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Meningitis disease is an inflammation of the membranes that protect the brain and 
spinal cord. This disease can be fatal to life-threatening because symptoms can appear 
suddenly. Meningitis is also common in infants and young children and can cause 
complications if not treated promptly. To prevent infection of susceptible compartment 
and to speed recovery of infected compartments, vaccination, campaign, and treatment 
are needed to prevent the spread of the disease or at least reduce the number of carrier 
and infected individuals. Therefore, we propose a model of meningitis disease spread 
consisting of five compartments, namely susceptible, carrier, infected with and without 
symptoms, and recovered. Vaccination, campaign and treatment are included in the 
model mechanism as controls. This study aims to observe the effectiveness of 
vaccination, campaign, and treatment in inhibiting the spread of the disease and 
accelerating the recovery of infected individuals. The Pontryagin minimum principle is 
followed to derive the optimal control problem. Numerical simulation using Runge-
Kutta of order four scheme with the forward-backward sweep approach is applied to 
visualize the curves of state and control variables. From the numerical simulations, it is 
found that vaccination, campaign, and treatment are reasonable to apply in order to 
bridle meningitis disease from the population. 
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1. Introduction 
 

Public health is concerned with preventing diseases from occurring and preventing diseases from 
becoming epidemics. Some diseases that are still of concern to the world are kidney disease, Covid-
19, and breast cancer [1-3]. The application of mathematical models as an approach to understanding 
the spread of disease has been widely used in various aspects of the spread of diseases. Researchers 
studied some ways, like vaccination, fogging, treatments, and so on, to prevent the epidemics. 
Wiraningsih et al., [4,5] have investigated the spread of rabies and used vaccines and treatment as 
efforts to prevent the spread of the disease. The dynamics of malaria transmission using a variant of 
the SIR model has also been studied in [6] by considering migration in the model. Vaccination and 
spraying insecticides as efforts to overcome the spread of malaria have been studied in [7]. Muin et 
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al., [8] reviewed the development of the SEIR model to analyze the spread of hepatitis by using 
vaccines and treatment. 

Meningitis is inflammation of the meninges, which is the membrane surrounding the spinal cord 
and brain. Bacterial meningitis is generally caused by germs like Listeria monocytogenes, 
Steptococcus pneumoniae, Group B Streptococcus, Neisseria meningitidis, and Haemophilus 
influenzae [9]. Meningitis spreads from one person to another if there is close contact and occurs for 
a long time with a carrier or infected individual through coughing or sharing personal items 
contaminated by the bacteria. Bacterial meningitis is characterized by severe headaches and fever, 
vomiting, discomfort with bright light, and a stiff neck, which results in seizures, delirium, and death 
[10]. Meningitis will get worse if symptoms are not detected early, and if not given the right 
treatment, the individual can die [9]. Almost all bacteria that enter the meninges can cause 
meningitis. Bacterial meningitis is sometimes caused by infections in other parts of the body (lungs, 
ears, nose, throat, and sinuses) that spread to the meninges [11]. The combination of environmental 
effects, hosts, and organisms can cause epidemics. Besides the immunological aspect of the 
population, extreme climatic conditions (dry season, dust storm), and acute respiratory infections 
also provide a separate portion of the occurrence of the epidemics [12]. Bacterial meningitis is only 
found in humans and is transmitted from one person to another [13]. This infectious disease affects 
about 1.2 million people worldwide and causes 135,000 deaths annually. It is estimated that 
meningococcal meningitis causes more than 10,000 deaths each year in Sub-Saharan Africa [14]. 
Asamoah et al., [15] considered antibiotics to model the spread of bacterial meningitis with a non-
linear recovery rate, and the analyses provided a potential framework for controlling the spread of 
the disease. 

The main characteristics of the Neisseria meningitidis bacterium are carriers that can 
accommodate these bacteria in the nose and throat without any symptoms and play an important 
role in the spread of meningococcal disease. Most of the infected cases are obtained through 
exposure. When the bacteria in the infected compartment start to flood the defences of body, 
infection can spread through the bloodstream to the meninges [9]. Meningococcal meningitis caused 
by the Neisseria meningitidis bacterium is interesting to study because it has great potential to cause 
epidemics [16]. In 1987 and 2000, meningococcal meningitis was affecting pilgrims in Saudi Arabia, 
and in the same year, there were 99 cases of meningitis affecting Indonesian pilgrims, and 40 of them 
died [17]. Prevention of bacterial meningitis can be done through vaccination and preventing contact 
with infected people. Vaccination is the most effective way to protect children from several types of 
bacterial meningitis [10]. Campaigns can increase public awareness about the dangers of meningitis. 
Thus, the community can implement a healthy lifestyle so that it can reduce the risk of contracting 
the disease. Meningitis is a medical emergency, and all doctors who provide acute medical care need 
a good understanding of the priority of treating patients with suspected meningitis for several hours 
at the beginning of patient care [18]. A deterministic model studied for the dynamics of disease 
transmission combines vaccination in the suspected compartment and appropriate treatments in the 
infected compartment as controls [10,19]. The dynamics of meningococcal meningitis in nine 
countries in Africa using time series analysis and wavelet methods was studied in [20]. The results of 
their study indicated that international cooperation in the field of public health is needed to control 
this infection. 

Mathematical models have been deployed to inform the effectiveness of health policies. It aims 
to help people increase their understanding of the spread and control of infectious diseases. The 
spread of meningitis in [9] used discrete mathematical models. It was based on cellular automata, 
where the population was divided into five classes: susceptible, carriers, asymptomatic infected, 
infected with symptom, recovered, and died. The study in [21] also investigated the spread of disease 
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and divided the population into five compartments: susceptible, vaccinated, carrier, infectious, and 
recovered. The model was then completed using the optimal control theory to determine the optimal 
strategy to reduce the spread of the disease by including vaccinations and using face masks. The 
model parameterized the meningitis outbreak using data from 2017 in Africa. 

The meningitis vaccine is given to stimulate the body's immune system to make antibodies and 
fight the bacteria that cause meningitis. Treatment for meningitis usually varies depending on the 
cause; for example, antimicrobial drugs may be given for meningitis caused by bacteria. Campaigns 
about meningitis usually focus on the effects and consequences that a person can experience after 
having meningitis, as well as the impact on family members of patients who die after treatment for 
meningitis. In this article, a model of the spread of meningitis disease is developed in which the 
population is divided into five compartments: susceptible, carrier, infected with and without 
symptoms, and recovered. As the efforts to control the disease, vaccination, campaign, and 
treatment are considered in the model, the Pontryagin minimum principle is applied tWeo minimize 
the carrier and infected compartments. Numerical simulations are given to visualize the curves of 
state and control variables. 

 
2. Model formulation and analysis 

 
The population on the dynamics of transmission of meningitis meningococcal is commonly 

divided into four compartments. Some authors have considered compartments such as susceptible 
(𝑺), carrier (𝑪), infected (𝑰), and recovered (𝑹) in the dynamics of transmission of meningitis 
disease, for example, see [10,14]. The study in [12] has extended the transmission of meningitis into 
five compartments by differentiating the infected with symptom (𝑰𝑺) and without symptom	(𝑰𝑨). 
This study also included optimal control problem. In this study, we assume that the newly born and 
migrating individual are healthy and then enter susceptible compartment with the rate	𝝅. The 
vaccinated susceptible has temporary immune system and then moves to the recovered 
compartment with the rate of	𝝈𝒖𝟏𝑺. The constant 𝜷 is the rate of effectiveness contact of carriers, 
infected without symptoms, or infected with symptoms in the susceptible compartment. The force 
of new infections is given by  𝜷(𝟏&𝝈𝒖𝟏)𝑺(𝜼𝑪,𝜼𝟏𝑰𝑨,𝜼𝟐𝑰𝑺)

𝑵
 . Carrier compartment is healthy people who 

bring meningococcal bacteria in the nose and throat for a period of time, some weeks or even some 
months, without any symptoms and can be transmitted to others. Some studies indicated that the 
carrier may recover naturally from the infection without treatment and denoted such natural 
recovery rate as	𝝎.  

In this study, it is also assumed that the campaign is given to the carrier compartment to increase 
people’s awareness to carry out routine tests for meningitis. Through this campaign, some people in 
carrier compartment may enter the recovered compartment with the rate of	𝝓𝒖𝟐𝑪. When bacteria 
have invaded the defences of the body, the infection can spread through the bloodstream to the 
meninges, so the carrier people can move to the compartment 𝑰𝑨 with the rate of	𝜶. Symptoms of 
the disease can appear within 2-10 days after exposure, usually within 5 days, and then move to the 
compartment 𝑰𝑺 with the rate of	𝝆. It is also assumed that the effects of the given campaign be able 
to influence the people to check their health in health centre so that the risk of meningitis can be 
reduced before symptom of infection appear with the rate of 𝝓𝒖𝟐𝑰𝑨. The infected compartment with 
symptom is assumed to have no natural recovery unless it is given accurate treatment, then it moves 
to recovered with the rate of  𝜸𝒖𝟑𝑰𝑺. It is also assumed that the infected compartment with 
symptoms dies cause by disease with the rate of 𝜹𝑰𝑺. From the epidemiological perspective, the 
people who recover do not get permanent immunity and then again become susceptible with the 
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rate of 𝜽. Based on the given assumptions, we construct the mathematical model of transmission of 
meningitis disease with vaccination, campaign, and treatments as denoted by Eq. (1) and Figure 1. 

 
𝑑𝑆
𝑑𝑡 = 𝜋 + 𝜃𝑅 −

𝛽(1 − 𝜎𝑢1(𝑡))𝑆(𝜂𝐶 + 𝜂1𝐼2 + 𝜂3𝐼4)
𝑁 − (𝜇 + 𝜎𝑢1(𝑡))𝑆 

 
𝑑𝐶
𝑑𝑡 =

𝛽(1 − 𝜎𝑢1(𝑡))𝑆(𝜂𝐶 + 𝜂1𝐼2 + 𝜂3𝐼4)
𝑁 − (𝜇 + 𝜔 + 𝛼 + 𝜙𝑢3(𝑡))𝐶 

 
56%
57
= 𝛼𝐶 − (𝜇 + 𝜌 + 𝜙𝑢3(𝑡))𝐼2                                                                                                                    (1) 

 
𝑑𝐼4
𝑑𝑡 = 𝜌𝐼2 − (𝜇 + 𝛾𝑢8(𝑡) + 𝛿)𝐼4 

 
59
57
= 𝜎𝑢1(𝑡)𝑆 + K𝜔 + 𝜙𝑢3(𝑡)L𝐶 + 𝜙𝑢3(𝑡)𝐼2 + 𝛾𝑢8(𝑡)𝐼4 − (𝜇 + 𝜃)𝑅  

  
The total population is denoted by	𝑁 = 𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅. Since we consider a compartment 

as a group of people, then the initial conditions of each compartment satisfy 𝑆(0) > 0, 𝐶(0) ≥ 0, 
𝐼2(0) ≥ 0,  𝐼4(0) ≥ 0, and	𝑅 ≥ 0.  The symbols 	54

57
, 	5:
57

,  56%
57

,  56&
57

 , and 	59
57

  define the growth rate of 
susceptible, carrier, infected with symptom, infected without symptoms, and recovered 
compartments, respectively.  

 

 
Fig. 1. Transmission scheme of meningitis with vaccination, campaign, 
and treatment 

 
3. Optimal control problem 
 

In the dynamics of transmission of meningitis disease, we focus on controlling the effects of 
vaccination, campaign, and treatment as the variables to minimize the accumulation of carrier 
compartment, infected with and without symptom compartments for a period of time. The control 
variable 𝑢1(𝑡) with	0 ≤ 𝑢1(𝑡) ≤ 1. The effectiveness of vaccination in minimizing the meningitis 
disease is denoted by	𝜎, the vaccine is assumed to be not perfect so that it has a failure rate 
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of	(1 − 𝜎𝑢1(𝑡)), where	0 < 𝜎 < 1. The control variable 𝑢3(𝑡) with 	0 ≤ 𝑢3(𝑡) ≤ 1, and 
effectiveness of campaign in minimizing the disease is denoted by	𝜙, where	0 < 𝜙 < 1. The control 
variables 𝑢8(𝑡)  with	0 ≤ 𝑢8(𝑡) ≤ 1, and effectiveness of treatments is denoted by	𝛾, where	0 < 𝛾 <
1. The three control variables are then set as  

 
𝑈 = T(𝑢1(𝑡), 𝑢3(𝑡), 𝑢8(𝑡))|0 ≤ 𝑢1 ≤ 1,0 ≤ 𝑢3 ≤ 1,0 ≤ 𝑢8 ≤ 1, 𝑡 ∈ W𝑡;, 𝑡<XY 
 

The objective of optimal control problem is to minimize the accumulation of carrier	(𝐶), infected 
without symptoms	(𝐼2), and infected with symptoms (𝐼4) and also minimize the cost of vaccination, 
campaign, and treatment. Mathematically, the objective function is given in Eq. (2). 

 
 𝐽 = min

(=𝟏,=𝟐,=𝟑)
∫ _𝐴1𝐶(𝑡) + 𝐴3𝐼2(𝑡) + 𝐴8𝐼4(𝑡) +

2(
3
𝑢13(𝑡) +

2)
3
𝑢33(𝑡) +

2*
3
𝑢83(𝑡)a 	𝑑𝑡

7+
7,

,                 (2) 

 
which subjects to Eq. (1). The constants 𝐴? , 𝑖 = 1,… , 6 are weighted for each compartment and 
control variables. In other words, Eq. (2) represents finding out the optimal control variables 
(𝑢1∗, 𝑢3∗, 𝑢8∗) ∈ 𝑈 such that 𝐽(𝑢1∗, 𝑢3∗, 𝑢8∗) ≤ 𝐽(𝑢1, 𝑢3, 𝑢8) for every	(𝑢1, 𝑢3, 𝑢8) ∈ 𝑈.  

From Eq. (2), we need to find out the extremal 𝑢∗ that satisfies	𝐽(𝑢∗) = min{𝐽(𝑢): 𝑢 ∈ 𝑈}. In 
order to get the extremals 	𝑢∗, we follow the Pontryagin minimum principle [22,23]. Then, we define 
the Hamiltonian function  𝐻(𝑡, 𝑥, 𝑢, 𝜆) = 𝑓(𝑡, 𝑥, 𝑢) + 𝜆A(𝑡)𝑔(𝑡, 𝑥, 𝑢), where	𝑓(𝑡, 𝑥, 𝑢) = 𝐴1𝐶(𝑡) +
𝐴3𝐼2(𝑡) + 𝐴8𝐼4(𝑡) +

2(
3
𝑢13(𝑡) +

2)
3
𝑢33(𝑡) +

2*
3
𝑢83(𝑡), 𝑔(𝑡, 𝑥, 𝑢) refers to Eq. (1), and the Lagrange 

multiplier 	𝜆 = (𝜆1		𝜆3		𝜆8		𝜆B		𝜆C)A. Therefore, we write the Hamiltonian function as   
 

𝐻 = 𝐴1𝐶 + 𝐴3𝐼2 + 𝐴8𝐼4 +
𝐴B
2 𝑢1

3 +
𝐴C
2 𝑢3

3 +
𝐴D
2 𝑢8

3 

 +𝜆1 n𝜋 + 𝜃𝑅 −
EF1&G=-(7)H4(I:,I-6%,I.6&)

4,:,6%,6&,9
− K𝜇 + 𝜎𝑢1(𝑡)L𝑆o 

 +𝜆3 n
EF1&G=-(7)H4(I:,I-6%,I.6&)

4,:,6%,6&,9
− K𝜇 + 𝜔 + 𝛼 + 𝜙𝑢3(𝑡)L𝐶o 

 +𝜆8K𝛼𝐶 − K𝜇 + 𝜌 + 𝜙𝑢3(𝑡)L𝐼2L + 𝜆B(𝜌𝐼2 − (𝜇 + 𝛾𝑢8(𝑡) + 𝛿)𝐼4) 
 +𝜆CK𝜎𝑢1(𝑡)𝑆 + K𝜔 + 𝜙𝑢3(𝑡)L𝐶 + 𝑢3(𝑡)𝐼2 + 𝛾𝑢8(𝑡)𝐼4 − (𝜇 + 𝜃)𝑅L 
 
Based on the Pontryagin minimum principle, we have conditions from the state variables as	�̇� =

JK
J𝝀
= nJK

JM-
		 JK
JM.

		 JK
JM/

		 JK
JM(

		 JK
JM)
o
A

, which can be written in the form 

 

�̇� =

⎝

⎜⎜
⎛
𝑆
𝐶
𝐼2̇
𝐼4̇
�̇�

̇
̇

⎠

⎟⎟
⎞
=

⎝

⎜
⎜
⎜
⎜
⎛

𝜋 + 𝜃𝑅 − EF1&G=-(7)H4(I:,I-6%,I.6&)
4,:,6%,6&,9

− K𝜇 + 𝜎𝑢1(𝑡)L𝑆
EF1&G=-(7)H4(I:,I-6%,I.6&)

4,:,6%,6&,9
− K𝜇 + 𝜔 + 𝛼 + 𝜙𝑢3(𝑡)L𝐶

𝛼𝐶 − K𝜇 + 𝜌 + 𝜙𝑢3(𝑡)L𝐼2
𝜌𝐼2 − (𝜇 + 𝛾𝑢8(𝑡) + 𝛿)𝐼4

𝜎𝑢1(𝑡)𝑆 + K𝜔 + 𝜙𝑢3(𝑡)L𝐶 + 𝜙𝑢3(𝑡)𝐼2 + 𝛾𝑢8(𝑡)𝐼4 − (𝜇 + 𝜃)𝑅⎠

⎟
⎟
⎟
⎟
⎞
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The conditions for costate variables are given by  
 

�̇� = − JK
J𝒙
= n− JK

J4
− JK

J:
− JK
J6%

− JK
J6&

− JK
J9o

A
= K�̇�1 �̇�3 �̇�8 �̇�B �̇�CL

A
, where 

 

�̇�1 = (𝜆1 − 𝜆3)
𝛽K1 − 𝜎𝑢1(𝑡)L(𝜂𝐶 + 𝜂1𝐼2 + 𝜂3𝐼4)

𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅
+ 𝜆1K𝜇 + 𝜎𝑢1(𝑡)L − 𝜆C𝜎𝑢1(𝑡

+ (𝜆3 − 𝜆1)
𝛽K1 − 𝜎𝑢1(𝑡)L𝑆(𝜂𝐶 + 𝜂1𝐼2 + 𝜂3𝐼4)

(𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅)3
 

 

�̇�3 = −𝐴1 + (𝜆1 − 𝜆3)
𝛽K1 − 𝜎𝑢1(𝑡)L𝑆𝜂
𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅

+ 𝜆3K𝜇 + 𝜔 + 𝛼 + 𝜙𝑢3(𝑡)L − 𝜆8𝛼

+ (𝜆3 − 𝜆1)
𝛽K1 − 𝜎𝑢1(𝑡)L𝑆(𝜂𝐶 + 𝜂1𝐼2 + 𝜂3𝐼4)

(𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅)3
− 𝜆CK𝜔 + 𝜙𝑢3(𝑡)L 

 

�̇�8 = −𝐴3 + (𝜆1 − 𝜆3)
𝛽K1 − 𝜎𝑢1(𝑡)L𝑆𝜂1
𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅

+ 𝜆8K𝜇 + 𝜌 + 𝜙𝑢3(𝑡)L − 𝜆B𝜌 − 𝜆C𝜙𝑢3(𝑡)

+ (𝜆3 − 𝜆1)
𝛽K1 − 𝜎𝑢1(𝑡)L𝑆(𝜂𝐶 + 𝜂1𝐼2 + 𝜂3𝐼4)

(𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅)3
 

 

�̇�B = −𝐴8 + (𝜆1 − 𝜆3)
𝛽K1 − 𝜎𝑢1(𝑡)L𝑆𝜂3
𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅

+ 𝜆B(𝜇 + 𝛾𝑢8(𝑡) + 𝛿) − 𝜆C𝛾𝑢8(𝑡)

+ (𝜆3 − 𝜆1)
𝛽K1 − 𝜎𝑢1(𝑡)L𝑆(𝜂𝐶 + 𝜂1𝐼2 + 𝜂3𝐼4)

(𝑆 + 𝐶 + 𝐼2 + 𝐼4 + 𝑅)3
 

 

�̇�C = −𝜆1𝜃 + (𝜆3 − 𝜆1)
EF1&G=-(7)H4(I:,I-6%,I.6&)

(4,:,6%,6&,9).
+ 𝜆C(𝜇 + 𝜃)	. 

 

The stationary conditions for control variables are given by  JK
J𝒖
= n JKJ=-

JK
J=.

JK
J=/
o
A
= (0		0		0)A. 

From the stationary conditions we get		𝑢1 =
1
2(
y(𝜆3 − 𝜆1)

EG4(I:,I-6%,I.6&)
O

+ (𝜆1 − 𝜆C)𝜎𝑆z,		𝑢3 =
(M.&M))P:,(M/&M))P6%

2)
, and 𝑢8 =

Q6&
2*
(𝜆B − 𝜆C) . Therefore, the optimal control variables 𝑢1∗, 𝑢3∗, and 

𝑢8∗ are stated by 
 

	𝑢1∗ = min {1,max {0, 1
2(
y(𝜆3 − 𝜆1)

EG4(I:,I-6%,I.6&)
O

+ (𝜆1 − 𝜆C)𝜎𝑆z~~	,  

 

	𝑢3∗ = min {1,max {0, (M.&M))P:,(M/&M))P6%
2)

~~, and 

 

 𝑢8∗ = min {1,max {0, Q6&
2*
(𝜆B − 𝜆C)~~ . 
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4. Numerical simulations 
 

In this section, we are going to visualize the optimal paths of state and control variables thatt 
minimize the objective function J, Eq. (2).  In order to do that, we follow the numerical method, 
namely the forward-backward sweep method, to plot the optimal path of state and control variables. 
The time interval W𝑡;, 𝑡<X is divided into some sub intervals, from initial time		𝑡; =
𝑏1,		𝑏1,	𝑏8, … , 𝑏O,1 = 𝑡<. For the control variables, we define 𝑢? = (𝑢?1, … , 𝑢?R) where 𝑢?S ≈
𝑢?K𝑏SL, 𝑖 = 1,2,3 and		𝑗 = 1,… , 𝑛. The solutions of state variables 𝒙(𝑡) and costate variables 𝝀(𝑡) are 
determined using the method of forward-backward Runge-Kutta of order four. The value of 𝑢?  is 
renewed at each iterations using formula	𝑢 = (𝑢TU5 + 𝑢RVW)/2, where 𝑢RVW is found from the 
optimality condition	JK

J=
= 0, see [24]. For simulation, we set terminal time 𝑡< = 15 years and 𝑡< =

50 years. The parameter values used in this simulation are given in Table 1.  
 

Table 1 
Values of parameters related to the model of the spread of meningitis disease 
Parameters Description Values References 
𝜋 Migration and birth rate 100-100,000 [10] 
𝛽 Effective contact rate 0.88 [10] 
𝜂 Per capita infection rate by 𝐶 0.2-0.85 [10] 
𝜂0 Per capita infection rate by 𝐼1 0.2-0.95 [10] 
𝜂2 Per capita infection rate by 𝐼3 0.2-0.95 Assumed 
𝛾 Effectiveness of treatment 0.1-0.9 Assumed 
𝜎 Effectiveness of vaccination 0.85-1 [9] 
𝜙 Effectiveness of meningitis campaign 0.85-0.95 Assumed 
𝛼 Rate of progression from 𝐶 to 𝐼1 0.1-0.52 [10] 
𝜔 Natural recovery rate  0.06-0.2 [10] 
𝜌 Rate of progression from 𝐼1 to 𝐼3 0.2-0.52 Assumed 
𝛿 Disease-induced mortality 0.05-0.5 [10] 
𝜇 Natural death rate 0.02 [10] 
𝜃 Loss of immunity 0.04-2 [10] 

 
In this simulation, we set the initial values for each compartment as	𝑆(0) = 31,150, 𝐶(0) =

1,000, 𝐼2(0) = 300, 𝐼4(0) = 150, and 𝑅(0) = 468,800. The parameter values used are  𝜋 =
10,000, 𝛽 = 0.88, 𝜎 = 0.95, 𝜙 = 0.95, 𝛾 = 0.95, 𝜂 = 0.7, 𝜂1 = 0.8, 𝜂3 = 0.85, 𝛼 = 0.1, 𝜌 =
0.2,	𝜇 = 0.02, 𝜔 = 0.2, 𝛿 = 0.05, and 𝜃 = 0.04.  Curves of optimal variables for state and control 
are visualized in the Figure 2, 3, 4, 5, 6, and 7. 

Figure 2 shows that in the absence of control, the susceptible (S) initially increases and then 
decreases at around t = 20 years, and then it tends to a certain lower value. Whereas, by giving 
control, the susceptible (S) increases and then converges to a certain value. The size of the susceptible 
compartment will eventually be greater if given control than without being given control. This is 
because giving a vaccine to the susceptible (S) will provide temporary immunity and can reduce the 
rate of movement to the carrier compartment (C).  
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Fig. 2. Curves of susceptible	(𝑆) with and without control for 𝑡! = 15 and 𝑡! = 50  

 
Figure 3 shows that by providing controls of vaccination, campaign, and treatment on the 

dynamics of the spread of meningitis disease, the carrier will be depleted. This is due to increased 
awareness of prevention before clinical symptoms develop and people become infected. Figure 4 
also shows that after controlling, the number of infected people without symptoms will decrease 
significantly. The effect of controls can also be seen in Figure 5, which shows that without control, 
the number of infected people with symptoms will increase. Meanwhile, when the control is given, 
the size of the infected people with symptom will decrease and then disappear. Figure 6 shows that 
the recovered size will be greater when given control than without control. 

 

 
Fig. 3. Curves of carrier (𝐶) with and without control for 𝑡! = 15 and  𝑡! = 50  
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Fig. 4. Curves of infected without symptoms with and without control for 𝑡! = 15 and 𝑡! = 50  

 

 
Fig. 5. Curves of infected with symptoms with and without control for 𝑡! = 15  and  𝑡! = 50  

 
Fig. 6.  Curves of recovered (𝑅) with and without control for 𝑡! = 15  and  𝑡! = 50  

 
Figure 7 shows that the control variables	𝑢1(𝑡), 𝑢3(𝑡), and 𝑢8(𝑡) which are initially in an effective 

condition, i.e., vaccination, campaign, and treatment, are given in large quantities at the beginning 
of time. As time goes by, the proportion of controls will continue to decrease and decrease again 
until the controls are no longer needed. In Figure 7, it can be seen that vaccination (𝑢1) begins to 
decrease around t = 3 to t = 5, then does not change for the next time. Campaign (𝑢3) and treatment 
(𝑢8) need to be given from the beginning, and it is seen that the proportion of control decrease 
around t = 7, then continues to decrease until it does not change for the next time. The 
compartments	𝐶, 𝐼2, and 𝐼4 have run out of space from the system.  
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Fig. 7. Curves of control variables	𝑢"(𝑡), 𝑢#(𝑡), and 𝑢$(𝑡) for terminal time 𝑡! = 15   

 
6. Conclusions 
 

A mathematical model of transmission of meningitis using five compartments, namely 
susceptible, carrier, infected with and without symptoms, and recovered by vaccine, with campaign 
and treatment factors, has been analyzed. Vaccination is given to the susceptible compartment to 
gain temporary immunity. The campaign is given to the compartments of carrier and infected without 
symptoms. Treatment is given to the infected compartment with symptoms. Furthermore, some 
efforts are made to minimize the number of carriers, infected with and without symptoms, and also 
to minimize costs used in the process of controlling the spread of the disease. 

From the Pontryagin minimum principle, the optimal path conditions for the state and control 
variables are obtained. The plot of the optimal curves obtained numerically using the Runge-Kutta of 
order four scheme with the forward-backward sweep approach. From the simulations, it is concluded 
that giving vaccinations can reduce the number of susceptible to becoming carrier. Likewise, 
campaign for the importance of healthy living can also reduce the numbers of carrier and infected 
people without symptoms. Providing treatment can also reduce the number of individuals in the 
infected compartment with symptoms. In other words, from the simulation it is known that by 
introducing vaccination, campaign, and treatment accordingly, at the same time, the compartment 
of carrier, infected with and without symptoms, will disappear from the system. 
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