, biology and ecology are dynamic systems [3-5]. 
Although these systems warrant a continuous-time model rather than a discrete-time model, it is 
practical to assume that data are interconnected in a discrete-time connections and therefore 
employing principles of discrete-time identification is favorable.  
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SI is generally known to encompass 4 distinct steps i.e. data acquisition, model structure 
selection, parameter estimation and lastly, validation in search of an optimal model that represents 
the system at-hand [6]. The definition of ‘optimal’ requires the model to be able to accurately predict 
the output of the system using limited input and system characteristics yet the model also has to be 
simple or parsimonious. A parsimonious model is a model where the variables or terms that it carries 
is few enough to make acceptable prediction [7]. 

Any implementation of system identification or also called system modelling should be able to be 
completed within a short time and cost to ensure process efficiency. With the emergence of various 
meta-heuristic methods today, such as evolutionary computation and genetic algorithm, many 
researchers took the advantage of incorporating these methods to increase the efficiency in 
optimization. GA had been applied in image processing, laser technology, aeronautics, robotics and 
many more practical problem areas successfully [8-12]. Works involving the use of evolutionary 
computation in system identification are widely available [13-16]. However, the efficiency of using 
evolutionary computation, more specifically genetic algorithm (GA), in system identification is still 
insufficient. There is still potential that more optimal models may be found and furthermore, found 
at a quicker rate. When a simulated (known) model is used in investigation, it is always probable that 
the original model is the most optimal and therefore, inefficiency is easily detected. 

Some researchers proposed strategies to include a mating process in GA. An example includes a 
technique called correlative tournament selection where it analyses correlation between parents for 
implementation of tournament selection [17]. Galán et al., [18] introduced a self-adaptive mating 
based on parent similarity or fitness. Other techniques use assortative mating [19,20] and tabu search 
[21]. However, some of these approaches require extra calculation such as to check for parent 
similarity before suitable mating is achieved. 

This paper aims to propose a novel mating technique that is targeted to maintain proper balance 
between exploring for optimal solutions and exploiting heuristic information within GA. The sections 
are divided as follows: Section 2 explains the methodology of study including the mechanism of the 
mating proposal. Section 3 contains the raw results followed by a discussion in Section 4. The 
conclusion of the study is provided in Section 5.  

 
2. Method 

 
When GA starts, a specified number of chromosomes are created at random in a population. In 

system identification, these chromosomes mean different structures of possible models to represent 
the system. Their optimality is then evaluated based on a specified objective function (OF). From this 
population, in the hope of achieving better model, certain manipulations are made to the 
chromosomes, and every time a cycle of manipulation is completed, the new chromosomes are 
evaluated. The process continues until the allowed maximum number of cycles, called generation. It 
is well-known that in traditional GA, the manipulation revolves around three processes - selection, 
crossover and mutation (Figure 1(a)) [22,23]. 

To select the best individuals and let them pass their genes, the idea of the selection phase is 
based on their fitness scores. The fitness values determine which chromosomes to survive and 
generate the population of the next generation [24-26]. The selection stage functions by copying 
some good chromosomes where some chromosomes are copied more than once into an 
intermediate population or mating pool where crossover takes place. Traditional GA allows the 
parents to be taken randomly from this pool without any mating strategy for crossover to be carried 
out. It has become somewhat a stigma that crossover must be done with more than 1 parent. 
However, the 2 selected parents from the pool may have the same genes which means the crossover 
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between these parents may not be able to effectively produce different, or possibly better, 
chromosome offsprings. Figure 1(b) illustrates the possible offsprings, in a common crossover, 
specifically uniform crossover. It is seen that without any mating strategy, there can only be 4 possible 
offsprings.  
 

 

 

(a) (b) 
Fig. 1. (a) Traditional GA (without mating) (b) Outcome of possible offsprings 

 
By introducing a suitable mating technique after the selection process, it is possible to maintain 

high diversity in the outcome of crossover. An example of GA with mating technique is shown in 
Figure 2(a). In this paper, prior to crossover, some good parents in the mating pool are replicated. 
The genes of these replicates are converted from 1 to 0 and vice versa using inversion. The original 
parent is then paired with its inverted self, leading to single parent mating. After then, the parents in 
the pair go through the customary crossover process, such as single-point crossover. The mating 
emphasizes how the pair of chromosomes are made, not how their information is exchanged, as 
information exchange are carried out through crossover. Figure 2(b) illustrates that, with single 
parent mating, there are 24 possible offsprings, assuming uniform crossover (number and positions 
of crossover points are random). It can be seen that many more possibilities may be found and the 
population may contain suitable diversity of solution choices. 
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(a) (b) 
Fig. 2. (a) GA with single parent mating (b) Outcome of possible offsprings 

 
The effectiveness of the proposal was made by testing on 4 simulated models. These models were 

discrete-time models known as linear or nonlinear autoregressive with exogenous input (ARX or 
NARX) models. Following are the models while the model characteristics and search space 
specifications are given in Table 1. 

Simulated Model 1 (Sim 1): 
 

𝑦(𝑡) = 0.5𝑦(𝑡 − 1) − 0.2𝑦(𝑡 − 4) + 0.5𝑦(𝑡 − 8) 	+ 0.6𝑢(𝑡 − 2) − 0.2𝑢(𝑡 − 9) 	+ 	𝑒(𝑡)                (1) 
 
Simulated Model 2 (Sim 2): 
 

𝑦(𝑡) = 0.4𝑦(𝑡 − 1) + 0.4𝑢(𝑡 − 1) − 0.6𝑢(𝑡 − 3) − 	0.7𝑦(𝑡 − 1)𝑢(𝑡 − 1) − 0.2𝑦!(𝑡 − 2	)    
+0.2𝑢!(𝑡 − 3) + 𝑒(𝑡)                                         (2)
   

Simulated Model 3 (Sim 3): 
 

𝑦(𝑡) = 0.4𝑦(𝑡 − 3) + 0.3𝑢(𝑡 − 1) + 0.7𝑦(𝑡 − 2)𝑢(𝑡 − 1) + 0.1𝑦(𝑡 − 3)𝑢(𝑡 − 2) 
−	0.5𝑢(𝑡 − 1)𝑢(𝑡 − 2) − 0.4𝑢(𝑡 − 1)𝑢(𝑡 − 3) + 𝑒(𝑡)        (3) 

 
Simulated Model 4 (Sim 4): 
 

𝑦(𝑡) = 0.8𝑢(𝑡 − 1) + 0.5𝑦(𝑡 − 1)𝑦(𝑡 − 2) + 0.1𝑦(𝑡 − 1)𝑢!(𝑡 − 1) − 0.1𝑦(𝑡 − 2)𝑢(𝑡 − 1)𝑢(𝑡 −
2) − 0.4𝑢!(𝑡 − 1)𝑢(𝑡 − 2) + 0.2𝑢(𝑡 − 1)𝑢!(𝑡 − 2) + 	𝑒(𝑡)            (4) 
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Table 1  
Model Characteristic and Search Space Specification 

  Sim 1 Sim 2 Sim 3 Sim 4 
Model characteristics Number of correct regressor 5 6 6 6 

Search space specification 

Nonlinearity 1 2 2 3 
Max output lag order 10 2 3 2 
Max input lag order 10 3 3 2 
Time delay 1 1 1 1 
Number of possible regressor 20 20 27 34 
Number of possible model 1048575 1048575 134217727 17179869183 

 
The input 𝑢(𝑡) was generated randomly from a uniform distribution to represent white signal. 

The values were selected from the interval [-1, 1]. The noise 𝑒(𝑡) was also generated randomly from 
a uniform distribution to represent white noise and the values were from the interval [-0.01, 0.01]. 
Using the models, 500 data were generated to be used in identification. 

In GA, the model structures were represented by binary chromosome where 1 means presence 
and 0 means absence of variable / term [6]. The specifications of GA were population size = 200, 
maximum generation = 100, mutation probability = 0.01 and crossover probability = 0.6. This paper 
used roulette-wheel selection, bit-flip mutation and single-point crossover. The elitism strategy was 
also used where the best chromosome found so far was kept from generation to generation. The 
parameter estimation was done by the least squares method. 

The objective function used was parameter magnitude-based information criterion 2 [27]: 
 

PMIC2 = ∑ ((𝑦(𝑡) − 𝑦;(𝑡))!" + ∑ #
$%
; 	𝜃 ≠ 0                 (5)   

 
where 𝑦(𝑡) was the original output and  𝑦;(𝑡) was the predicted output. The variable 𝜃 was the value 
of parameter, 𝑛 was the number of data and 𝑗 was the maximum number of parameters in the model. 

Another measurement used in this study was the error index (EI), written as follows: 
 

EI = B∑((())+(,()))!

∑(!())
              (6) 

 
During the GA run, the mating was carried out on specific percentages of the parents in the 

mating pool where the size of the mating pool was the same as the population once selection was 
completed. The percentages tested were 0%, 10%, 20%, 30%, 40% and 50%. For instance, if the 
percentage was 30%, this much percentage of parents from the pool was copied then inverted, 
making another 30% of (inverted) parents. Mating was done between the parents and its inverted 
selves (comprising now of 60% of population). The remaining 40% came randomly from the initial 
mating pool. With this setting, it may be noted that 0% represents GA without mating. For each 
percentage, 5 runs were made. 

 
3. Results 

 
Figure 3 shows the average results of 0% to 50% mating techniques. The graphs are labelled single 

0.0 to single 0.5 representing 0% mating to 50% mating using single-point crossover. Based on Figure 
3(a), in the final generation, 30% mating (single 0.3) has the lowest OF value. Based on all runs, 
analysis of the final generation shows that 0% mating (single 0.0) has the lowest value of OF of 
16.6213 in 1 run out of 5 runs. Out of 5 correct regressors, the run selected 3 regressors and has an 
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EI of 0.2317. The lowest OF throughout all runs, is however found with 10% mating in 2 runs, 20% 
mating in 3 runs and 30% mating in 2 runs which is 14.5075. The runs collected 4 correct regressors 
and has an EI of 0.1476. This shows that GA with mating is able to find model of lower OF, gathers 
more correct regressors and has lower EI. 
 

  
(a) (b) 

  

  
(c) (d) 

Fig. 3. Best chromosome’s OF value (a) Sim 1 (b) Sim 2 (c) Sim 3 (d) Sim 4 
 
Figure 3(b) shows that, in the final generation, 10% mating (single 0.1) has the lowest average OF 

value compared to the other percentages of mating. Analysis show that the lowest OF value which is 
11.3023 is found in 0% mating (1 run), 10% mating (5 runs), 20% mating (4 runs), 30% mating (3 runs) 
and 40% mating (1 run). These runs collected 4 exact regressors and has an EI of 0.1655. A trend of 
increasing frequency of finding the model then decreasing with the rise of mating percentage is easily 
noted. The model is found in all runs when using 10% mating and in almost all runs when using 20% 
mating. 

Figure 3(c) again shows that in the final generation, 10% mating (single 0.1) has the lowest 
average OF value. Comparison shows that 0% mating (1 run) has the lowest value of OF of 21.6643. 
It collected 4 regressors where 2 are correct and has an EI of 0.5106. Meanwhile, 10% mating (1 run) 
has the lowest overall OF value which is 11.9666. The EI is 0.0602. It collected 5 correct regressors – 
the regressor 𝑦(𝑡	 − 	3)𝑢(𝑡	 − 	2) was not collected. It is worth mentioning that this regressor has a 
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small parameter of 0.1 and therefore not easily picked up by any GA. Conclusively, in 10% mating, 
there are more correct regressors, lower OF and far lower EI. 

In Figure 3(d), 30% mating (single 0.3) has the lowest average OF value. The differences with other 
percentages are noted small from the graph especially when looking at 20% and 30% mating. Zero 
percent mating (1 run) has the lowest value of OF of 16.5421 with 12 regressors where 𝑢(𝑡	 − 	1) is 
the only correct regressor. The EI is 0.1408. Individually, 20% mating (1 run) has the lowest OF value 
equal to 19.3740 with EI of 0.1985. It collected 8 regressors where 𝑢(𝑡	 − 	1) and 𝑢(𝑡	 − 	1)𝑢!	(𝑡	 −
	2) are the two correct regressors. Despite a slightly higher EI, the run selected a more parsimonious 
model with more correct regressors. For this model, the 20% and 30% mating shows better potential. 

 
4. Discussion 

 
In this section, the average of best chromosomes OF value from the final generation are shown 

in Table 2. The data is graphed in Figure 4. The ones boldfaced in the table are the smallest OF. From 
the table, 10% mating and 30% mating was found to have the lowest OF for two simulated models, 
each. The average lowest OF value based on all 4 models is found using 10% mating. The graph shows 
a trough in the middle area between 0% and 40% mating. 

 
Table 2  
Average Final Best Chromosome’s Objective Function 
 0% Mating 10% Mating 20% Mating 30% Mating 40% Mating 50% Mating 
Sim1 22.6850 20.2957 18.5549 17.0856 26.1471 34.5842 
Sim2 22.3254 11.3023 14.8166 18.3864 26.4402 37.7246 
Sim3 29.9479 16.2996 23.2071 29.1054 31.2604 33.8902 
Sim4 37.8153 33.0298 30.6942 30.6725 32.3268 37.9068 
Average 28.1934 20.2319 21.8182 23.8125 29.0436 36.0265 

 

 
Fig. 4. Best chromosome’s OF value (a) Sim 1 (b) Sim 2 (c) Sim 3 (d) Sim 4 

 
Table 3 shows the result of best mating percentage based on curve fitting of the data from Table 

2 using polynomial of 2 degrees to maximum possible degree (5), using intervals of 2.5%. Average A 
is computed from the average OF data in Table 2 whilst average B is calculated from the percentage 
data of Sim 1 to Sim 4 in Table 3. Both averages show that the best is between 10% and 20%, 
inclusively. 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 42, Issue 2 (2024) 49-57 

56 
 

Table 3  
Best Mating Percentage for Four Simulated Models 
 Polynomial 2 (%) Polynomial 3 (%) Polynomial 4 (%) Polynomial 5 (%) 
Sim1 20 22.5 22.5 27.5 
Sim2 17.5 15 12.5 7.5 
Sim3 15 12.5 10 7.5 
Sim4 25 27.5 27.5 25 
Average A 20 17.5 12.5 10 
Average B 20 20 17.5 17.5 

 
5. Conclusion 

 
GA speeds up the identification of discrete-time model without the need to evaluate all possible 

models. In some of the runs, the correct model is almost able to be identified using PMIC2 as the OF. 
In most cases, a more parsimonious model is found with small EI. This is important in achieving a 
model which is both accurate and parsimonious. Incorporation of single parent mating in GA is shown 
to be able to find a lower OF model than without mating. Even though using half of the population 
for mating does not perform well, the best percentage is found to be between 10% and 20%, 
inclusively. With proper mating, the “marriage” of these parents is able to explore new search space 
of solution, producing more varied offspring (hence, system model) that cannot be achieved by 
traditional procedure of GA.  
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