The Topological Indices of the p-Subgroup Graph of Dihedral Groups

Fozaiyah Ayed Alhubairah ${ }^{1, *}$, Nor Muhainiah Mohd Ali 1, and Ahmad Erfanian ${ }^{2}$
1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
2 Department of Pure Mathematics, Faculty of Mathematical Sciences and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran

ARTICLE INFO

Article history:

Received 1 September 2023
Received in revised form 16 October 2023
Accepted 7 March 2024
Available online 3 April 2024

Keywords:

Dihedral group; Wiener index; First and
second Zagreb indices

Abstract

A topological index is a number generated from a molecular structure that signifies the molecule's fundamental structural characteristics. This correlation between the index and various physical attributes is based on an algebraic quantity related to the chemical structure. Many topological indices, such as the Wiener index, first and second Zagreb indices, can be employed to determine various properties, including chemical activity, thermodynamic properties, physicochemical activity, and biological activity. Meanwhile, the p-subgroup graph of a group G is defined as a graph whose vertices represent the elements of the group, and two vertices are adjacent if and only if the order of the subgroup is a prime power. The main objective of this paper is to establish the general formula for certain topological indices, specifically the Wiener index, first Zagreb index, and second Zagreb index for the p-subgroup graph associated with dihedral groups.

1. Introduction

Topological indices are numerical values derived for graphs associated with groups, serving as tools for modelling chemical characteristics and other aspects of molecules. Problems in biology and chemistry have been solved using various topological indices. Descriptors like the Wiener and Zagreb indices establish connections between molecular structures and potential physical properties. The nature and applications of topological indices have been extensively studied by Basak et al., [1] in relation to chemistry. Additionally, several studies regarding graphs from groups have been widely reported. The topological index of a graph can be classified into three major categories based on degree, distance, and the eccentricity of a vertex in the graph. For instance, Sarmin et al., [2] determined the general formula of the Wiener index, the first Zagreb index and the second Zagreb index for the non-commuting graph associated with generalised quaternion groups. Recently, Alimon et al., [3] generalized the Wiener index and the Zagreb index of the conjugacy class graph of dihedral groups. Additionally, Bello et al., [4] generalized the topological indices of the order product prime graph on dihedral groups.

[^0]https://doi.org/10.37934/araset.42.2.145154

The Wiener index was established by Wiener in 1947 [5], is calculated as half the sum of the distances between every pair of vertices in a graph. Behtoei et al., [6] introduce new topological indices, which include the Wiener index, hyper-Wiener, Schultz and modified Schultz indices as special cases for trees. This method takes into account the distance between vertices when computing the Schultz and modified Schultz indices for trees. Furthermore, Yu et al., [7] extended the research on the Wiener index, providing some of the sufficient conditions for a nearly balanced bipartite graph with a given minimum degree to be traceable. Meanwhile, the Zagreb index has two types: the first Zagreb index and the second Zagreb index. These Zagreb indices were introduced by Gutman and Trinajsti'c [8] in 1972. The first Zagreb index is calculated as the sum of the squares of the degrees of each vertex in a graph, while the second Zagreb index is the sum of the products of the degrees of the two vertices connected by each edge. There are numerous types of topological indices, including the Szeged index, the Harary index, the Degree-distance index, the Kirchhoff index, and many more. Recent results related to the topological indices of graphs can also be found in previous studies [9-11].

In this paper, we introduce a new graph associated with groups, specifically the p-subgroup graph of dihedral groups. Additionally, this study explores the formulas for the Wiener index, the first Zagreb index, and the second Zagreb index for the p-subgroup graph of dihedral groups.

2. Preliminaries

This section introduces fundamental concepts utilized in this research. The group under consideration is finite, specifically the dihedral groups.

Definition 1 [12] Dihedral Groups

For $n \in \mathbb{Z}$ and $n \geq 3$, the dihedral group, $D_{2 n}$, is the set of symmetries of a regular n-gon. Furthermore, the order of $D_{2 n}$ is $2 n$ or equivalently $\left|D_{2 n}\right|=2 n$. The dihedral groups can also be represented in a form of generators and relations as:
$D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=e, b a b=a^{-1}\right\rangle$
Definition 2 [13] The Wiener Index

Let Γ be a connected graph, and $V(\Gamma)=\{1,2, \ldots, n\}$ be a vertex set. The Wiener index of Γ, $W(\Gamma)$, is defined as half of the sum of the distances between every pair of vertices of Γ, written as
$W(\Gamma)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}$

Definition 3 [14] The First Zagreb Index
Let Γ be a connected graph, and $V(\Gamma)=\{1,2, \ldots, n\}$ be a vertex set. The first Zagreb index, denoted by $M_{1}(\Gamma)$, is defined as the sum of square of the degree of each vertex in Γ, written as
$M_{1}(\Gamma)=\sum_{v \in v(\Gamma)}^{n}(\operatorname{deg}(v))^{2}$

Definition 4 [14] The Second Zagreb Index

Let Γ be a connected graph, and $V(\Gamma)=\{1,2, \ldots, n\}$ be a vertex set and $E(\Gamma)$ be an edge of the graph. The second Zagreb index, denoted by $M_{2}(\Gamma)$, is defined as the sum of the product of the degree of two vertices for each edge, respectively, written as
$M_{2}(\Gamma)=\sum_{v, u \in E(\Gamma)}^{n} \operatorname{deg}(v) \operatorname{deg}(u)$
On the other hand, we consider simple undirected graphs without loop or multiple edges. The sets of vertices and edges of a graph Γ are denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively. We denote the adjacency of vertices a, b by $a \sim b$, number of vertices of the graph Γ by $|V(\Gamma)|$. A graph Γ is is considered connected if there exists a path between every pair of its vertices. A graph is termed complete if there is an edge between every pair of its vertices. In a connected graph Γ, the distance from vertex u to vertex v is defined as the length, represented by the number of edges, of the shortest $u-v$ path in Γ. This distance is denoted as $d(u, v)$, and in contexts where clarity is crucial, it can be written as $d_{G}(u, v)$. Consider simple graphs, the disjoint union $G \cup H$ is defined as $V_{G \cup H}=V_{G} \cup V_{H}$ and $E_{G \cup H}=E_{G} \cup E_{H}$, the join $G+H$ is defined as $V_{G+H}=V_{G} \cup V_{H}$ and $E_{G+H}=E_{G} \cup E_{H}\left\{\{u, v\} \mid u \in V_{G}, v \in V_{H}\right\}$.

3. Results

To begin, the definition and general presentation of a p-subgroup graph are provided. Furthermore, the topological indices, namely the Wiener index, the first Zagreb index, and the second Zagreb index, are generalized for the p-subgroup graph of dihedral groups.

The definition of the p-subgroup graph of finite groups is given in Definition 5.
Definition 5 p-Subgroup Graph of a Group
Let G be a finite group, then the p-subgroup graph of G, denoted by $\Gamma_{p}(G)$, is a graph whose vertices are the elements of G and two vertices x and y are adjacent if and only if $\langle x, y\rangle$ is a p-group.

General presentations of graphs on dihedral groups are provided. These presentations are instrumental in classifying the graphs as connected, complete, regular, or planar. Meanwhile, an example demonstrating the p-subgroup graph on dihedral groups is presented as follows.

Example 1

Consider the dihedral group of order $12, D_{12}=\left\{e, a, a^{2}, \ldots, a^{5}, b, a b, \ldots, a^{5} b\right\}$. Then $\left|\left\langle e, a^{2}\right\rangle\right|=$ $\left|\left\langle e, a^{4}\right\rangle\right|=\left|\left\langle a^{2}, a^{4}\right\rangle\right|=3,|\langle e, b\rangle|=|\langle e, a b\rangle|=\left|\left\langle e, a^{2} b\right\rangle\right|=\left|\left\langle e, a^{3} b\right\rangle\right|=\left|\left\langle e, a^{4} b\right\rangle\right|=\left|\left\langle e, a^{5} b\right\rangle\right|=$ $\left|\left\langle e, a^{3}\right\rangle\right|=2, \quad\left|\left\langle a^{3}, b\right\rangle\right|=\left|\left\langle a^{3}, a b\right\rangle\right|=\left|\left\langle a^{3}, a^{2} b\right\rangle\right|=\left|\left\langle a^{3}, a^{4} b\right\rangle\right|=\left|\left\langle a^{3}, a^{5} b\right\rangle\right|=3$, and $\left|\left\langle b, a^{3} b\right\rangle\right|=$ $\left|\left\langle a b, a^{4} b\right\rangle\right|=\left|\left\langle a^{2} b, a^{5} b\right\rangle\right|=4$ are the p-groups and the nontrivial cliques in D_{12}. The subgraphs generated by these cliques are given in Figure 1 and the graph $\Gamma_{P}\left(D_{12}\right)$ is given in Figure 2.

Fig. 1. Subgraph of p-subgroup graph of D_{12}

Fig. 2. p-subgroup graph of D_{12}

3.1 General Presentations of p-subgroup Graph of Dihedral Groups

The general presentations for the p-subgroup graph of dihedral groups are presented in the following theorems. The general presentation of the p-subgroup graph of $D_{2 n}$ for $n=p^{r}$ and p prime is given in Theorem 1.

Theorem 1 Let $D_{2 n}$ be the dihedral group of order $2 n$, where $n=p^{r}, p$ is a prime number and $r \in \mathbb{N}$. Then
$\Gamma_{p}\left(D_{2 n}\right)=\left\{\begin{array}{ccc}K_{2 n} & \text { if } & p=2 \\ K_{1}+\left(K_{n-1} \cup \bar{K}_{n}\right) & \text { if } & p \neq 2 .\end{array}\right.$
Proof: Suppose $D_{2 n}$ is the dihedral group of order 2 n , then $D_{2 n}=$ $\left\{e, a, a^{2}, a^{3}, \ldots, a^{n-1}, b, a b, a^{2} b, a^{3} b, \ldots, a^{n-1} b\right\} . \quad$ Let $A=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$ and $B=$ $\left\{b, a b, a^{2} b, a^{3} b, \ldots, a^{n-1} b\right\}$ be the sets of the rotations and reflections of $D_{2 n}$, then $A \cong \mathbb{Z}_{p} r$. Pick arbitrary $A_{i}, A_{j} \in A$ such that $A_{j}=\left\langle a^{j}\right\rangle$, for $i \neq j$. Then $\left|\left\langle a^{i}, a^{j}\right\rangle\right|=p^{t}$, for $t \in \mathbb{N}$ since $|A|=$ p^{r}. Thus A is a clique of size p^{r}. If $p=2$, then B is also a clique of size n since $\left\langle a^{i} b, a^{j} b\right\rangle=D_{2 n}$ and $\left|\left\langle a^{i} b, a^{j} b\right\rangle\right|=\left|D_{2 n}\right|=2 p^{r}=2^{r+1}$. Thus, $\left\langle a^{i} b, a^{j} b\right\rangle$ is a p-group. Moreover, $\left|\left\langle a^{i}, a^{j} b\right\rangle\right|=$ p^{t}. Meaning that there are edge linking every pair of the vertices of $D_{2 n}$. Therefore, $\Gamma_{p}\left(D_{2 n}\right)=$ $K_{2 n}$. If $p \neq 2$, then $\left|\left\langle a^{i} b, a^{j} b\right\rangle\right|=\left|D_{2 n}\right|=2 p^{r}$. Thus, in this case $\left\langle a^{i} b, a^{j} b\right\rangle$ is not p-subgroup. Hence there are no edge linking $a^{i} b$ and $a^{j} b$. But $\left|\left\langle e, a^{i}\right\rangle\right|=\left|\left\langle a^{i} b\right\rangle\right|=2$. Thus,

$$
\begin{aligned}
\Gamma_{p}\left(D_{2 n}\right) & =K_{|\langle e\rangle|}+\left(K_{|A \backslash\{e\}|} \cup \bar{K}_{|B|}\right) \\
& =K_{1}+\left(K_{n-1} \cup \bar{K}_{n}\right)
\end{aligned}
$$

The general presentation of the p-subgroup graph of $D_{2 n}$ for $n=p^{r} q$ where p and q are distinct primes is given in Theorem 2.

Theorem 2 Let $D_{2 n}$ be the dihedral group of order $2 n$, for $n=p^{r} q$, where p and q are distinct prime numbers and $r \in \mathbb{N}$. Then
$\Gamma_{p}\left(D_{2 n}\right)=\left\{\begin{array}{lll}K_{1}+\left(K_{q-1} \cup\left(K_{p^{r}-1}+q K_{p^{r}}\right)\right) \cup \bar{K}_{n+1-\left(p^{r}+q\right)} & \text { if } & p=2, \\ K_{1}+\left(K_{p^{r}-1} \cup\left(K_{q-1}+p^{r} K_{q}\right)\right) \cup \bar{K}_{n+1-\left(p^{r}+q\right)} & \text { if } & q=2 \\ K_{1}+\left(K_{p^{r}-1} \cup K_{q-1} \cup \bar{K}_{p^{r} q}\right) \cup \bar{K}_{n+1-\left(p^{r}+q\right)} & \text { if } & p \neq 2 \text { and } q \neq 2 .\end{array}\right.$

Proof: Let $D_{2 n}=\left\{e, a, a^{2}, \ldots, a^{n-1}, b, a b, a^{2} b, \ldots, a^{n-1} b\right\}$ be the dihedral group of order $2 n$. To determine the vertex adjacencies. We need to find the order of the elements. Let $A=$ $\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$ and $B=\left\{b, a b, a^{2} b, \ldots, a^{n-1} b\right\}$ be the sets of the rotations and the reflections of $D_{2 n}, \quad$ respectively. Since $a^{i} b$ are reflections, then $\left|\left\langle a^{i} b\right\rangle\right|=2$. For the rotations $a^{i},\left\{e, a, a^{2}, \ldots, a^{n-1}\right\} \cong \mathbb{Z}_{n}$. Thus, $\left|a^{i}\right|=\frac{n}{\operatorname{gcd}(i, n)}$. Let $A_{p}=\left\langle a^{p^{\prime}}\right\rangle$ and $A_{q}=\left\langle a^{q}\right\rangle$, then $A_{p} \subset A$ and $A_{q} \subset A$. Thus, A_{p}, A_{q} are independent clique of size $q-1$ and $p^{r}-1$, respectively. Moreover, since the $\left|\left\langle a^{i} b\right\rangle\right|=2$, then there exist edges between B and A_{q} or A_{p} if $p=2$ or $q=2$, respectively. If $p \neq 2, q \neq 2$, then there no edges between B and A_{p} or A_{q}. Now, the element of set B form cliques of size p^{r} and q if $p=2$ and $q=2$, respectively. Let M and N be these cliques. If $p=2$, then $M=\left\{a^{i} b, a^{i+q} b, a^{i+2 q} b, \ldots, a^{i+\left(p^{r}-1\right) q} b\right\}$ for $0 \leq i \leq(q-1)$ and if $q=2$, then $N=$ $\left\{a^{i} b, a^{i+p^{\prime}} b\right\}$ for $0 \leq i \leq\left(\frac{n}{2}-1\right)$. Then $|M|=p^{r}$ and $|N|=q$. For the situation when $p \neq$ $2, q \neq 2$, then B is an independent set. Let L be the set containing the remaining vertices of the graph other than A_{p}, A_{q} and B. Therefore,

$$
\begin{aligned}
|L| & =|G|-|\{e\}|-\left|A_{p}\right|-\left|A_{q}\right|-|B| \\
& =(2 n-1)-(q-1)-\left(p^{r}-1\right)-n \\
& =n+1-\left(p^{r}+q\right) .
\end{aligned}
$$

Clearly the vertex e is adjacent to A_{p}, A_{q}, M and N, while e is not adjacent to L since the order of $\langle e, L\rangle$ is not p-group. Now, if $p=2$, then

$$
\begin{aligned}
\Gamma_{p}\left(D_{2 n}\right) & =K_{|e|}+\left(K_{\left|A_{p}\right|} \cup\left(K_{\left|A_{q}\right|}+q K_{|M|}\right)\right) \cup \bar{K}_{|L|} \\
& =K_{1}+\left(K_{q-1} \cup\left(K_{p^{r}-1}+q K_{p^{r}}\right)\right) \cup \bar{K}_{n+1-\left(p^{r}+q\right)} .
\end{aligned}
$$

If $q=2$, then

$$
\begin{aligned}
\Gamma_{p}\left(D_{2 n}\right) & =K_{|e|}+\left(K_{\left|A_{q}\right|}\right) \cup\left(K_{\left|A_{p}\right|}+p^{r} K_{|N|}\right) \cup \bar{K}_{|L|} \\
& =K_{1}+\left(K_{p^{r}-1} \cup\left(K_{q-1}+p^{r} K_{q}\right)\right) \cup \bar{K}_{n+1-\left(p^{r}+q\right)} .
\end{aligned}
$$

If $p \neq 2, q \neq 2$, then

$$
\begin{aligned}
\Gamma_{p}\left(D_{2 n}\right) & =K_{|e|}+\left(K_{\left|A_{q}\right|} \cup K_{\left|A_{p}\right|} \cup \bar{K}_{|B|}\right) \cup \bar{K}_{|L|} \\
& =K_{1}+\left(K_{p^{r}-1} \cup K_{q-1} \cup \bar{K}_{n}\right) \cup \bar{K}_{n+1-\left(p^{r}+q\right)} . \\
& =K_{1}+\left(K_{p^{r}-1} \cup K_{q-1} \cup \bar{K}_{p^{r} q}\right) \cup \bar{K}_{n+1-\left(p^{r}+q\right)} .
\end{aligned}
$$

Next, the general presentation of the p-subgroup graph of $D_{2 n}$ for $n=p q h$ where p, q and h primes, is given in Theorem 3.

Theorem 3 Let $D_{2 n}$ be the dihedral group of order $2 n$, for $n=p q h$ where p, q and h are distinct prime numbers. Then
$\Gamma_{p}\left(D_{2 n}\right)=\left\{\begin{array}{ccc}K_{1}+\left(K_{h-1} \cup K_{q-1} \cup\left(K_{p-1}+\frac{n}{2} K_{2}\right)\right) \cup \bar{K}_{n-(p+q+h-2)} & \text { if } & p=2, \\ K_{1}+\left(K_{h-1} \cup K_{q-1} \cup K_{p-1} \cup \bar{K}_{n}\right) \cup \bar{K}_{n-(p+q+h-2)} & \text { if } & n \text { odd } .\end{array}\right.$

Proof: Suppose $D_{2 n}=\left\{e, a, a^{2}, \ldots, a^{n-1}, b, a b, a^{2} b, \ldots, a^{n-1} b\right\}$ be the dihedral group of order $2 n$. Let $A=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$ and $B=\left\{b, a b, a^{2} b, \ldots, a^{n-1} b\right\}$ be the sets of the rotations and the reflections of $D_{2 n}$, respectively. Since $a^{i} b$ are reflections, then $\left|\left\langle a^{i} b\right\rangle\right|=2$. For the rotations a^{i}, since $\left\{e, a, a^{2}, \ldots, a^{n-1}\right\} \cong \mathbb{Z}_{n}$, then the order of an element $a^{i} \in A$, is $\left|a^{i}\right|=\frac{n}{\operatorname{gcd}(i, n)}$. Let $A_{1}=$ $\left\langle a^{p q}\right\rangle, A_{2}=\left\langle a^{p h}\right\rangle$ and $A_{3}=\left\langle a^{q h}\right\rangle$ be the subsets of A. Thus, A_{1}, A_{2} and A_{3} are independent clique of size $h-1, q-1$ and $p-1$ respectively. Since the order of $\left|A_{3}\right|=2$ and the and the $\left|\left\langle a^{i} b\right\rangle\right|=2$ then there exist edges between B and A_{3} if $p=2$. Now, the elements of set B form cliques of size $q h$ if $p=2$. Let M be this clique, then $M=\left\{a^{i} b, a^{i+q h} b\right\}$ for $0 \leq i \leq\left(\frac{n}{2}-1\right)$ and $|M|=2$. If n odd, then B is an independent set. Let L be the set containing the remaining vertices of the graph other than A_{1}, A_{2} and A_{3} and B. Then

$$
\begin{aligned}
|L| & =|G|-|\{e\}|-\left|A_{1}\right|-\left|A_{2}\right|-\left|A_{3}\right|-|B| \\
& =(2 n-1)-(h-1)-(q-1)-(p-1)-n \\
& =n-(p+q+h-2) .
\end{aligned}
$$

Clearly, the vertex e is adjacent to A_{1}, A_{2} and A_{3}, and M, while e is not adjacent to L since the order of $\langle e, L\rangle$ is not p-group. Now, if $p=2$, then

$$
\begin{aligned}
\Gamma_{p}\left(D_{2 n}\right) & =K_{|e|}+\left(K_{\left|A_{1}\right|} \cup K_{\left|A_{2}\right|} \cup\left(K_{\left|A_{3}\right|}+q h K_{|M|}\right)\right) \cup \bar{K}_{|L|} \\
& =K_{1}+\left(K_{h-1} \cup K_{q-1} \cup\left(K_{p-1}+\frac{n}{2} K_{2}\right)\right) \cup \bar{K}_{n-(p+q+h-2)} .
\end{aligned}
$$

If n odd, then

$$
\begin{aligned}
\Gamma_{p}\left(D_{2 n}\right) & \left.=K_{|e|}+\left(K_{\left|A_{1}\right|} \cup K_{\left|A_{2}\right|} \cup K_{\left|A_{3}\right|} \cup \bar{K}_{|B|}\right)\right) \cup \bar{K}_{|L|} \\
& =K_{1}+\left(K_{h-1} \cup K_{q-1} \cup K_{p-1} \cup \bar{K}_{n}\right) \cup \bar{K}_{n-(p+q+h-2)} .
\end{aligned}
$$

To start, we establish a connected and distance of vertices that simplify the study of various topological indices. These results are given in Proposition 1, Proposition 2, and Proposition 3.

Proposition 1 Let $D_{2 n}$ be the dihedral group of order $2 n$. Then $\Gamma_{p}\left(D_{2 n}\right)$ is connected only if $n=$ p^{r}, where $r \in \mathbb{N}$ and p is a prime number.

Proof: By definition 5, the vertices of $\Gamma_{p}\left(D_{2 n}\right)$ are the sets of the rotations and the reflections. Let $A=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$ and $B=\left\{b, a b, a^{2} b, \ldots, a^{n-1} b\right\}$ be the sets of the rotations and the reflections of $D_{2 n}$, respectively. Pick arbitrary nontrivial element $a \in A, b \in B$, then $|\langle e, a\rangle|=$ p^{r} and $|\langle e, b\rangle|=2$. That is $a \sim e$ and $e \sim b$ by the vertex adjacency. Thus, all the vertices of $\Gamma_{p}\left(D_{2 n}\right)$ are reachable through e. Hence, $\Gamma_{p}\left(D_{2 n}\right)$ is connected if $n=p^{r}$.

Proposition 2 Let $D_{2 n}$ be the dihedral group of order $2 n$, for $n=2^{r}, r \in \mathbb{N}$. Then $d\left(v_{k}, v_{l}\right)=$ 1 , where $k \neq l$.

Proof: $\Gamma_{p}\left(D_{2 n}\right)$ is a complete graph by Theorem 1. Then the distance for each pair of vertices in this graph is one. Therefore, $d\left(v_{k}, v_{l}\right)=1$, where $k \neq l$.

Proposition 3 Let $D_{2 n}$ be the dihedral group of order $2 n$, for $n=p^{r}, p \neq 2$. Then
$d\left(v_{k}, v_{l}\right)=\left\{\begin{array}{lc}1 & \text { if } v_{k} \text { and } v_{l} \text { in the same complete subgraph, } \\ 2 & \text { otherwise, }\end{array}\right.$
where p is a prime and $r \in \mathbb{N}$.

Proof: If $p \neq 2$, then by Theorem $1, \Gamma_{p}\left(D_{2 n}\right)=K_{1}+\left(k_{n-1} \cup \bar{K}_{n}\right)$. If v_{k}, v_{l} in the same complete subgraph, then by using the same proof in Proposition 2, $d\left(v_{k}, v_{l}\right)=1$. If v_{k}, v_{l} are not belong the same clique or belong to \bar{K}_{n}, then by Theorem $1, v_{k}$ can be reached from v_{l} through e. Thus, $d\left(v_{k}, v_{l}\right)=2$.

The topological indices of the p-subgroup graph associated with dihedral groups for $n=p^{r}$ which is a connected graph are determined. Then, the Wiener index of $\Gamma_{p}\left(D_{2 n}\right)$ for $n=p^{r}$ is given in Theorem 4.

Theorem 4 Let $D_{2 n}$ be the dihedral group of order $2 n$. Then, the Wiener index of the p-subgroup graph, Γ_{p} of dihedral group is stated as follows:
$W\left(\Gamma_{p}\left(D_{2 n}\right)\right)=\left\{\begin{array}{l}n(2 n-1) \text { if } p=2, \\ \frac{1}{2} n(7 n-5) \text { otherwise. }\end{array}\right.$
Proof: Suppose $\mathrm{p}=2$, then by Proposition 2, $d\left(v_{k}, v_{l}\right)=1$. By Theorem 1, $n\left(V\left(\Gamma_{p}\left(D_{2^{r}}\right)\right)=\right.$ $V\left(K_{2 n}\right)=2 n$. Hence,

$$
\begin{aligned}
W\left(\Gamma_{p}\left(D_{2 n}\right)\right)= & \frac{1}{2} \sum_{k=0}^{2 n-1} \sum_{l=0}^{2 n-1} d\left(v_{k}, v_{l}\right)=\frac{1}{2} \sum_{k=0}^{2 n-1}\left[d\left(v_{k}, v_{0}\right)+d\left(v_{k}, v_{1}\right)+d\left(v_{k}, v_{2}\right)+\cdots+d\left(v_{k}, v_{2 n-1}\right)\right] \\
= & \frac{1}{2}\left[d\left(v_{0}, v_{0}\right)+d\left(v_{1}, v_{0}\right)+d\left(v_{2}, v_{0}\right)+\cdots+d\left(v_{2 n-1}, v_{0}\right)+d\left(v_{0}, v_{1}\right)+d\left(v_{1}, v_{1}\right)+\cdots\right. \\
& +d\left(v_{2 n-1}, v_{1}\right)+d\left(v_{0}, v_{2}\right)+d\left(v_{1}, v_{2}\right)+\cdots+d\left(v_{2 n-1}, v_{2}\right)+\cdots \\
& \left.+d\left(v_{0}, v_{2 n-1}\right)+d\left(v_{1}, v_{2 n-1}\right)+\cdots+d\left(v_{2 n-1}, v_{2 n-1}\right)\right] \\
= & \frac{1}{2}[2 n-1+2 n-1+2 n-1+\underset{2 n \text { times }}{\ldots}] \\
= & \frac{1}{2}[2 n(2 n-1)]=n(2 n-1) .
\end{aligned}
$$

If $p \neq 2$, then by Theorem 1 , there are two subgraphs K_{n-1} which is a clique of size $n-1$ and K_{n}. Let A and B be the sets of rotations and reflections of $D_{2 p}$ where $p \neq 2$, then

$$
\begin{aligned}
& W\left(\Gamma_{p}\left(D_{2 n}\right)\right)=\frac{1}{2} \sum_{k=0}^{n-1} \sum_{I=0}^{n-1} d\left(v_{k}, v_{l}\right)=\frac{1}{2} \sum_{k=0}^{n-1} \sum_{l=0}^{n-1}\left[d\left(d^{k}, a^{k}\right)+d\left(d^{k}, a^{k} b\right)+d\left(d^{k} b, d^{k} b\right)\right] \\
& =\frac{1}{2} \sum_{k=0}^{n-1}\left[d\left(d^{k}, e\right)+d\left(d^{k}, a\right)+d\left(a^{k}, a^{2}\right)+\cdots+d\left(d^{k}, a^{n-1}\right)\right. \\
& \left.+d\left(a^{k}, b\right)+d\left(d^{k}, a b\right)+\cdots+d\left(d^{k}, a^{n-1} b\right)+\cdots+d\left(a^{k} b, b\right)+d\left(d^{k} b, a b\right)+\cdots+d\left(a^{k} b, d^{n-1} b\right)\right] \\
& =\frac{1}{2}\left[d(e, e)+d(a, e)+\cdots+d\left(a^{n-1}, e\right)+d(e, a)+d(a, a)+\cdots+d\left(a^{n-1}, a\right)+d\left(e, a^{2}\right)+d\left(a, a^{2}\right)\right. \\
& +\cdots+d\left(a^{n-1}, a^{2}\right)+\cdots+d\left(e, d^{n-1}\right)+d\left(a, a^{n-1}\right)+\cdots d\left(d^{n-1}, d^{n-1}\right)+d(e, b)+d(a, b)+\cdots \\
& +d\left(a^{n-1}, b\right)+d(e, a b)+d(a, a b)+\cdots+d\left(a^{n-1}, a b\right)+\cdots+d\left(e, a^{n-1} b\right)+d\left(a, a^{n-1} b\right)+\cdots \\
& +d\left(a^{n-1}, d^{n-1} b\right)+\cdots+d(b, b)+d(a b, b)+\cdots+d\left(a^{n-1} b, b\right)+d(b, a b)+d(a b, a b)+\cdots \\
& \left.+d\left(a^{n-1} b, a b\right)+\cdots+d\left(b, d^{n-1} b\right)+d\left(a b, a^{n-1} b\right)+\cdots+d\left(a^{n-1} b, a^{n-1} b\right)\right] \\
& =\frac{1}{2}\left[d(e, c)+d(e, a)+\cdots+d\left(e, a^{n-1}\right),+d(e, b)+d(e, a b)+\cdots+d\left(e, a^{n-1} b\right)+d(a, e)\right. \\
& +d(a, a)+\cdots+d\left(a, a^{n-1}\right)+d(a, b)+d(a, a b)+\cdots+d\left(a, a^{n-1} b\right)+d\left(a^{2}, e\right)+d\left(a^{2}, a\right) \\
& +\cdots+d\left(a^{2}, a^{n-1}\right)+d\left(a^{2}, b\right)+d\left(a^{2}, a b\right)+\cdots+d\left(a^{2}, a^{n-1} b\right)+\cdots+d\left(a^{e-1}, e\right) \\
& +d\left(a^{n-1}, a\right)+\cdots++d\left(a^{n-1}, d^{n-1}\right)+d\left(a^{n-1}, b\right)+d\left(a^{n-1}, a b\right)+\cdots+d\left(d^{n-1}, a^{n-1} b\right) \\
& +d(b, e)+d(b, a)+\cdots+d\left(b, a^{n-1}\right)+d(b, b)+d(b, a b)+\cdots+d\left(b, a^{n-1} b\right)+d(a b, e) \\
& +d(a b, a)+\cdots+d(a b, b)+d(a b, a b)+\cdots+d\left(a b,,,^{-1} b\right)+\cdots+d\left(a^{n-1} b, e\right) \\
& \left.+d\left(a^{n-1} b, a\right)+\cdots+d\left(a^{n-1} b, b\right)+d\left(a^{n-1} b, a b\right)+\cdots+d\left(a^{n-1} b, a^{n-1} b\right)\right] \\
& =\frac{1}{2}[(2 n-1)+|A|-e(1(|A|-e)+2|B|)+|B|(2(|A|-e)+2|B|-1+1\{e\})] \\
& =\frac{1}{2}[(2 n-1)+(n-1)((n-1)+2 n)+n(2(n-1)+2(n-1)+1)]=\frac{1}{2} n(7 n-5) .
\end{aligned}
$$

Subsequently, the Zagreb index of the p-subgroup graph of the dihedral groups are presented. Theorem 5 and Theorem 6 present the results of the first Zagreb index and the second Zagreb index of the p-subgroup graph for dihedral groups, respectively.

Theorem 5 Let $D_{2 n}$ be the dihedral group of order $2 n$. Then, the first Zagreb index of the p subgroup graph, Γ_{p} of dihedral group is stated as follows:
$M_{1}\left(\Gamma_{p}\left(D_{2 n}\right)\right)=\left\{\begin{array}{c}2 n(2 n-1)^{2} \\ n^{2}(n+1)\end{array} \quad\right.$ if $\quad \begin{array}{r}p=2, \\ \text { otherwise. }\end{array}$
Proof: If $p=2$, then by Theorem $1, \Gamma_{p}\left(D_{2 n}\right)=K_{2 n}$ and the degree of all vertices in $\Gamma_{p}\left(D_{2 n}\right)$ is $2 n-1$, then

$$
\begin{aligned}
M_{1}\left(\Gamma_{p}\left(D_{2 n}\right)\right) & =\sum_{k=0}^{2 n-1} \operatorname{deg}\left(v_{k}\right)^{2}=(2 n-1)^{2}+(2 n-1)^{2}+(2 n-1)^{2}+\cdots+(2 n-1)^{2} \\
& =2 n(2 n-1)^{2}
\end{aligned}
$$

If $p \neq 2$, then by Theorem $1, \Gamma_{p}\left(D_{2 n}\right)=K_{1}+\left(K_{n-1} \cup \bar{K}_{n}\right)$ and the degree of the non-trivial subgraphs is $n-1,2 n-1$ and 1 with multiples $n-1,1$ and n respectively. Therefore,
$M_{1}\left(\Gamma_{p}\left(D_{2 n}\right)\right)=\sum_{k=0}^{2 n-1} \operatorname{deg}\left(v_{k}\right)^{2}=n-1(n-1)^{2}+(2 n-1)^{2}+n(1)^{2}=n^{3}+n^{2}=n^{2}(n+1)$.
Theorem 6 Let $D_{2 n}$ be the dihedral group of order $2 n$. Then, the second Zagreb index of the p subgroup graph, Γ_{p} of dihedral group is stated as follows:
$M_{2}\left(\Gamma_{p}\left(D_{2 n}\right)\right)=\left\{\begin{array}{cll}n(2 n-1)^{3} & \text { if } & p=2, \\ \frac{n\left[n^{3}-n^{2}+3 n-1\right]}{2} & \text { if } & p \neq 2 .\end{array}\right.$
Proof: Suppose $D_{2 n}$ is a dihedral group of order $2 n$. By Theorem $1, \Gamma_{p}\left(D_{2 n}\right)=K_{2 n}$ if $p=2$ and $\Gamma_{p}\left(D_{2 n}\right)=K_{1}+\left(K_{n-1} \cup \bar{K}_{n}\right)$ if $p \neq 2$. For the second Zagreb index, the number of edge and the degree of each vertex of the graph need to be connected. If $p=2$, the $\Gamma_{p}\left(D_{2 n}\right)$ is a complete graph with $2 n$ vertices. Hence the number of edges is $\frac{2 n(2 n-1)}{2}=n(2 n-1)$ edges, and the degree of each vertex is $2 n-1$. Thus,
$M_{2}\left(\Gamma_{p}\left(D_{2 n}\right)\right)=\sum_{u, v \in E\left(\Gamma_{p}\left(D_{2 n}\right)\right)} \operatorname{deg}(u) \operatorname{deg}(v)=(2 n-1)(2 n-1)(n(2 n-1))=n(2 n-1)^{3}$.
If $p \neq 2$, then in $\Gamma_{p}\left(D_{2 n}\right)$, all the vertices of K_{n-1} are not adjacent to any vertices of \bar{K}_{n}, but all vertices of $\mathrm{Kn}-1$ are adjacent to any vertex of K_{1}, and also all vertices of \bar{K}_{n} are adjacent the vertex of K_{1}. Pick arbitrary vertices $u \in V\left(K_{n-1}\right), v \in V\left(\bar{K}_{n}\right)$ and let $V\left(K_{1}\right)=e$. Then $\operatorname{deg}(u)=n-1$, $\operatorname{deg}(v)=1$ and $\operatorname{deg}(e)=n+(n-1)=2 n-1$. Now

$$
\begin{aligned}
M_{2}\left(\Gamma_{p}\left(D_{2 n}\right)\right) & =\sum_{u, v \in E\left(\Gamma_{p}\left(D_{2 n}\right)\right)} \operatorname{deg}(u) \operatorname{deg}(v) \\
& =\frac{(n-1)(n-2)}{2}(n-1)^{2}+(n-1)^{2}(2 n-1)+n(2 n-1) \\
& =\frac{n^{4}-n^{3}+3 n^{2}-n}{2}=\frac{n\left[n^{3}-n^{2}+3 n-1\right]}{2}
\end{aligned}
$$

4. Conclusions

The computations of Wiener and Zagreb indices of the p-subgroup graph of dihedral groups are presented in this paper. This computation involves only a p-subgroup graph on dihedral groups of prime power degree, which is connected graph. The findings of this study provide a new perspective on the study of chemical or biological characteristics of a particular molecular structure. Future research will cover the graphs of every finite group.

Acknowledgement

The authors would like to express their gratitude to Universiti Teknologi Malaysia (UTM) for the financial support provided through the UTM Encouragement Research Grant (20J85). Additionally, the first author wishes to express her appreciation to the University of Hail and the Saudi Arabia Cultural Mission for their unwavering support.

References

[1] Basak, Subhash C., V. R. Magnuson, G. J. Niemi, R. R. Regal, and G. D. Veith. "Topological indices: their nature, mutual relatedness, and applications." Mathematical Modelling 8 (1987): 300-305. https://doi.org/10.1016/0270-0255(87)90594-x
[2] Sarmin, Nor Haniza, Nur Idayu Alimon, and Ahmad Erfanian. "Topological indices of the non-commuting graph for generalised quaternion group." Bulletin of the Malaysian Mathematical Sciences Society 43, no. 5 (2020): 33613367. https://doi.org/10.1007/s40840-019-00872-z
[3] Alimon, Nur Idayu, Nor Haniza Sarmin, and Ahmad Erfanian. "The Wiener and Zagreb indices of conjugacy class graph of the dihedral groups." MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics (2019): 5157. https://doi.org/10.11113/matematika.v35.n1.1102
[4] Bello, Muhammed, NM Mohd Ali, Surajo Ibrahim Isah, and Nurfarah Zulkifli. "The Wiener and Zagreb indices of the order product prime graph." Journal Critical Reviews. 7, no. 16 (2020): 896-901.
[5] Wiener, Harry. "Structural determination of paraffin boiling points." Journal of the American chemical society 69, no. 1 (1947): 17-20. https://doi.org/10.1021/ja01193a005
[6] Behtoei, A., M. Jannesari, and B. Taeri. "Generalizations of some topological indices." MATCH: Communications in Mathematical and in Computer Chemistry 65 (2011): 71-78.
[7] Yu, Gui-dong, Li-fang Ren, and Xing-xing Li. "Wiener index, hyper-wiener index, harary index and hamiltonicity properties of graphs." Applied Mathematics-A Journal of Chinese Universities 34, no. 2 (2019): 162-172. https://doi.org/10.1007/s11766-019-3565-9
[8] Gutman, Ivan, and Nenad Trinajstić. "Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons." Chemical physics letters 17, no. 4 (1972): 535-538.
[9] Gutman, Ivan, and Andrey A. Dobrynin. "The Szeged index—a success story." Graph Theory Notes NY 34 (1998): 3744.
[10] Dobrynin, Audrey A. "Graphs having the maximal value of the Szeged index." Croatica chemica acta 70, no. 3 (1997): 819-825.
[11] Das, Kinkar Ch, and Ivan Gutman. "Estimating the Szeged index." Applied Mathematics Letters 22, no. 11 (2009): 1680-1684. https://doi.org/10.1016/j.aml.2009.06.001
[12] Gallian, Joseph. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.
[13] Graovac, Ante, and Tomaž Pisanski. "On the Wiener index of a graph." Journal of mathematical chemistry 8, no. 1 (1991): 53-62. https://doi.org/10.1007/bf01166923
[14] Mirzargar, M. "Some Distance-Based Topological Indices of a Non-Commuting Graph ABSTRACT| FULL TEXT." Hacettepe Journal of Mathematics and Statistics 41, no. 4 (2012): 515-526.

[^0]: * Corresponding author.

 E-mail address: ayed.a@graduate.utm.my

