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Accurately detecting and classifying brain tumors’, is critical for timely diagnosis and 
effective treatment planning. The purpose of this paper is to provide a comprehensive 
examination utilizing the EfficientNet family of deep learning architectures to 
automatically identify and categorize three forms of brain tumors from magnetic 
resonance imaging (MRI) scans. The primary aim of the study is to assess the 
performance of different EfficientNet models (ranging from EfficientNet-B0 to 
EfficientNet-B7) and determine their capability to achieve high accuracy in brain tumor 
classification. In the implementation, a diverse dataset is compiled comprising 
approximately 18,500 MRI images, representing various types of brain tumors. 
EfficientNet models are trained, validated, and tested using a combination of Softmax 
and ReLU activation functions, along with the Adam optimizer by employing learning 
rates of 0.0005 and 0.00001 for model training and optimization. The experimental 
results underscore the significant potential of the EfficientNet family in brain tumor 
classification. The findings reveal a consistent improvement in tumor detection 
accuracy as model complexity increases. The attained accuracies for different 
EfficientNet models are; 96.07% (EfficientNet-B0), 97.86% (EfficientNet-B1), 98.21% 
(EfficientNet-B2), 97.86% (EfficientNet-B3), 98.93% (EfficientNet-B4), 99.64% 
(EfficientNet-B5), 98.57% (EfficientNet-B6), and 99.64% (EfficientNet-B7), respectively. 
The proposed research not only validates the efficiency of the EfficientNet architecture 
in classifying brain tumors but also offers valuable insights into how model complexity 
influences classification performance. The notably high accuracy rates emphasize the 
clinical promise of employing deep learning methods to aid radiologists and medical 
experts in precise and efficient brain tumor diagnosis. Additionally, the paper's scope 
adds to the growing body of knowledge regarding the application of deep learning 
techniques to enhance medical image analysis and diagnostic capabilities.  
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1. Introduction 
 

The human brain, often hailed as the most intricate and awe-inspiring organ within the human 
body, stands as a marvel of biological engineering. With a weight of approximately three pounds 
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(about 1.4 kilograms) and composed of countless neurons, it functions as the central hub of human 
cognition, emotions, and consciousness. This intricate organ not only oversees essential bodily 
functions like breathing and heart rate but also facilitates processes such as thinking, learning, 
memory, and a diverse array of emotions. Its elaborate network of neural connections enables the 
interpretation and processing of sensory inputs from the external world, enabling us to perceive, 
comprehend, and interact with our surroundings. Furthermore, the brain's remarkable adaptability 
and plasticity empower it to learn, reorganize, and recuperate after injury, underscoring the human 
potential for development, creativity, and resilience. The quest to unravel the enigmas of the human 
brain remains an absorbing expedition for scientists and researchers, as it holds the promise of 
unveiling the intricacies of human behavior and the essence of consciousness itself [1]. 
 
1.1 Brain Tumor 
 
 A brain tumor (BT) refers to the abnormal growth of brain cells or their neighbouring structures. 
These growths can be categorized as either non-cancerous (benign) or cancerous (malignant) and 
can originate from various types of brain tissue, including glial cells, neurons, and the brain's 
protective membranes (meninges). BTs have the potential to disrupt normal brain functions, 
impacting cognitive abilities, motor skills, and sensory perception. Symptoms may vary based on 
reasons such as the tumor’s size, location, and rate of growth, but common indications include 
headaches, seizures, alterations in vision or speech, and neurological impairments. Early detection 
and treatment are vital, as some BTs can be life-threatening if left untreated. Treatment options 
typically encompass radiation therapy, surgery, chemotherapy, or all of these methods, tailored to 
the specific tumor type and characteristics. Ongoing research into the causes and treatments of BTs 
aims to enhance the prognosis and quality of life for individuals grappling with these complex medical 
conditions [2]. This study mainly focuses on classifying three types of BT, glioma tumor (GT), 
meningioma tumor (MT), and pituitary tumor (PT).  
 
1.1.1 Glioma tumor 

 
The GTs are primary BTs that develop from cells called glial, which are supportive cells found in 

the central nervous system. These tumors can manifest in diverse regions of the brain and spinal cord 
and are classified according to both their cell of origin and their degree of malignancy [3]. The 
effective treatment of this tumor is primarily possible when it is detected in its early stages. Globally, 
primary central nervous system (CNS) and BTs were responsible for an estimated 251,329 deaths in 
2020 [4]. According to data from the IARC (International Association of Cancer Registries), India 
records approximately 28,000 cases of BTs annually, and tragically, 24,000 individuals lose their lives 
to BTs [5]. 

 
1.1.2 Meningioma tumor 
 

The MT is a type of BT that originates in the meninges, the protective tissues surrounding the 
brain. Generally, MTs are typically non-cancerous, although in rare cases, they can become 
malignant. These tumors are most commonly found on the top and outer surface of the brain, and 
occasionally, they can develop at the base of the skull. Spinal MTs are relatively uncommon. The 
incidence of MT is approximately 97 cases per 100,000 individuals [6]. There are currently three 
grades of MTs. 
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i. Typical or Grade I MT- These tumors grow slowly and account for approximately 80% of 
cases. 

ii. Grade II or atypical MT- These tumors have a faster growth rate and can be more 
challenging to treat. They represent about 17% of cases. 

iii. Malignant (cancerous) MT of Grade III- Also known as anaplastic MT, these tumors grow 
and spread rapidly and are seen in a little over 1.7% of cases. 
 

1.1.3 Pituitary tumor 
 

Medically known as a pituitary adenoma, is an abnormal growth of cells in the pituitary gland, A 
minute, pea-sized gland located at the base of the brain. The pituitary gland plays a pivotal role in 
regulating various bodily functions by producing hormones responsible for controlling growth, 
metabolism, reproduction, and responses to stress, among other functions. PTs can be benign (non-
cancerous) or, in rare instances, malignant (cancerous). Depending on their size and location within 
the pituitary gland, these tumors can disrupt the normal production and release of hormones, leading 
to a wide array of symptoms. Common signs include hormonal imbalances, vision issues, headaches, 
and, in some cases, alterations in behavior. Treatment options for PTs may include radiation therapy, 
medication, surgical removal, or a combination of these methods. Timely diagnosis and appropriate 
management are essential to minimize potential complications and enhance the quality of life for 
individuals dealing with PTs [7]. 

It is very important to detect tumors in the early stages so that there are fewer complexities in 
the treatment, the tumor is generally detected using MRI scans. In this study, EfficientNet family 
models are comparatively analyzed to check the highest accuracy in detecting and classifying types 
of BT using MRI scans. The models are trained to detect BT using a publicly available dataset 
containing approximately 18500 images of MRI scans. After training, the models take MRI scans as 
input and detect the type of tumor as depicted in Figure 1.  

 

 
 

Fig. 1. BT detection system 
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1.2 Problem Statement 
 
Early diagnosis of brain tumors is essential for enhancing therapeutic results, protecting brain 

function, lowering healthcare expenditures, and enhancing the general health and survival rates of 
afflicted people. Early detection of brain tumors is of paramount importance due to its significant 
impact on patient outcomes and treatment options. Here are several reasons highlighting the 
importance of early detection: Improved Survival Rates, Optimal Treatment Planning, Preservation 
of Brain Function, Reduced Treatment Complexity, Lower Healthcare Costs, Prevention of 
Complications, Enhanced Quality of Life, Clinical Trials and Research, Psychological Well-being, Long-
Term Monitoring 

 
1.3 Objective 

 
The primary objective of this research study is to showcase the capabilities of sophisticated deep 

learning algorithms, namely the EfficientNet family, in accurately and efficiently classifying brain 
tumors. The final aim is to make a valuable contribution to the field of medical picture analysis and 
enhance diagnostic capacities in this domain. 

 
1.4 Contribution of the Paper 

 
The significance of this article lies in its capacity to contribute to the advancement of brain tumor 

identification, improvement of patient care, and provision of valuable insights and practical resources 
for scholars and medical practitioners engaged in the field of neurodegenerative diseases. Some of 
the notable contributions include Significant Contribution to the Discipline: The article's findings 
about the high accuracy rates in identifying brain tumor illness contribute significantly to the field. 
The attainment of an accurate diagnosis has significant importance in improving patient outcomes, 
especially during the first phases of the disease. The present study examines innovative 
methodologies for enhancing pre-existing models in the context of medical image analysis, with a 
specific emphasis on the identification of brain tumor diseases. In performance evaluation, this study 
comprehensively evaluates the performance of several EfficientNet models (ranging from B0 to B7) 
in the classification of BT. This involves assessing the precision, recall, accuracy, and F1-score to get 
a comprehensive understanding of the model's capabilities. 

 
1.4.1 Further the paper's structure 
 

i. Section 2 - The article proposes a unique technique for identifying BTs used in the research 
under the proposed methodology part. 

ii. Section 3 – Results section presents and discusses the results obtained from the proposed 
model's application. 

iii. Section 4 - Summarizes the findings and suggests potential avenues for future research. 
 

1.5 Literature Review 
 
This section provides an extensive review of prior research in the field of tumor detection using 

Deep Learning (DL) as shown in Table 1.  A brief summary of pertinent literature on tumor 
identification is provided in this section. It examines past research projects and contrasts the results 
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of such efforts. Additionally, it includes a comparative analysis from the previous studies [8-17], 
offering insights into the state of the art in tumor detection utilizing DL techniques. 

 
Table 1 
Summary of work done by researchers 

Author Description/Review Year  Model Results 
Mishra et 
al., [8] 

Outlined an efficient deep learning technique for BT classification 
known as inductive transfer learning. It used both 3D and 2D datasets 
to extract intricate characteristics from brain MRI data using the 
EfficientNet model. The model's outstanding accuracy of 98.78% 
allowed it to classify BTs into four different categories. 

2022 EfficientNet 98.78% 

Mahesh et 
al., [9] 

The Contour Extraction Extended EfficientNet-B0 (CE-EEN-B0), a deep 
Convolutional Neural Network (CNN), model is suggested as a way to 
identify BTs depending on where in the brain they are located. BTs 
are divided into four groups under this model: no tumor, PT, MT, and 
GT. It outperformed current pre-trained networks with a high 
accuracy score of 97.24%. 

2023 EfficientNet-
B0 

97.24% 

Isunuri and 
Kakarla 
[10] 

BT grade categorization using a method integrating the EfficientNet 
model, multi-path convolution, and multi-head attention network. A 
pre-trained EfficientNetB4 is used to extract the features, and then 
multi-path convolution and attention are used to improve the 
features. The dataset from TCIA consists of normal, low-grade, and 
high-grade instances. The model's accuracy is a remarkable 98.35%. 

2023 EfficientNet-
B4 

98.35% 

Goutham 
et al., [11] 

A system that can detect GT, MT, and PT using a GUI application. 
EfficientNet-B0 model is used to classify these types of tumors. The 
model was trained using MRI scans and can detect BT within minutes. 
The system achieved an accuracy of 96.94%. 

2022 EfficientNet-
B0 

96.94% 

Mantha 
and Reddy 
[12] 

The suggested method used the EfficientNet-B3 deep learning model 
to create an automated approach for categorizing BT kinds from MRI 
data. Three different forms of BT, GT, MT, and PT may be detected by 
the system. The model's excellent accuracy of 99.35% was attained. 
The classification results show 99% accuracy for precision, recall, and 
f1-score. 

2021 EfficientNet-
B3 

99.35% 

Zulfiqar et 
al., [13] 

Compared five fine-tuned EfficientNet models (EfficientNet-B0 - 
EfficientNet-B4) and created a system to classify BT types into 3 
categories (GT, MT, and PT). The models were trained using a publicly 
available CE-MRI dataset. Data augmentation's impact on test 
accuracy was studied, and Grad-CAM visualization highlights tumor 
regions. The best-performing model, using EfficientNetB2, achieved a 
high overall test accuracy (98.86%), precision (98.65%), recall 
(98.77%), and F1-score (98.71%). 

2023 EfficientNet-
B0 – 
EfficientNet-
B4 

98.86% 

Padmavathi 
et al., [14] 

A system to classify the types of BT into 4 categories (GT, MT, PT, and 
no tumor), using EfficientNet architecture. The results indicate the 
effectiveness of transfer learning when working with limited 
datasets, achieving an impressive accuracy of 99 percent. 

2022 EfficientNet 99% 

Du et al., 
[15] 

A system to detect types of BT from an MRI scan. The system is 
further implemented in a website to increase its accessibility. The 
system employs transfer learning with EfficientNet to efficiently 
extract features from brain MRIs, achieving a 98% accuracy in 
classifying four categories (three tumor types and no tumor) 

2021 EfficientNet 98% 

Shah et al., 
[16] 

Compared to six deep CNN models and fine-tuned, image 
enhancement and data augmentation in EfficientNet-B0 achieved the 
highest accuracy in detecting and classifying BTs using MRI scans. The 
model attains an impressive 98.87% accuracy for classification and 
detection, outperforming other models. 

2022 EfficientNet-
B0 

98.87% 
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Nayak et 
al., [17] 

A dense CNN-based EfficientNet model with min-max normalization 
is proposed to classify brain MRI images into four categories: GT, MT, 
PT, and no tumor. This model demonstrates superior accuracy in 
precise categorization, even with a limited image database, achieving 
outstanding overall performance. Experimental results validate a 
testing accuracy of 98.78%. 

2022 EfficientNet 98.78% 

 
2. Methodology 
  

This section of the study provides a detailed description of the proposed methodology, the dataset 
utilized for model training, and the preprocessing steps applied to the dataset. The proposed method 
contains the following steps: Input, Preprocessing, Training of a model, Tumor detection, and 
classification as depicted in Figure 2. 

 

 
 

Fig. 2. Proposed model working 
 

2.1 Dataset 
 

The dataset employed for model training comprises around 18,500 MRI scan images, distributed 
as follows: 6,307 GT, 6,391 MT, and 5,908 PT images (as shown in Figure 3) from the source [18]. This 
dataset is chosen due to its cleanliness, achieved through a meticulous data-cleaning process. It lacks 
duplicate images, features proper labelling, and uniform image sizes, reducing the need for extensive 
preprocessing. 
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Fig. 3. Data distribution 
 

Furthermore, the dataset has been augmented by the publisher to enhance its robustness and 
diversity, employing various methods (as shown in Figure 4) such as the conversion of pixels to white 
or black based on intensity, application of histogram equalization to improve image contrast and 
detail, rotation of images by predetermined angles (clockwise or anticlockwise), and adjustment of 
image luminosity by adding or removing intensity values. 

 

 
 

Fig. 4. Some images from the dataset with respective class 
 
2.2   Preprocessing 
 

In the field of image processing, a subset of computer vision, various methods are employed to 
manipulate and analyze digital images. These techniques involve the application of mathematical or 
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statistical procedures to alter images and are utilized in various applications, including digital 
photography, satellite imagery, and medical imaging. Some common image-processing techniques 
include contrast enhancement, image resizing, noise reduction, segmentation, color correction, and 
feature extraction [19]. Regarding dataset preprocessing, several steps were undertaken, including 
feature-wise centering and standard deviation normalization. Horizontal flipping was enabled, and 
specific values were set: a width shift range, and height shift range of 0.2, and a rotation range of 20 
degrees. 

Training, validation, and test sets are three separate groups into which the data is divided 
throughout the dataset preparation step. The test set is used to gauge the efficacy and performance 
of the trained model, while the training set is used to develop the model and the validation set is 
used to evaluate and verify the training procedure. Due to this division, the machine learning model 
may be thoroughly trained, validated, and evaluated. The distribution is shown in Figure 5. The study 
employs two activation functions: Softmax and ReLU (Rectified Linear Unit). 

 

 
 

Fig. 5. Train, validate, and test distribution 
 

 Softmax: In deep learning, the Softmax activation function is used to transform neural network 
outputs into probabilities. It's represented by Eq. (1), where SM represents Softmax, ezi represents 
the exponential of the input vector, and ezj corresponds to the exponential of the output vector. 
 

𝑆𝑀 = 𝑒!" % 𝑒!#
#$%

&  (1) 

            
ReLU (Rectified Linear Unit): ReLU is a popular activation function in neural networks. It produces 

a non-linear output by replacing all negative inputs with zero. The vanishing gradient issue is 
alleviated in part by this function. The ReLU function is defined in Eq. (2), where x is the input, and 
f(x) is the output of the activation function. 

 
𝑓(𝑥) = max	(0, 𝑥) (2) 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 49, Issue 2 (2025) 26-51 

34 
 

If the input of the activation function (x) is greater than 0, the output is x. However, if the input 
is less than 0, the output is set to 0. 

ADAM: The optimizer utilized in the model is ADAM (adaptive moment estimation), a well-
established algorithm in the realm of deep neural networks known for producing robust results 
efficiently. Adam is particularly recommended when dealing with large datasets. Calculating the 
parameters of the Adam optimizer involves determining the mean of gradients and the mean of 
squared gradients, as depicted in Eq. (3) and Eq. (4). 

 
𝑚& = 𝛽% ×𝑚&'% + 𝑔& × (1 − 𝛽%) (3) 

 
𝑣& = 𝛽( × 𝑣&'% + 𝑔&( × (1 − 𝛽() (4) 

 
In the given context, mt refers to the first moment estimate at iteration t, vt represents the 

second moment estimate at iteration t, and gt signifies the gradient at iteration t. Parameters β1 and 
β2 stand for the exponential decay rates used in the moving average calculations. Once the first and 
second moments are computed, the bias-corrected first moment estimate and second-moment 
estimate are calculated, as indicated in Eq. (5) and Eq. (6).  

 
𝑚&9 = 𝑚& 1 − 𝛽%&⁄              (5) 
 
𝑣&; = 𝑣& 1 − 𝛽(&⁄              (6) 
 

Finally using bias-corrected first and second-moment estimates, parameters are calculated as 
shown in Eq. (7). 

 

𝑥&)% = 𝑥& −
𝜂

=𝑣&; + 𝜖
× 𝑚&9   (7) 

 
Where xt is the parameter at iteration t, η is the learning rate, and ε is a small constant added to 

avoid division by 0 [20]. 
 

2.3   Model 
 
The implementation incorporates a range of EfficientNet models, including EfficientNet-B0 to 

EfficientNet-B7. These models are used to explore their performance in various aspects of the 
research. EfficientNet is a deep neural network architecture introduced by Google in 2019, primarily 
designed for efficient image classification tasks. It employs a compound scaling technique to 
simultaneously optimize multiple dimensions, yielding models that are computationally efficient 
while maintaining high accuracy [21]. The EfficientNet family encompasses models ranging from B0 
to B7, which find applications in tasks such as image classification, object detection, segmentation, 
and various other computer vision challenges. This versatility makes EfficientNet a valuable resource 
for practitioners in the field of deep learning [22]. 

The architecture of EfficientNet comprises a baseline network (as shown in Figure 6), known as 
EfficientNet-B0, and a series of scaled variants, denoted as EfficientNet-B1, B2, B3, and so on, with 
progressively increasing values of φ (depth, width, and resolution combined in a single coefficient). 
These larger variants typically include more layers, more channels, and higher-resolution input data, 
allowing them to handle more complex tasks and achieve higher levels of performance [23]. 
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Fig. 6. EfficientNet 
base architecture 

       
3. Results  

 
This section provides the experimental results obtained by assessing the model's performance 

under various parameter settings. Additionally, graphical representations are included to visually 
illustrate and enhance the comprehension of the results. 

 
3.1 EfficientNet-B0 
 

Initially, prior to any tuning, the model underwent training for 2 epochs, thus led to a validation 
accuracy of 82.08%, indicating that the model correctly classified roughly 82.08% of the validation 
dataset, with a validation loss of 0.4411, demonstrating how closely the model's predictions aligned 
with the actual labels. A visual representation of these values per epoch is shown in Figure 7. 
Following the tuning process, the model was trained for an additional 3 epochs, during which it 
attained a validation accuracy of 94.94% and a validation loss of 0.1314. The graphical representation 
of these values for each epoch is shown in Figure 8. 
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Fig. 7. Graphs displaying the loss and accuracy trends for an EfficientNet-B0 model 
 

 
 

Fig. 8. Graphs depicting the loss and accuracy changes of an optimized EfficientNet-B0 model 
 

3.2   EfficientNet-B1 
 

The model underwent training for 2 epochs initially, thus yielding a validation accuracy of 84.69%, 
along with a validation loss of 0.4023. The visual representation of these values per epoch is shown 
in Figure 9. Following the tuning process, the model was trained for an additional 3 epochs, during 
which it attained a validation accuracy of 96.27% with a validation loss of 0.1219. The graphical 
representation of these values for each epoch is presented in Figure 10. 
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Fig. 9. Graphs displaying the loss and accuracy trends for an EfficientNet-B1 model 
 

 
 

Fig. 10. Graphs depicting the loss and accuracy changes of an optimized EfficientNet-B1 model 
 

3.3   EfficientNet-B2 
 

In this, before any tuning, the model underwent training for 2 epochs, thus leading to a validation 
accuracy of 85.90% and a validation loss of 0.3520. The visual representation of these values per 
epoch is shown in Figure 11. Following the tuning process, the model was trained for an additional 3 
epochs, during which it accomplished a validation accuracy of 96.58% with a validation loss of 0.0988. 
The graphical representation of these values for each epoch is in TablTaure 12. 
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Fig. 11. Graphs displaying the loss and accuracy trends for an EfficientNet-B2 model 
 

 
 

Fig. 12 Graphs depicting the loss and accuracy changes of an optimized EfficientNet-B2 model 
 

3.4   EfficientNet-B3 
 
In this, prior to any tuning, the model underwent training for 3 epochs leading to a validation 

accuracy of 81.97% and a validation loss of 0.4176. Following the tuning process, the model was 
trained for an additional 5 epochs, during which it attained a validation accuracy of 97.72% along 
with a validation loss of 0.0703. The visual representation of these values per epoch and the graphical 
representation of these values for each epoch are shown in Figure 13 and Figure 14 respectively. 
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Fig. 13. Graphs displaying the loss and accuracy trends for an EfficientNet-B3 model 
 

 
 

Fig. 14. Graphs depicting the loss and accuracy changes of an optimized EfficientNet-B3 model 
 
3.5   EfficientNet-B4 

 
The model underwent training for 3 epochs, leading to a validation accuracy of 85.07% and a 

validation loss of 0.3899. After the tuning process, the model was trained for an additional 5 epochs, 
during which it accomplished a validation accuracy of 98.88% with a validation loss of 0.0433. The 
visual representation of these values per epoch and the graphical representation of these values for 
each epoch are shown in Figure 15 and Figure 16 respectively. 
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Fig. 15. Graphs displaying the loss and accuracy trends for an EfficientNet-B4 model 
 

 
 

Fig. 16. Graphs depicting the loss and accuracy changes of an optimized EfficientNet-B4 model 
 

3.6   EfficientNet-B5 
 
In this, the model underwent training for 3 epochs, this led to a validation accuracy of 86.46% 

and a validation loss of 0.4150. The visual representation of these values per epoch is shown in Figure 
17. Following the tuning process, the model was trained for an additional 5 epochs, during which it 
attained a validation accuracy of 98.92% with a validation loss of 0.0358. The graphical 
representation of these values for each epoch is presented in Figure 18. 
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Fig. 17. Graphs displaying the loss and accuracy trends for an EfficientNet-B5 model 
 

 
 

Fig. 18. Graphs depicting the loss and accuracy changes of an optimized EfficientNet-B5 model 
 

3.7   EfficientNet-B6 
 
Initially, prior to any tuning, the model underwent training for 3 epochs, thus resulting in a 

validation accuracy of 85.26% and a validation loss of 0.3794. Following the tuning process, the model 
was trained for an additional 5 epochs, during which it accomplished a validation accuracy of 99.05% 
with a validation loss of 0.0354. The visual representation of these values per epoch and the graphical 
representation of these values for each epoch are shown in Figure 19 and Figure 20 respectively. 
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Fig. 19. Graphs displaying the loss and accuracy trends for an EfficientNet-B6 model. 
 

 
 

Fig. 20. Graphs depicting the loss and accuracy changes of an optimized EfficientNet-B6 model. 
 

3.8   EfficientNet-B7 
 
The model underwent training for 3 epochs prior to any tuning, this led to a validation accuracy of 

85.62% and a validation loss of 0.3780. The visual representation of these values per epoch is shown 
in Figure 21. Following the tuning process, the model was trained for an additional 5 epochs, during 
which it attained a validation accuracy of 98.99% with a validation loss of 0.0274. The graphical 
representation of these values for each epoch is presented in Figure 22. Table 2 presents a 
comparison of all model results. 
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Fig. 21. Graphs displaying the loss and accuracy trends for an EfficientNet-B7 model. 
 

 
 

Fig. 22. Graphs depicting the loss and accuracy changes of an optimized EfficientNet-B7 model. 
 
Table 2  
Evaluation Results of models used in the study 

Model Tuning Number of 
epochs 

Training 
Loss 

Training 
Accuracy 

Validation 
Loss 

Validation 
Accuracy 

EfficientNet-B0 Before 1 0.5450 78.02% 0.5267 78.81% 
2 0.4036 83.77% 0.6245 72.74% 

After 1 0.2760 89.30% 0.2127 91.59% 
2 0.1903 93.04% 0.1695 93.30% 
3 0.1477 94.78% 0.1314 94.94% 

EfficientNet-B1 Before 1 0.5250 78.99% 0.8149 70.97% 
2 0.4023 84.02% 0.3834 84.69% 

After 1 0.2715 89.54% 0.2384 90.07% 
2 0.1677 93.92% 0.1305 95.19% 
3 0.1219 95.88% 0.1005 96.27% 

EfficientNet-B2 Before 1 0.5763 76.93% 0.4074 83.74% 
2 0.4288 82.81% 0.3520 85.90% 
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After 1 0.2716 89.57% 0.1844 93.04% 
2 0.1661 93.81% 0.1224 95.57% 
3 0.1144 95.99% 0.0988 96.58% 

EfficientNet-B3 Before 1 0.5567 77.61% 0.5651 79.13% 
2 0.4254 82.85% 0.7101 74.26% 
3 0.3916 84.05% 0.4176 81.97% 

After 1 0.2546 90.41% 0.1879 93.61% 
2 0.1488 94.81% 0.1368 95.26% 
3 0.0936 97.15% 0.1274 95.51% 
4 0.0633 98.15% 0.0703 97.72% 
5 0.0460 98.70% 0.0885 96.90% 

EfficientNet-B4 Before 1 0.5755 76.95% 0.4115 84.88% 
2 0.4373 82.22% 0.4606 81.53% 
3 0.4049 83.83% 0.3899 85.07% 

After 1 0.2517 90.50% 0.1518 94.50% 
2 0.1379 95.14% 0.0900 97.09% 
3 0.0880 97.13% 0.0691 97.66% 
4 0.0531 98.43% 0.0433 98.88% 
5 0.0386 99.00% 0.0518 98.10% 

EfficientNet-B5 Before 1 0.6053 75.79% 0.4703 81.66% 
2 0.4600 81.44% 0.4150 86.46% 
3 0.4231 83.14% 0.5581 76.98% 

After 1 0.2450 90.68% 0.1430 94.88% 
2 0.1278 95.52% 0.0955 96.27% 
3 0.0744 97.68% 0.0635 97.72% 
4 0.0427 98.85% 0.0438 98.42% 
5 0.0305 99.28% 0.0358 98.92% 

EfficientNet-B6 Before 1 0.5889 76.37% 0.4125 83.74% 
2 0.4585 81.69% 0.3794 85.26% 
3 0.4293 83.03% 0.4937 80.14% 

After 1 0.2377 91.51% 0.1165 96.46% 
2 0.1211 96.54% 0.0706 98.23% 
3 0.0702 98.45% 0.0507 98.42% 
4 0.0432 99.22% 0.0354 99.05% 
5 0.0269 99.57% 0.0344 98.92% 

EfficientNet-B7 Before 1 0.5458 78.72% 0.3780 85.62% 
2 0.3923 84.52% 0.4434 82.10% 
3 0.3565 86.07% 0.3800 84.76% 

After 1 0.1884 93.0% 0.1107 95.89% 
2 0.0816 97.43% 0.0528 98.48% 
3 0.0430 98.95% 0.0441 98.23% 
4 0.0280 99.35% 0.0332 98.55% 
5 0.0201 99.49% 0.0274 98.99% 

 
The model's efficiency is evaluated in terms of accuracy using Eq. (8), where the abbreviations 

correspond to the following: FP (False Positive), TN (True Negative), TP (True Positive), and FN (False 
Negative). 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 + 𝑇𝑃⁄                                                                      (8) 

 
Following the training and validation phases, the model is subjected to testing using the test class 

of the dataset, consisting of 280 images. During the testing process, the model predicts the outputs, 
generates a Confusion Matrix (CM), and calculates the f-score and precision table. A CM serves as a 
valuable instrument for evaluating the effectiveness of a classification algorithm or model. It provides 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 49, Issue 2 (2025) 26-51 

45 
 

a structured summary in table format that showcases the model's predictions and their outcomes, 
showing how many instances of each class were correctly classified and how many were incorrectly 
classified. This matrix aids in understanding the model's accuracy, precision, recall, and other 
important metrics, enabling a thorough evaluation of its performance [24]. The figures of the 
confusion matrices for EfficientNet-B0 to EfficientNet-B3 are displayed in Figure 23, with each 
subfigure labelled from (a) to (d) and from EfficientNet-B4 to EfficientNet-B7 are in Figure 24(a-d) 
accordingly. These matrices provide insights into the model's performance in terms of classification 
accuracy and errors. 

Figure 23(a-d) illustrates the performance of the EfficientNet-B0 to EfficientNet-B3 models in 
predicting BT images respectively. Out of 280 images, the model correctly predicted 269 images for 
EfficientNet-B0, out of 280 images, the model correctly predicted 274 images for EfficientNet-B1, out 
of 280 images, the model correctly predicted 275 images for EfficientNet-B2, and out of 280 images, 
the model correctly predicted 274 images for EfficientNet-B3, which are represented in the TP and 
TN parts of the CM. However, there were 11 images that the model did not predict correctly in 
EfficientNet-B0, 6 images predicted incorrectly in EfficientNet-B1, 5 images predicted incorrectly in 
EfficientNet-B2, and 6 images predicted incorrectly in EfficientNet-B3 indicated in the FP and FN parts 
of the CM. 
 

  
                                     (a)                                                                                                (b)  

  
       (c)                      (d) 

 
Fig. 23. (a) CM of EfficientNet-B0 (b) CM of EfficientNet-B1 (c) CM of EfficientNet-B2 (d) CM of EfficientNet-B3 
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Specifically, among these in Figure 23 misclassified images are 
I. In EfficientNet-B0, 2 GT images were incorrectly predicted as MT, 4 MT images were 

mistakenly classified as GT, and 5 MT images were inaccurately classified as PTs. 
II. In EfficientNet-B1, 2 GT images were incorrectly predicted as MT, 2 MT images were 

mistakenly classified as GT, 2 MT images were inaccurately classified as PTs, and 1 PT 
image was mistakenly classified as MT. 

III. In EfficientNet-B2, 1 GT image was incorrectly predicted as PT, 1 MT image was mistakenly 
classified as GT, and 3 MT images were inaccurately classified as PTs. 

IV. In EfficientNet-B3, 6 MT images were mistakenly classified as GT. 
Figure 24(a-d) illustrates the performance of the EfficientNet-B4 to EfficientNet-B7 models in 

predicting BT images respectively. Out of 280 images, the model correctly predicted 277 images in 
EfficientNet-B4, out of 280 images, the model correctly predicted 279 images in EfficientNet-B5, out 
of 280 images, the model correctly predicted 276 images in EfficientNet-B6, and out of 280 images, 
the model correctly predicted 279 images in EfficientNet-B7 which are represented in the TP and TN 
part of the CM. However, there were 3 images that the model did not predict correctly in EfficientNet-
B4, 1 image was predicted incorrectly in EfficientNet-B5, 4 images were predicted incorrectly in 
EfficientNet-B6, and 1 image was predicted incorrectly in EfficientNet-B7, indicated in the FP and FN 
part of the CM. 
 

  
(a)                                                  (b) 

  
(c)                                                                                                  (d)        

 
Fig. 24. (a) CM of EfficientNet-B4 (b) CM of EfficientNet-B5 (c) CM of EfficientNet-B6 (d) CM of EfficientNet-B7 

Specifically, among these CMs in Figure 24, the misclassified images are 
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i. In EfficientNet-B4, 2 MT images were inaccurately classified as PTs, 1 PT image was 
mistakenly classified as MT. 

ii. In EfficientNet-B5, 1 MT image was inaccurately classified as PTs. 
iii. In EfficientNet-B6, 1 GT image was incorrectly predicted as MT, 2 MT images were 

mistakenly classified as GT, 1 MT image was inaccurately classified as PTs. 
iv. In EfficientNet-B7, 1 MT image was inaccurately classified as PTs. 

The summary of the prediction results for all the models can be found in Table 3, which provides 
a comprehensive overview of the assessment of each model's effectiveness based on accuracy, 
precision, recall, and F1-score. This table allows for a quick comparison of how well each model 
performed in classifying BT images. 

 
Table 3 
Prediction table of all the models 
Model Classes Precision Recall F1 Score 
EfficientNet-B0 GT 0.96 0.98 0.97 

MT 0.98 0.91 0.94 
PT 0.95 1.00 0.97 

EfficientNet-B1 GT 0.98 0.99 0.98 
MT 0.98 0.96 0.97 
PT 0.98 0.99 0.98 

EfficientNet-B2 GT 0.99 0.99 0.99 
MT 1.00 0.96 0.98 
PT 0.96 1.00 0.98 

EfficientNet-B3 GT 0.94 1.00 0.97 
MT 1.00 0.94 0.97 
PT 1.00 1.00 1.00 

EfficientNet-B4 GT 1.00 1.00 1.00 
MT 0.99 0.98 0.99 
PT 0.98 0.99 0.98 

EfficientNet-B5 GT 1.00 1.00 1.00 
MT 1.00 0.99 1.00 
PT 0.99 1.00 0.99 

EfficientNet-B6 GT 0.98 0.99 0.98 
MT 0.99 0.97 0.98 
PT 0.99 1.00 0.99 

EfficientNet-B7 
 
 

GT 1.00 1.00 1.00 
MT 1.00 0.99 1.00 
PT 0.99 1.00 0.99 

 
The formulas to calculate common metrics from a CM include, precision, recall, specificity, and F1 

score are shown in Eq. (9), Eq. (10), Eq. (11), and Eq. (12) respectively. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃&             (9) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁&                         (10) 
 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃&                                        (11) 
 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2𝑋(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑋	𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)                                                 (12) 
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After completing all the necessary steps, including training, validation, and testing, the test 
accuracy of each model is calculated. These test accuracies for all the models are typically presented 
in Table 4. This table provides a clear comparison of how well each model performed when tested on 
a separate dataset, allowing researchers and practitioners to assess their effectiveness in classifying 
BT images. 

 
Table 4 
 Test accuracy of all the models 
Model Test Loss Test Accuracy F1 Score 
EfficientNet-B0 0.12305 96.07% 0.9610 
EfficientNet-B1 0.07715 97.86% 0.9788 
EfficientNet-B2 0.07316 98.21% 0.9823 
EfficientNet-B3 0.08936 97.86% 0.9786 
EfficientNet-B4 0.03768 98.93% 0.9896 
EfficientNet-B5 0.02848 99.64% 0.9965 
EfficientNet-B6 0.03794 98.57% 0.9858 
EfficientNet-B7 0.01540 99.64% 0.9965 

 
4. Conclusions 
 

A robust BT detection system leveraging the EfficientNet model is presented using SoftMax, ReLu 
activation function, and ADAM optimizer. The investigation entailed a thorough assessment of the 
performance of eight distinct variants of the EfficientNet model, spanning from B0 to B7. The 
outcomes of the study underscored the exceptional potential of the EfficientNet architecture in the 
precise differentiation and classification of BT types. The study has produced remarkable results, 
highlighting the superior performance of EfficientNet-B5 and EfficientNet-B7 as the top-performing 
models. These two models displayed an exceptional accuracy rate of 99.64%, marking a significant 
milestone in BT detection. This achievement underscores the substantial progress made in the 
domain of medical image analysis and reaffirms the effectiveness of deep learning models, 
particularly the EfficientNet architecture, in addressing critical healthcare challenges. In summary, 
the study emphasizes the transformative potential of advanced deep learning models like 
EfficientNet in reshaping healthcare practices, particularly in the crucial task of early and precise 
detection of life-threatening conditions like BTs. The exceptional accuracy rates attained by these 
models have the capacity to bring about substantial improvements in patient care, ultimately leading 
to better outcomes and enhanced quality of life for individuals grappling with BTs. This research lays 
the foundation for continued exploration and seamless integration of cutting-edge technology into 
clinical environments, driving forward the boundaries of medical science and patient-centered care. 

Future applications of deep learning technology and models like EfficientNet for brain tumor 
identification are both exciting and diverse. The following are some crucial areas where more 
improvements and developments might be anticipated 

i. Enhanced accuracy: Further study will probably result in even greater rates of brain tumor 
detection efficiency. Performance will be enhanced by optimizing hyperparameters, fine-
tuning models, and increasing datasets [25]. 

ii. Early detection: Focused efforts shall be made to identify brain tumors at even earlier 
stages, allowing for more efficient therapies and maybe improved outcomes for patients 
[26]. 

iii. Multi-class classification: In the future, technologies could be able to divide brain tumors 
into more precise subgroups, giving doctors in-depth knowledge for individualized 
treatment regimens [27]. 
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iv. Real-time detection: The creation of real-time brain tumor detection devices may 
fundamentally alter surgical procedures by enabling surgeons to make well-informed 
judgments [28]. 

v. Radiologists and other medical professionals may benefit from immediate analysis and 
interpretation of data if MRI and other imaging technologies were integrated seamlessly. 

vi. Quantitative evaluation: As systems develop, they may eventually provide numerical 
information on tumor size, pace of development, and response to therapy, assisting in the 
monitoring of the latter [29]. 

vii. Genetic analysis: Integrating genetic data might help us understand the hereditary 
elements that are connected to brain tumors better and, perhaps, develop more precise 
treatments [30,33]. 

viii. AI-driven drug discovery: By examining enormous molecular and clinical data sets, AI 
models may help in the identification of new medications and treatments for the 
treatment of brain tumors [31,34]. 

ix. Ethical Considerations: As these systems proliferate, continual attention will be needed 
to address ethical issues relating to patient data protection, bias reduction, and AI 
transparency [32,35]. 

The future of BT detection systems is poised to significantly enhance patient care, elevate medical 
decision-making, and deepen our comprehension of BTs. Ongoing research and innovative 
endeavours will propel these advancements, delivering advantages to both patients and the medical 
field. 
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