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Commutative and switching processing are central to computation. However, some 
problems arise when classical versions do not reflect the true needs of current 
computer science, whereby they cannot predict the flow of the next input information 
in the specified output. The Switchboard State Machine is a controller that controls the 
direct flow of information from one state to another and also plays the main part in 
communication between the subsystems. If the simple system satisfies the two 
properties of the switching and commutative state machines, the system is therefore 
a finite switchboard state machine. The general fuzzy switchboard automation (GFSA) 
was introduced by incorporating the switchboard into the general fuzzy automation. 
This paper is intended to introduce the concept of a general fuzzy switchboard 
transformation semigroup (GFSTS) by combining the GFSA and the transformation 
semigroup. Some related definitions and properties are established. The example of 
certain products, such as GFSTS cascade products, has also been studied. General Fuzzy 
Switchboard Poly-Transformation Semigroup (GFSPS) is also introduced since it fulfils 
the switchboard state machine properties. Some of the definitions and properties 
associated with the GFSPS are defined. Applications for general fuzzy switchboard 
automata, such as washing machines, are also provided.  
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1. Introduction 
1.1 Research Background 

 
In the study of algebraic properties of the automaton theory, classical versions are often 

misunderstood to reflect the actual needs of modern computer science. When given input 
information is received from an integer sequence, it faces some problems in navigation or prediction 
of the flow of the next input information in a specified output. It is unable to formalize the switching 
and commutative processing, which is nowadays central to the computation when we need to re-
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evaluate the global transition of the finite state machine, as it was virtually unnecessary in the past. 
In other words, the algebraic approach still lacks its properties, which are the properties concerning 
the state machine of the switchboard. Therefore, the model of the switching mechanism as a control 
device must be understood. The reason for the use of GFSA is that there is a possibility of overtaking 
the transition to the same state on the same symbol from different current states. Several different 
membership values that happened at the same time are known as multi-memberships. GFA was 
introduced by Doorsfatemeh and Kremer [1] can also handle application problems that depended 
entirely on fuzzy automation as a modelling tool to assign membership values to active states of fuzzy 
automation, resolve multi-membership, and analyse the continuous operation of the fuzzy 
automaton. 

 According to Holcombe [2], algebra evolved in many different directions. In mathematics, 
abstract algebra deals mainly with algebraic structures. Most algebraic structures have multiple 
operations that require specific axioms to be satisfied. Semigroups, groups, rings, and fields are 
examples of algebraic structures. In the concepts of science and computation, the concept of change 
is that a system changes from state to state through internal processes or other external operations 
at different time scales. Therefore, the transformation of a finite set of states fulfils this concept [3]. 
The semigroup of transformations defined all types of different set transformations that can be 
combined over time. Algebraic products are considered to produce an automatic from existing 
automatons. Doostfatemeh and Kremer [1] introduced a new general definition of fuzzy automation 
to provide a better foundation of automation and basic equipment for the next applications. In 
addition, general fuzzy automata can also remove the burden of generating deterministic acceptors 
for calculating string membership values without developing a deterministic Moore machine. It can 
also be used for a wide variety of fuzzy grammar and language. Sato and Kuroki [4] introduced the 
notion of a finite switchboard state machine that is another extension of the finite state 
machine/finite automata. In 2002, they introduced the concept of fuzzy finite switchboard state 
machines and fuzzy switchboard transformation semigroups. Then, the idea of switching 
homomorphism is introduced. A finite switchboard state machine or finite switchboard automata 
brings together the concept of switching state machine and commutative state machine. The 
fundamental goal of this work is to introduce the concept of General Fuzzy Switchboard 
Transformation Semigroup (GFSTS) by the combination of GFSA and transformation semigroup. It is 
necessary to understand the general fuzzy switchboard automation. 

 
1.2 Literature Review 

 
Zadeh [5] was the first researcher to introduce the concept of a fuzzy set. In the late 1960s, fuzzy 

automatons were introduced by Santos [6] and Wee [7]. Since finite automata constitute a 
mathematical model of computation, a fuzzy finite automaton can be considered as an extension of 
2 finite automatons, including notions such as “vagueness” and “imprecision”. Several researchers 
then introduced and studied fuzzy automation, such as (Li and Pedrycz [8]), (Malik et al., [9]), and (Jin 
et al., [10]). In principle, Li and Pedrycz [8] stated that a finite state automaton is a mathematical 
model that recognizes the formal language of classical computation and the former proposed fuzzy 
automata with membership values in the unit interval [0,1] with the max-min composition. In 
general, fuzzy finite state machines (FFSM) and fuzzy finite automation (FFA) have membership 
values of [0.1]. A finite state machine is a concept that binds a switching state machine and a 
commutative state machine. Sato and Kuroki [4] introduced the concept of a finite switchboard state 
machine, another extension of a finite state machine/finite automation. The main objective of this 
study was to propose an effective algebraic technique for the study of finite switchboard automata. 
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Understanding the importance of switching mechanisms modelling as electronic system control 
devices is necessary. 

In general, Pedrycz and Gacek [11] mentioned that fuzzy automation offers a systematic way to 
generalize discrete applications where they can create capabilities that are rarely achieved by other 
tools. It offers a systematic approach to the integration of approximate reasoning into the system, as 
humans do [5]. Doostfatemeh and Kremer [1] therefore introduced a new general definition of fuzzy 
automation to establish a better basis for automation and the foundations for future applications. 
Furthermore, general fuzzy automata can also remove the burden of generating a deterministic 
acceptor to calculate membership values of the strings without developing a deterministic Moore 
automaton and it can also be used in large fuzzy grammars and languages [12]. In addition, this study 
takes into account the multi-member value of the General Fuzzy Switchboard Automata (GFSA), since 
it treats more than one membership value in a state. Horry [13] studied the general complex fuzzy 
transformation semigroups in automata and derived relationships between a max-min general 
complex fuzzy automaton and a general complex fuzzy transformation semigroup. Marapureddy [14] 
studied the connection between fuzzy theory and graph theory with an algebraic structure 
semigroup. Semigroups are basic algebraic structures in many branches of engineering like automata, 
formal languages, and finite state machines can be seen in review papers by several authors [15-20]. 
The concept of transformation semigroups has played an important role in the theory of finite 
automata [17,18]. East et al., [21] describe general methods for enumerating sub semigroups of finite 
semigroups and techniques to improve the algorithmic efficiency of the calculations. In addition, 
Julatha and Rimcholakarn [22] investigate the characterizing semigroups by their generalized fuzzy 
ideals. It shows that semigroups are algebraic structures that show a very close relationship between 
self-adjoint operators. 

The concept of switchboard properties is studied in general fuzzy automata, namely, the General 
Fuzzy Switchboard Automata (GFSA). A semigroup is important because it occurs in so many places. 
Since semigroups are important algebraic structures in automation theory, it is necessary to study 
their properties related to GFSA by expanding the algebraic properties of GFSA to the general fuzzy 
switching transition semigroup (GFSTS). 

 
2. Methodology  
2.1 Methods 

 
General Fuzzy Automata (GFA) is used to resolve multi-membership because there are some 

problems defining the value of membership of an active state in the machine when an active state 
has a value of multi-membership. Doostfatemeh and Kremer provided an algorithm for resolving 
multi-membership. Some general definitions and introductions are presented, which will be later 
used in this study. 

 
Definition 2.1: (Doorstfatemeh & Kremer [1]): A general fuzzy automaton (GFA) is an eight-tuple 

machine �̃� = (𝑄, Σ, 𝑅 ̃, 𝑍, �̃�'∗, 𝜔, 𝐹" , 𝐹# ) where 
 

i. 𝑄 is a finite set of states, 𝑄 = {𝑞", 𝑞#, ⋯ , 𝑞$ }, 
ii. Σ is a finite set of input symbols, Σ = {𝑎", 𝑎#, ⋯ , 𝑎$}, 

iii. 𝑅 ̃ is the set of fuzzy start states, 𝑅 ̃ ⊆ 𝑃 ̃(𝑄), 
iv. 𝑍 is a finite set of output symbols, 𝑍 = {𝑏", 𝑏#, ⋯ , 𝑏%},  
v. 𝜔:𝑄 → 𝑍 is the non-fuzzy output function, 

vi. 𝐹":[0,1] × [0,1] → [0,1] is the membership assignment function,  
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vii. �̃�: (𝑄 × [0,1]) × Σ × 𝑄) 𝐹" (𝜇,𝛿) → [0,1] is the augmented transition function,  
viii. 𝐹#:[0,1]	∗→ [0,1] is a multi-membership resolution function.  
 
The function has two parameters 𝜇 and 𝛿 that represent  𝐹" (𝜇, 𝛿). 𝜇 is the membership value of 

a predecessor and 𝛿 is the weight of transition. According to the definition, the process of converting 
state 𝑞&  to 𝑞'  in the input 𝑎𝑘 is described as follows in Eq. (1). 

 
𝜇(!"#7𝑞'8 = 𝛿:7𝑞& , 𝜇(!(𝑞&), 𝑎𝑘, 𝑞'8 = 𝐹"(𝜇(!(𝑞&), 𝛿(𝑞& , 𝑎𝑘, 𝑞')) 

 
It means that the membership value of the state 𝑞'  at time 𝑡 + 1 is figured by function 𝐹" using 

the weight of the transition, 𝛿, and the membership value of 𝑞&  at time 𝑡. Usually, the options for 
𝐹(𝜇, 𝛿) are max{𝜇, 𝛿}, min{𝜇, 𝛿} and ( )*+

#
). The multi-membership resolution function, 𝐹# resolves 

the multi-membership active state and assigns a single truth value to them. Let 𝑄,-( (𝑡&  ) = {(𝑞, 𝜇 𝑡&  
(𝑞)): ∃𝑞 ʹ ∈ 𝑄,-( (𝑡&."), ∃𝑎 ∈ ∑, 𝛿(𝑞 ʹ , 𝑎, 𝑞) ∈ ∆},∀𝑖 ≥ 1. Since 𝑄,-((𝑡&) is a fuzzy set, then 𝑞 ∈ 
𝐷𝑜𝑚𝑎𝑖𝑛(𝑄,-( (𝑡&  )) and 𝑇 ⊂ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑄,-( (𝑡&)). Hereafter, simply denote as 𝑞 ∈ (𝑄,-( (𝑡&   )) and 𝑇 ⊂ 
(𝑄,-( (𝑡&  )). The combination of the operations of functions 𝐹"  and 𝐹# on a multi-membership state 
𝑞'  indicates the multi-membership resolution algorithm.  
 
2.2 Algorithm Construction to Check the Validity of Switchboard Automata 

 
Algorithm (Doorstfatemeh & Kremer [1]) 
 
This algorithm is for multi-membership resolution. If there are various simultaneous transitions 

to the active state 𝑞'  at time 𝑡 + 1, the following algorithm will assign a united membership value to 
it:  

 
i. Each transition weight �̃�(𝑞&, 𝑎𝑘, 𝑞') together with the membership value of state 𝜇( (𝑞𝑖 ), 

will be processed by the membership assignment function 𝐹", and will produce a 
membership value that is called as 𝑣&  , 𝑣&  = �̃� ((𝑞&, 𝜇((𝑞&  )), 𝑎𝑘, 𝑞') = 𝐹"  (𝜇( (𝑞&  ), 𝛿(𝑞&  , 𝑎𝑘, 
𝑞')).  

ii. These truth values are not necessarily equal. Hence, they need to be processed by the 
multi-membership resolution function 𝐹#. 

iii. The result produced by 𝐹# will be assigned as the instantaneous membership value of the 
active state 𝑞'  , 𝜇(*" (𝑞') = 𝐹#𝑖=	$" [𝐹" (𝜇( (𝑞&  ), 𝛿(𝑞&  , 𝑎𝑘, 𝑞'))]. Where 𝑛 is the number of 
simultaneous transitions to the active state 𝑞𝑗 at time 𝑡 + 1. 𝛿(𝑞&  , 𝑎𝑘, 𝑞') is the weight of 
a transition from 𝑞&  to 𝑞'with input 𝑎𝑘. 𝜇( (𝑞&  ) is the membership value of 𝑞&  at time 𝑡. 
𝜇(*" (𝑞') is the final membership value of 𝑞'  at time 𝑡 + 1. 

 
Let �̃� = (𝑄, Σ, 𝑅 ̃, 𝑍, �̃�∗, 𝜔, 𝐹1, 𝐹2) be a max-min bipolar general fuzzy automaton. When the number 

of input elements is 1, then �̃�∗ is switching and commutative. Follow the procedure below to check 
the validity of the switchboard automata.   

 
Step 1: Enter the state transition 𝛿:∗,# , 𝛿:

∗
,$ , ⋯ , 𝛿:∗,%.  

 
Step 2: Set i be the initial value, 𝑖 = 1 and 𝑛 ≥ 2.  
 

(1) 
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Step 3: for 𝑖 ≤ 𝑛 − 1,  
- Calculate 𝛿:∗,𝛿:∗,!"#(7𝑞, 𝜇

(!&#(𝑞)8, 𝑝)  and 𝛿:∗,!"#𝛿:
∗
,(7𝑞, 𝜇(!&#(𝑞)8, 𝑝) where  𝑝, 𝑞 ∈ 𝑄. 

- If 𝛿:∗,𝛿:∗,!"# L7𝑞, 𝜇
(!&#(𝑞)8, 𝑝M ≠ 𝛿:∗,!"#𝛿:

∗
,(7𝑞, 𝜇(!&#(𝑞)8, 𝑝), then 𝑆𝑇𝑂𝑃, it means that the 

output �̃�∗ is not commutative;  
- If𝛿:∗,𝛿:∗,!"# L7𝑞, 𝜇

(!&#(𝑞)8, 𝑝M = 𝛿:∗,!"#𝛿:
∗
,(7𝑞, 𝜇(!&#(𝑞)8, 𝑝),recalculate 

𝛿:∗,!𝛿:
∗
,!"$(7𝑞, 𝜇

(!&#(𝑞)8, 𝑝 and 𝛿:∗,!"$𝛿:
∗
,!(7𝑞, 𝜇

(!&#(𝑞)8, 𝑝). 
- If both are not equal then 𝑆𝑇𝑂𝑃, it means that the output �̃�∗ is not commutative, 𝑁𝑂;  
- Otherwise recalculate 𝛿:∗,!𝛿:

∗
,!"'(7𝑞, 𝜇

(!&#(𝑞)8, 𝑝)    and 𝛿:∗,!"'𝛿:
∗
,!(7𝑞, 𝜇

(!&#(𝑞)8, 𝑝) and so 
on;  

- If necessary, calculate until 𝛿:∗,!𝛿:
∗
,%(7𝑞, 𝜇

(!&#(𝑞)8, 𝑝)     and 𝛿:∗,%𝛿:
∗
,!(7𝑞, 𝜇

(!&#(𝑞)8, 𝑝);  
- If both are not equal, the output �̃�∗ is not commutative, 𝑁𝑂;  
- If both are equal, go to Step 4.  
 
Step 4: 𝑖 = 𝑖 + 1 repeat Step 3.  
 
Step 5: 𝑖 = 𝑛, 𝑆𝑇𝑂𝑃, the output �̃�∗ is commutative, 𝑌𝐸𝑆.  
 
Step 6: for 𝑖 ≤ 𝑛 , calculate 𝛿:∗,!(7𝑞, 𝜇

(!&#(𝑞)8, 𝑝) and 𝛿:∗,!(7𝑝, 𝜇
(!&#(𝑝)8, 𝑞), ∀𝑞, 𝑝 ∈ 𝑄.  

- If 𝛿:∗,!(7𝑞, 𝜇
(!&#(𝑞)8, 𝑝) ≠ 𝛿:∗,!(7𝑝, 𝜇

(!&#(𝑝)8, 𝑞) then 𝑆𝑇𝑂𝑃, the output �̃�∗ is not switching;  

- If 𝛿:∗,! L7𝑞, 𝜇
(!&#(𝑞)8, 𝑝M = 𝛿:∗,!(7𝑝, 𝜇

(!&#(𝑝)8, 𝑞),recalculate 𝛿:∗,!"# L7𝑞, 𝜇
(!&#(𝑞)8, 𝑝M and 

𝛿:∗,!"#(7𝑝, 𝜇
(!&#(𝑝)8, 𝑞);  

- If both are not equal, then 𝑆𝑇𝑂𝑃, it means that the output �̃�∗ is not switching, 𝑁𝑂;  
- Otherwise recalculate 𝛿:∗,!"$ L7𝑞, 𝜇

(!(𝑞)8, 𝑝Mand 𝛿:∗,!"$ L7𝑞, 𝜇
(!(𝑞)8, 𝑝M and so on;  

- If both are not equal, then the output �̃�∗ is not switching, 𝑁𝑂;  
- If both are equal, go to Step 7.  
 
Step 7: 𝑖 = 𝑖 + 1, repeat Step 6.  
 
Step 8: 𝑖 = 𝑛, 𝑆𝑇𝑂𝑃, the output is switching, 𝑌𝐸𝑆.  
 
The flowchart below shows the simple algorithm which generates the switchboard in General 

Fuzzy Automata based on the step from 1 until 8. 
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Fig. 1. Flowchart to check the validity of switchboard in General Fuzzy Automata 

       
3. Results  
3.1 General Fuzzy Switchboard Transformation Semigroup (GFSTS) and Product of GFSTS 

 
Definition 3.1: A fuzzy transformation semigroup is a triple 𝑇𝑆(�̃�) = (𝑄, 𝑆(�̃�), 𝜌) where 𝑄 is a finite 

nonempty set, 𝑆(�̃�) is a finite semigroup of �̃�, 𝜌 is a fuzzy subset of 𝑄 × 𝑆(�̃�) × 𝑄. Such that: 
 

i. 𝜌(𝑞, 𝜇(!(𝑞), 𝑢𝑣, 𝑝) = ⋁ {𝜌(𝑞, 𝜇(!(𝑞), 𝑢, 𝑟) ⋀𝜌(𝑟, 𝜇(!"#(𝑟) , 𝑣, 𝑝)/∈1 , for all 𝑢, 𝑣 ∈ 𝑆, 𝑞, 𝑝 ∈ 
𝑄, 𝑖 ≥ 0. 

ii. If 𝑆 contains the identity 𝑒, then 𝜌(𝑞, 𝜇(!(𝑞),𝑒, 𝑝) = 1 if 𝑞 = 𝑝 and 𝜌(𝑞, 𝜇(!(𝑞),𝑒, 𝑝) = 0 if 𝑞 
≠ 𝑝, ∀𝑞, 𝑝 ∈ 𝑄, 𝑖 ≥ 0. If the property holds, then 𝑇𝑆(�̃�) = (𝑄, 𝑆(�̃�), 𝜌) is called faithful. 

iii. Let 𝑢, 𝑣 ∈ 𝑆(�̃�), if 𝜌(𝑝, 𝜇(!(𝑝), 𝑢) = 𝜌(𝑝,𝜇(!(𝑝), 𝑣), ∀𝑝 ∈ 𝑄, 𝑖 ≥ 0 then 𝑢 = 𝑣.  
 
Definition 3.2: Let 𝑇 = (𝑄, 𝑆(�̃�), 𝜌) be a fuzzy transformation semigroup. Then: 
 

i. 𝑇 is commutative if it satisfied 𝜌(𝑞, 𝜇(!&#(𝑞), 𝑢𝑣, 𝑝) = 𝜌(𝑞, 𝜇(!&#(𝑞), 𝑣𝑢, 𝑝),∀𝑞, 𝑝 ∈ 𝑄, ∀𝑢, 
𝑣 ∈ 𝑆(�̃�), 𝑖 ≥ 1. 

proceed 

stop 
stop 

Set 𝑖 = 1, 𝑛 ≥ 2 

start 

Input 𝛿(∗"! , 𝛿(
∗
"" , ⋯ , 𝛿(∗"# 

Calculate 
𝛿(∗"𝛿(∗"$%!(,𝑞, 𝜇

#$&!(𝑞)0, 𝑝) and 
𝛿(∗"$%!𝛿(

∗
"(,𝑞, 𝜇#$&!(𝑞)0, 𝑝) 

commutative Not commutative 

𝛿(∗"𝛿(∗"$%! 2,𝑞, 𝜇
#$&!(𝑞)0, 𝑝3

= 𝛿(∗"$%!𝛿(
∗
"(,𝑞, 𝜇#$&!(𝑞)0, 𝑝) 

𝛿(∗"𝛿(∗"$%! 2,𝑞, 𝜇
#$&!(𝑞)0, 𝑝3

≠ 𝛿(∗"$%!𝛿(
∗
"(,𝑞, 𝜇#$&!(𝑞)0, 𝑝) 

stop Calculate 
𝛿(∗"$(,𝑞, 𝜇

#$&!(𝑞)0, 𝑝) and 
𝛿(∗"$(,𝑝, 𝜇

#$&!(𝑝)0, 𝑞) 

switching 

Not switching 

𝛿(∗"$ 2,𝑞, 𝜇
#$&!(𝑞)0, 𝑝3

= 𝛿(∗"$(,𝑝, 𝜇
#$&!(𝑝)0, 𝑞) 

𝛿(∗"$ 2,𝑞, 𝜇
#$&!(𝑞)0, 𝑝3

≠ 𝛿(∗"$(,𝑝, 𝜇
#$&!(𝑝)0, 𝑞) 
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ii. 𝑇 is switching if it satisfied 𝜌(𝑞, 𝜇(!(𝑞), 𝑢𝑣, 𝑝) = 𝜌(𝑝, 𝜇(!(𝑝), 𝑢𝑣, 𝑞), ∀𝑞, 𝑝 ∈ 𝑄, ∀𝑢, 𝑣 ∈ 
𝑆(�̃�), 𝑖 ≥ 0. 

 
If 𝑇 satisfied both conditions which are commutative and switching, thus it is called General Fuzzy 

Switchboard Transformation Semigroup (GFSTS). 
 
Proposition 3.3: Let �̃� = (𝑄, Σ, 𝑅 ̃, 𝑍, �̃�, 𝜔, 𝐹1, 𝐹2) be general fuzzy switchboard automata. Then 𝑇 

is a general fuzzy switchboard transformation semigroup. 
 

3.2 Cascade Product in General Fuzzy Switchboard Transformation Semigroup 
 
Definition 3.4: Let 𝑇" = (𝑄", 𝑆(𝐹')	", 𝜌") and 𝑇# = (𝑄#, 𝑆(𝐹')	#, 𝜌#) be GFSTS. Define the restricted 

cascade product 𝑇"𝜛𝑇# = (𝑄" × 𝑄#, 𝑆(𝐹')	#, 𝜌2) of 𝑇" and 𝑇# with respect to mapping 𝜛: 𝑆(𝐹')	#→ 
𝑆(𝐹')	" as, 𝜌2 ((𝑝", 𝜇(!  (𝑝"), 𝑝#, 𝜇(!  (𝑝#)), 𝑠#, (𝑞",	𝑞#) = 𝜌" (𝑝", 𝜇(!  (𝑝" ), 𝜛(𝑠#), 𝑞" )⋀	𝜌# (𝑞#, 𝜇(!  (𝑞# ), 
𝑠#, 𝑝# ), Where 𝜌 𝜛: ( 𝑄" × 𝑄#) × 𝑆(�̃�) 2 × (𝑄" × 𝑄#) → [0,1], ∀(𝑝", 𝑝#), (𝑞",	𝑞#)) ∈ 𝑄" × 𝑄# and 𝑠# 
∈𝑆(𝐹')	# where 𝑖 ≥ 0.  

 
Proposition 3.5: Let 𝑇" = (𝑄", 𝑆(𝐹')	", 𝜌") and 𝑇# = (𝑄#, 𝑆(𝐹')	#, 𝜌#) be GFSTS. Then, there exists 

𝜔:	𝑄# ×  𝑆(𝐹')	#→ 𝑆(𝐹')	"∀𝜛: 𝑆(𝐹')	#→ 𝑆(𝐹')	"∀such that 𝑇"𝜛𝑇# ≅ 𝑇" 𝜔𝑇#. 
 
Proposition 3.6: Let 𝑇% = (𝑄%, 𝑆(𝐹')	% , 𝜌%) be GFSTS, 𝑘 = 1,2 and 𝜛: 𝑆(𝐹')	#→ 𝑆(𝐹')	" be a semigroup 

homomorphism. Then 𝑇"𝜛𝑇# is a GFSTS if and only if both 𝑇" and 𝑇# are GFSTS. 
 
Example: (Restricted cascade product of GFSTS) Let 𝑇" = (𝑄", 𝑆(𝐹')	", 𝜌") and 𝑇# = (𝑄#, 𝑆(𝐹')	#, 𝜌#) 

be GFSTS’s, where 𝑄"= {𝑝", 𝑝#},𝑄#= {𝑞",	𝑞#}, 𝑆(𝐹')	" = {𝑠",𝑡", 𝑢} , 𝑆(𝐹')	#= {𝑠#,𝑡#} and 𝜌" and 𝜌# are 
defined as follows:  

 
𝜌" (𝑝", 𝜇(!  (𝑝"),	𝑠", ,	𝑝") = 0.5  
𝜌" (𝑝#, 𝜇(!  (𝑝#),	𝑠", ,	𝑝") = 0.3  
𝜌" (𝑝", 𝜇(!  (𝑝"),	𝑡", ,	𝑝#)) = 0.2 
𝜌" (𝑝#, 𝜇(!  (𝑝#),	𝑡", ,	𝑝#)= 0.6  
𝜌" (𝑝", 𝜇(!  (𝑝"),	𝑢", ,	𝑝#)= 0.4 
𝜌# (𝑝#, 𝜇(!  (𝑝#),	𝑢", ,	𝑝")= 0.7 
𝜌# (𝑞", 𝜇(!  (𝑞"),	𝑠# ,	𝑞") = 0.6 
𝜌# (𝑞#, 𝜇(!  (𝑞#),	𝑠# ,	𝑝") = 0.3  
𝜌# (𝑞", 𝜇(!  (𝑞"),	𝑡# ,	𝑞#) = 0.5 
𝜌# (𝑞#, 𝜇(!  (𝑞#),	𝑡# ,𝑞")= 0.35  
 
Now the function 𝜛: 𝑆(𝐹')	"→ 𝑆(𝐹')	# is defined as 𝜛(𝑠# ) = 𝑠, 𝜛(𝑡#) = 𝑡. Next, define the partial 

function 𝜌2: (𝑄" × 𝑄#) × 𝑆(𝐹')	# × (𝑄" × 𝑄#) → [0,1] as: 
 
𝜌2 (𝑝", 𝜇(!  (𝑝" ), 𝑞", 𝜇(!, (𝑞")), 𝑠# , (𝑝", 𝑞")) =𝜌" ( 𝑝", 𝜇(!  (𝑝" ),𝜛(𝑠# ), 𝑝")⋀	𝜌# (𝑞", 𝜇(!  𝑞"), 𝑠# ,	𝑞") = 0.5 
 
𝜌2(𝑝", 𝜇(!  (𝑝" ), 𝑞# , 𝜇(!, (𝑞#)), 𝑠# , (𝑝", 𝑞")) = 𝜌" ( 𝑝", 𝜇(!  (𝑝" ),𝜛(𝑠#), 𝑝")⋀	𝜌# (𝑞#, 𝜇(!  (𝑞# ), 𝑠# , 𝑞") = 
0.3 
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𝜌2 (𝑝#, 𝜇(!  (𝑝# ), 𝑞" , 𝜇(!, (𝑞")), 𝑠# , (𝑝", 𝑞")) = 𝜌" ( 𝑝#, 𝜇(!  (𝑝#), 𝜛(𝑠#), 𝑝")⋀	𝜌# (𝑞", 𝜇(!  (𝑞" ), 𝑠# , 𝑞") 
=0.3  
 
𝜌2 (𝑝#, 𝜇(!  (𝑝#), 𝑞# , 𝜇(!, (𝑞#)), 𝑠# , (𝑝", 𝑞")) = 𝜌" ( 𝑝#, 𝜇(!  (𝑝# ),𝜛(𝑠# ), 𝑝")⋀	𝜌# (𝑞#, 𝜇(!  (𝑞# ), 𝑠# , 𝑞") = 
0.3 
 
𝜌2 (𝑝", 𝜇(!  (𝑝" ), 𝑞", 𝜇(!, (𝑞")),	𝑡# , (𝑝#, 𝑞#)) = 𝜌" ( 𝑝",𝜇(!  (𝑝" ),𝜛(𝑡# ), 𝑝#)⋀	𝜌# (𝑞"𝜇(!  (𝑞" ),	𝑡# , 𝑞#) = 0.2 
 
𝜌2 (𝑝", 𝜇(!  (𝑝" ), 𝑞#, 𝜇(!, (𝑞#)),	𝑡# , (𝑝#, 𝑞")) = 𝜌" ( 𝑝", 𝜇(!  (𝑝" ),𝜛(𝑡# ), 𝑝#)⋀	𝜌# (𝑞#, 𝜇(!  (𝑞# ),	𝑡# ,	𝑞") = 
0.2  
 
𝜌2 (𝑝#, 𝜇(!  (𝑝# ), 𝑞", 𝜇(!, (𝑞")),	𝑡# , (𝑝#, 𝑞#)) = 𝜌" ( 𝑝#, 𝜇(!  (𝑝# ),𝜛(𝑡#), 𝑝#)⋀	𝜌# (𝑞", 𝜇(!  (𝑞" ),	𝑡# , 𝑞#) = 
0.5 
 
𝜌2 (𝑝#, 𝜇(!  (𝑝# ), 𝑞# , 𝜇(!(𝑞#)),	𝑡# , (𝑝#, 𝑞")) = 𝜌" (𝑝#, 𝜇(!  (𝑝# ),𝜛(𝑡# ), 𝑝#)⋀	𝜌# (𝑞#, 𝜇(!  (𝑞#),	𝑡# , 𝑞") = 
0.35 

 
 And 𝛿2 is 0 elsewhere. It follows that 𝑀"𝜛𝑀# ≅ 𝑀"𝜔𝑀# is a restricted cascade product. 
 

3.3 General Fuzzy Switchboard Polytransformation Semigroup 
 
Definition 3.7: A poly-transformation semigroup is a triple 𝑇 = (𝑄, 𝑆(�̃�), 𝛾) where 𝑄 is a finite 

nonempty set, 𝑆(�̃�) is a finite semigroup of �̃�, 𝛾 is a fuzzy subset of (𝑄 × [0,1]) × 𝑆(�̃�) → 𝑃(𝑄 × 
[0,1])\{∅}. Such that: 

 
i. 𝛾(𝛾(𝑝, 𝜇(!  (𝑝), 𝑢), 𝑣) = 𝛾(𝑝, 𝜇(!  (𝑝), 𝑢𝑣)∀𝑝 ∈ 𝑄, 𝑢, 𝑣 ∈ 𝑆(�̃�) and 𝛾(𝑃, 𝑢) =∪ {𝛾(𝑝, 𝜇(!  (𝑝), 𝑢)|𝑝 

∈ 𝑃}, 𝑃 ⊆ 𝑄 and 𝑖 ≥ 0. 
ii. If 𝑆(�̃�) contains the identity 𝑒, then 𝛾(𝑝, 𝜇(!  (𝑝),𝑒) = {𝑝} ∀𝑝 ∈ 𝑄 and 𝑖 ≥ 0. If the property 

holds, then 𝑇 = (𝑄, 𝑆(�̃�), 𝛾) is called faithful. 
iii. Let 𝑢, 𝑣 ∈ 𝑆(�̃�), if 𝛾(𝑝, 𝜇(!  (𝑝), 𝑢) = 𝛾(𝑝, 𝜇(!  (𝑝), 𝑣), ∀𝑝 ∈ 𝑄 then 𝑢 = 𝑣. 

 
Definition 3.8: An anti-poly-transformation semigroup is a triple 𝑇 = (𝑄, 𝑆(�̃�), 𝛾) where 𝑄 is a finite 

nonempty set, 𝑆(�̃�) is a finite semigroup of �̃�, 𝛾 is a fuzzy subset of (𝑄 × [0,1]) × 𝑆(�̃�) → 𝑃(𝑄 × 
[0,1])\{∅}. Such that: 

 
i. 𝛾(𝛾(𝑝, 𝜇(!  (𝑝), 𝑢), 𝑣) = 𝛾(𝑝, 𝜇(!  (𝑝), 𝑣𝑢)∀𝑝 ∈ 𝑄, 𝑢, 𝑣 ∈ 𝑆(�̃�) and 𝛾(𝑃, 𝑢) =∪ {𝛾(𝑝, 𝜇(!  (𝑝), 𝑢)|𝑝 

∈ 𝑃}, 𝑃 ⊆ 𝑄 and 𝑖 ≥ 0. 
ii. If 𝑆(�̃�) contains the identity 𝑒, then 𝛾(𝑝, 𝜇(!  (𝑝),𝑒) = {𝑝} ∀𝑝 ∈ 𝑄 and 𝑖 ≥ 0. If the property 

holds, then 𝑇 = (𝑄, 𝑆(�̃�), 𝛾) is called faithful  
iii. Let 𝑢, 𝑣 ∈ 𝑆(�̃�) , if 𝛾(𝑝, 𝜇(!  (𝑝), 𝑢) = 𝛾(𝑝, 𝜇(!  (𝑝), 𝑣), ∀𝑝 ∈ 𝑄 then 𝑢 = 𝑣. 

 
To summarize, if the definition of poly-transformation semigroup is equal to the anti-poly-

transformation semigroup, then it is commutative properties. 
 
Definition 3.9: Let 𝑇 = (𝑄, 𝑆(�̃�), 𝛾) be a poly-transformation semigroup. Then: 
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i. 𝑇 is commutative if it satisfied 𝛾(𝑝, 𝜇(!&#  (𝑝), 𝑢𝑣) = 𝛾(𝑝, 𝜇(!&#  (𝑝), 𝑣𝑢), ∀𝑝 ∈ 𝑄, ∀𝑢, 𝑣 ∈ 𝑆(�̃�) 
, 𝑖 ≥ 1.  

ii. 𝑇 is switching if it satisfied 𝜌(𝑞, 𝜇(!  (𝑞), 𝑢𝑣, 𝑝) = 𝜌(𝑝, 𝜇(!  (𝑝), 𝑢𝑣, 𝑞), ∀𝑞, 𝑝 ∈ 𝑄, ∀𝑢, 𝑣 ∈ 𝑆(�̃�) 
, 𝑖 ≥ 0.  

 
If 𝑇 satisfied both conditions which are commutative and switching, thus it is called as General 

Finite Switchboard Poly-transformation Semigroup (GFSPS).  
 
4. Application of General Fuzzy Switchboard Automata 

 
In this section, the application of the Fuzzy Switchboard Automatic (GFSA) to washing machines 

is studied. The switchboard properties are applied to the machine because the switchboard can 
function as a control device and communicate between a subsystem and another subsystem. 
Therefore, it is necessary to include the idea of the switchboard properties to run the machine. Two 
conditions have to be fulfilled which are commutative and switching properties in order to 
incorporate the switchboard property into the General Fuzzy Automata. This system must therefore 
be checked to see if it is GFSA or GFA. First of all, we must check the commutative properties of this 
system. If 𝜌(𝑞, 𝜇(!&#(𝑞), 𝑢𝑣, 𝑝) = 𝜌(𝑞, 𝜇(!&#(𝑞), 𝑣𝑢, 𝑝), where ∀𝑞, 𝑝 ∈ 𝑄,	𝑢, 𝑣 ∈ 𝑆, 𝑖 ≥ 1, then it is 
called as commutative state machine. 

 
4.1 Washing Machine 

 
Figure 2 shows the GFSA, which describes the behaviour of the washing machine influenced by 

the weight of the clothes and selects the appropriate timer for the entire process. Once the state of 
the machine is equal to or greater than 0.5, it will be move to the next process (the state). Meanwhile, 
if the machine receives less than 0.5 of membership value, it means the timer should increase by 5 
minutes. However, this condition only occurs in the rinse state. It should be taken into account that 
clothing has different materials, thickness and weight. Thus, the time for rinse is different. To 
incorporate the Switchboard property into the general Fuzzy Automata, two conditions must be met, 
which are the switching properties and the commutative properties.  

 

 
Fig. 2. The simple system of washing machine 
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Let 𝑎, 𝑏, 𝑐, 𝑑,𝑒, 𝑓, 𝑔 ∈ 𝑄, and 𝑜𝑛, 𝑜𝑓𝑓, 𝜎, 𝜏 ∈ Σ. Denote that 𝑎, 𝑏, 𝑐, 𝑑,𝑒, 𝑓, 𝑔 are the states of the 
system, while 𝑜𝑛, 𝑜𝑓𝑓, 𝜎, 𝜏 are the input symbols with the membership values. String 𝑥 represents 
the situation that will occur from the state. For instance, from the initial state (power button) to 𝑓 
(start/pause button), if the power is 𝑜𝑓𝑓, it can be going to 𝑓. The meaning of the 𝑜𝑓𝑓 input symbol 
is that the state is still in process, in the meantime, 𝑜𝑛 means that the state is already finished and 
does not operate in that state. At 𝑓 state, to continue for the next state, if the input symbol is 𝑜𝑛, it 
will go to the 𝑑 state (washing). Then if something goes wrong with the machine, such as the water 
level is not suitable regarding the weight of the cloths and so on, it will go to the 𝑓 state (𝑜𝑛). 
However, suppose that there is nothing wrong in the state 𝑑, then from the 𝑑 state it will go to the 𝑒 
state (rinse). Assume, at the 𝑒 state, the membership value is still greater than 0.5, means that the 
timer for rinse must be increased by 5 minutes. Thus, at 𝑒 state, the input symbol is 𝑜𝑛. The following 
calculation is for the GFSA in accordance with the situation given.  

 
String 𝑥 = 𝑜𝑛, 𝑜𝑓𝑓, 𝑜𝑛, 𝑜𝑓𝑓 

𝜇(((𝑎) = 1 
𝜇(#(𝑏) = 𝛿:((𝑎, 𝜇(((𝑎), 𝑜𝑛, 𝑏) = 𝐹"(𝜇(((𝑎), 𝛿(𝑎, 𝑜𝑛, 𝑏) = 𝐹"(1,0.8) = 0.8 

𝜇($(𝑐) = 𝛿:((𝑏, 𝜇(#(𝑏), 𝑜𝑓𝑓, 𝑐) = 𝐹"(𝜇(#(𝑏), 𝛿(𝑏, 𝑜𝑓𝑓, 𝑐) = 𝐹"(0.8,0.6) = 0.6 
𝜇('(𝑑) = 𝛿:((𝑐, 𝜇($(𝑐), 𝑜𝑛, 𝑑) = 𝐹"(𝜇($(𝑐), 𝛿(𝑐, 𝑜𝑛, 𝑑) = 𝐹"(0.6,0.7) = 0.6 
𝜇()(𝑒) = 𝛿:((𝑑, 𝜇('(𝑑), 𝑜𝑓𝑓, 𝑒) = 𝐹"(𝜇('(𝑑), 𝛿(𝑑, 𝑜𝑓𝑓, 𝑒) = 𝐹"(0.6,0.8) = 0.6 

𝛿:∗ L7𝑎, 𝜇(((𝑎)8, 𝑜𝑛, 𝑏M = 0.8 

𝛿:∗ L7𝑎, 𝜇(((𝑎)8, 𝑜𝑛𝑜𝑓𝑓, 𝑐M = 0.8 ∧ 0.6 = 0.6 

𝛿:∗ L7𝑎, 𝜇(((𝑎)8, 𝑜𝑛𝑜𝑓𝑓𝑜𝑛, 𝑑M = 0.8 ∧ 0.6 ∧ 0.6 = 0.6 

𝛿:∗ L7𝑎, 𝜇(((𝑎)8, 𝑜𝑛𝑜𝑓𝑓𝑜𝑛𝑜𝑓𝑓, 𝑒M = 0.8 ∧ 0.6 ∧ 0.6 ∧ 0.6 = 0.6 
 
If	𝜌(𝑞, 𝜇(!&#(𝑞), 𝑢𝑣, 𝑝) = 𝜌(𝑞, 𝜇(!&#(𝑞), 𝑣𝑢, 𝑝) means that it is commutative state machine, 

where ∀𝑞, 𝑝 ∈ 𝑄,	𝑢, 𝑣 ∈ 𝑆, 𝑖 ≥ 1. Since the string 𝑥 = 𝑜𝑛, 𝑜𝑓𝑓, 𝑜𝑛, 𝑜𝑓𝑓 then the other side must be 
vice versa. Next check the calculation of the string 𝑥 = 𝑜𝑓𝑓, 𝑜𝑛, 𝑜𝑓𝑓, 𝑜𝑛 

 
String 𝑥 = 𝑜𝑓𝑓, 𝑜𝑛, 𝑜𝑓𝑓, 𝑜𝑛 

𝜇(((𝑎) = 1 
𝜇(#(𝑓) = 𝛿:((𝑎, 𝜇(((𝑎), 𝑜𝑓𝑓, 𝑓) = 𝐹"(𝜇(((𝑎), 𝛿(𝑎, 𝑜𝑓𝑓, 𝑓) = 𝐹"(1,0.7) = 0.7 
𝜇($(𝑑) = 𝛿:((𝑓, 𝜇(#(𝑓), 𝑜𝑛, 𝑑) = 𝐹"(𝜇(#(𝑓), 𝛿(𝑓, 𝑜𝑛, 𝑑) = 𝐹"(0.7,0.6) = 0.6 

𝜇('(𝑒) = 𝛿:((𝑑, 𝜇($(𝑑), 𝑜𝑓𝑓, 𝑒) = 𝐹"(0.6,0.8) = 0.6 
𝜇()(𝑒) = 𝛿:((𝑒, 𝜇('(𝑒), 𝑜𝑛, 𝑒) = 𝐹"(0.6,0.7) = 0.6 

 
𝛿:∗ L7𝑎, 𝜇(((𝑎)8, 𝑜𝑓𝑓, 𝑓M = 0.7 

𝛿:∗ L7𝑎, 𝜇(((𝑎)8, 𝑜𝑓𝑓𝑜𝑛, 𝑑M = 0.7 ∧ 0.6 = 0.6 

𝛿:∗ L7𝑎, 𝜇(((𝑎)8, 𝑜𝑓𝑓𝑜𝑛𝑜𝑓𝑓, 𝑒M = 0.7 ∧ 0.6 ∧ 0.6 = 0.6 

𝛿:∗ L7𝑎, 𝜇(((𝑎)8, 𝑜𝑓𝑓𝑜𝑛𝑜𝑓𝑓𝑜𝑛, 𝑒M = 0.7 ∧ 0.6 ∧ 0.6 ∧ 0.6 = 0.6 
 
The table below shows the operation of the fuzzy automation at the input string (𝑜𝑛𝑜𝑓𝑓)2and 

(𝑜𝑓𝑓𝑜𝑛)2 for 𝐹1 and 𝐹2.  
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Table 1 
Active states and their membership values 
of 𝑜𝑛𝑜𝑓𝑓𝑜𝑛𝑜𝑓𝑓 
Time  𝑡0  𝑡1  𝑡2  𝑡3  𝑡4  
input  Λ  𝑜𝑛  𝑜𝑓𝑓  𝑜𝑛  𝑜𝑓𝑓  
𝑄𝑎𝑐𝑡(𝑡𝑖)  𝑎  𝑏  𝑐  𝑑  𝑒  
Membership value  1.0  0.8  0.6  0.6  0.6  

  
Table 2 
Active states and their membership values of 
𝑜𝑓𝑓𝑜𝑛𝑜𝑓𝑓𝑜𝑛 

Time  𝑡0  𝑡1  𝑡2  𝑡3  𝑡4  
input  Λ  𝑜𝑓𝑓  𝑜𝑛  𝑜𝑓𝑓𝑓  𝑜𝑛  
𝑄𝑎𝑐𝑡(𝑡𝑖)  𝑎  𝑓  𝑑  𝑒  𝑒  
Membership value  1.0  0.7  0.6  0.6  0.6  

  
Since, 𝜌(𝑞, 𝜇𝑡𝑖−1(𝑞), 𝑜𝑛𝑜𝑓𝑓𝑜𝑛𝑜𝑓𝑓, 𝑝) = 𝜌(𝑞, 𝜇𝑡𝑖−1(𝑞), 𝑜𝑓𝑓𝑜𝑛𝑜𝑓𝑓𝑜𝑛, 𝑝) , thus, the system is 

commutative. Then check the switching properties. If 𝜌(𝑞, 𝜇𝑡𝑖−1(𝑞), 𝑢, 𝑝) = 𝜌(𝑝, 𝜇𝑡𝑖−1(𝑝), 𝑢, 𝑞), where 
∀𝑞, 𝑝 ∈ 𝑄, 𝑢, 𝑣 ∈ 𝑆, 𝑖 ≥ 1, then the system is switching state machine. Here, from the above diagram, 
each state is switching state machine. For instance, 𝜌(𝑎, 𝜇𝑡𝑖−1(𝑎), 𝑜𝑛, 𝑏) = 𝜌(𝑏, 𝜇𝑡𝑖−1(𝑏), 𝑜𝑛, 𝑎) . 
Therefore, the system is GFSA since it fulfilled both conditions switching and commutative. If the 
system follows switchboard state machine, it means that the process can be vice versa depending on 
the situation. For instance, if the sudden failure happened which is 𝑒 state is not working, it doesn’t 
mean the whole system is breaking down. It is still can operate without 𝑒 state. According to the 
Figure 2, from 𝑑 state, it will go to the 𝑓 state and go back to 𝑎 and 𝑔 state. 

 
5. Conclusions 

 
Algebraic properties are important for operations and throughout the system. In order to make 

the system or machine work correctly, the characteristics must be fulfilled and understandable.  The 
theory is applied in real applications of general Fuzzy Switchboard Automata to make it more 
comprehensible and interesting. The importance of GFSA in real applications is to improve system 
function and automatically. In a nutshell, inspired by Doorsfatemeh and Kremer [1], the idea of Fuzzy 
General Automation and Switchboard in the concept of semi-group transformation for the study of 
algebraic automation is considered. Semigroups are important because they occur in many places. 
Since semigroups are important algebraic structures in automaton theory, they necessary to be 
studied. Transformation semigroups are important for the structure theory of finite state machines 
in automata theory. It defines all possible transition set transformations that can be joined in time 
and also as a collection of the functions from a set to itself. Since they have a huge number of sets of 
states, it is easier to explore the space of all possible finite computations by listing these semigroups.  
An example of the definition of a cascade product of a general fuzzy switchboard transformation 
group is presented since algebraic products are an effective way of studying the theory of state 
machines and automation. In addition, some of the related properties of General Fuzzy Switchboard 
Transformation Semigroup are examined. The definition of poly-transformation semigroup is equal 
to anti-poly-transformation semigroup meaning that it is satisfied commutative properties. Then, 
General Fuzzy Switchboard Poly-transformation Semigroup is introduced. In future research, it would 
be great to study the different products of the general fuzzy switchboard transformation semigroup. 
If there is a sudden failure, it can communicate between the subsystems and decide as a human 
being. Before that, check the system to follow the properties of the switchboard automation.   
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