Numerical Investigation of Diffusion thermo and Thermal Diffusion on Mixed Convection flow of Williamson Nanofluid through a vertical cone with porous material in the presence Thermal radiation and Activation Energy

Indira Sundaram¹,*, Srinivasa Raju Rallabandi²

¹ Department of Mathematics, CVR College of Engineering, Hyderabad, 501506, Telangana State, India
² Department of Mathematics, GITAM (Deemed to be university), Hyderabad campus, Rudraram, Sanga Reddy (Dt), 502329, Telangana State, India

ARTICLE INFO

In this paper, analyze the impact of Activation energy, Diffusion thermo and thermal diffusion with heat and mass transfer inherent of over a vertical cone through Thermally Radiant Williamson nanofluid with saturated porous medium under the convective boundary condition in the presence of thermal radiation has been studied. The coefficients of Brownian and thermophoresis diffusions are also taken into consideration. The governing partial differential equations are reduced to a couple of nonlinear ordinary differential equations by using suitable transformation equations; these equations are then solved numerically with the use of the conventional fourth-order Runge Kutta method accompanied by the shooting technique. As a result, the effects of various physical parameters on the velocity, temperature, and nanoparticle concentration profiles as well as on the skin friction coefficient and rate of heat transfer are discussed with the aid of graphs and tables. This study has been directly applied in the pharmaceutical industry, microfluidic technology, microbial improved oil recovery, modelling oil and gas-bearing sedimentary basins, and many other fields. Further, to check the accuracy and validation of the present results, satisfactory concurrence is observed with the existing literature.

Keywords: Williamson nanofluid; MHD; Diffusion thermo; Thermal Diffusion; Thermal Radiation.

1. Introduction

Non-Newtonian fluids are extensively implemented in diverse industrial processes such as petroleum drilling, drawing of plastic films, fibre spinning, and food production. The Williamson fluid model is one of the simplest non-Newtonian models to replicate the viscoelastic shear-thinning attributes, see Williamson [1]. The flow of thermally radiative Williamson fluid on a stretching sheet with chemical reaction was disclosed by Krishnamurthy et al., [2]. They proved the fluid temperature falling off due to the presence of the Williamson parameter. Khan et al., [3] demonstrated the impact

* Corresponding author.
E-mail address: indirakannan75@gmail.com

https://doi.org/10.37934/araset.45.2.90110
of slip flow of Williamson nanofluid in a porous medium. They exposed that the surface drag force suppresses due to rising the Williamson fluid parameter. The 2D unsteady radiative Williamson fluid flow on a permeable stretching surface was deliberated by Hayat et al., [4]. They noticed that the fluid speed becomes slow when the Williamson parameter is high. Nadeem et al., [5] examined the Williamson fluid flow past a stretching sheet, and they found that the skin friction coefficient decreases with enhancing the Williamson parameter. Make use of the Keller box procedure to solve the problem of MHD flow of Williamson fluid over a stretching sheet by Salahuddin et al., [6]. Their outcome shows that the Williamson fluid parameter leads to suppress the fluid velocity. Few significant analysis for this area is seen in Refs. [7].

When heat and mass transfer occurs simultaneously in a moving fluid, the energy flux caused by a concentration gradient is termed as diffusion thermo effect, whereas mass fluxes can also be created by temperature gradients which is known as a thermal diffusion effect. These effects are studied as second-order phenomena and may have significant applications in areas like petrology, hydrology, and geosciences. Raghunath et al., [22] has analyzed Diffusion Thermo and Chemical Reaction Effects on Magnetohydrodynamic Jeffrey Nanofluid over an Inclined Vertical Plate in the Presence of Radiation Absorption and Constant Heat Source. Maatoug et al., [23] have expressed Variable chemical species and thermo-diffusion Darcy–Forchheimer squeezed flow of Jeffrey nanofluid in horizontal channel with viscous dissipation effects. Omar et al., [24] have possessed Hall Current and Soret Effects on Unsteady MHD Rotating Flow of Second-Grade Fluid through Porous Media under the Influences of Thermal Radiation and Chemical Reactions. Deepthi et al., [25] have discussed Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and
Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines. Rani and Kim [20] studied numerically the laminar flow of an incompressible viscous fluid past an isothermal vertical cylinder with Soret and Dufour effects. The effects of chemical reaction and Soret and Dufour on the mixed convection heat and mass transfer of viscous fluid over a stretching surface in the presence of thermal radiation were analyzed by Pal and Mondal [21]. Sharma et al., [22] studied the mixed convective flow, heat and mass transfer of viscous fluid in a porous medium past a radiative vertical plate with chemical reaction, and Soret and Dufour effects.

Activation energy is the smallest amount of energy needed by chemical reactants to endure a chemical reaction. The influence of activation energy on convective heat and mass transfer in the region of boundary layers was initially inspected by Bestman [23]. Later, many researchers have studied the impact of activation energy on heat and mass transfer of boundary layer flow of the fluids. Among those researchers, Awad et al., [24], Dhlamini et al., [25], Anuradha and Sasikala [26], and Hamid et al., [27] scrutinized the influence of activation energy on heat and mass transfer in unsteady fluid flow under different geometry. Moreover, Huang [28] and Mustafa [29] studied the effect of activation energy on MHD boundary layer flow of nanofluids past a vertical surface and permeable horizontal cylinder. Further investigations on the effect of activation energy on non-Newtonian fluid under different surfaces are stated in [30–33]. From their plots, it can be seen that as the values of the activation energy parameter upsurges, the concentration nanoparticles increase.

The aforementioned studies and open literature survey bear witness effects of Activation energy, Diffusion thermo and Thermal Diffusion on two-dimensional laminar and incompressible steady flow of thermally radiant Williamson nanofluid through vertical cone with porous material in the presence of thermal radiation has been presented. The highly non-linear partial differential equations are simplified by using suitable similarity transformation equations and the reduced equations are solved numerically with the help of the conventional fourth-order Runge Kutta method along with the shooting procedure. Discussion on the results is deliberated through graphs and tables for some pertinent parameters of interest. Moreover, a comparison of the numerical results was checked and the validity of the method with published works was made; it shows nice agreement.

2. Flow Governing Equations

The steady, laminar, and incompressible flow of Williamson fluid over stretching surface considered as cone with porous material. The boundary surface of geometries is imposed with convective conditions. Brownian motion and thermophoresis influences are also considered. The stretching velocity of the surface is taken as \(u_w = xu/L^2 \), whereas the suction/injection velocity is taken as \(v_w \). The surface temperature is taken as \(T_w = T_\infty + ax^r_1 \), where \(a \) and \(r_1 \) represent the constant and wall thermal factor, respectively. The concentration near the surface is taken as \(C_w = C_\infty + ax^r_2 \), where \(r_2 \) represents the nanofluid concentration parameter. The half angle of the cone is taken by \(\alpha \), with radius \(r \). The physical model of the geometry is shown in Figure 1.
By considering the works of Raghunath et al., [34] and by employing the Boussinesq approximation the governing equations describing steady-state conservation of mass, momentum, energy as well as conservation of nanoparticles for nanofluids in the presence of thermal radiation, activation energy and other important take the following form:

$$\frac{\partial}{\partial x} (ru) + \frac{\partial}{\partial y} (rv) = 0$$ \hspace{1cm} (1)

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial x^2} - \sqrt{2 \nu \lambda} \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial y^2} + g \left[(1 - C_\infty) \beta_e \beta (T - T_\infty) - \left(\rho_p - \rho_{f_\infty} \right) (C - C_\infty) \right] \cos \gamma$$ \hspace{1cm} (2)

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \tau \left(D_B \frac{\partial T}{\partial y} \frac{\partial C}{\partial y} + \frac{D_r}{T_\infty} \left(\frac{\partial T}{\partial y} \right)^2 \right) - \frac{1}{\rho C_p} \frac{\partial q_c}{\partial y} + \frac{D_m k_f}{c_p} \frac{\partial^2 C}{\partial y^2}$$ \hspace{1cm} (3)

$$u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = \frac{D_m k_f}{T_m} \frac{\partial T^2}{\partial y^2} + D_B \frac{\beta^2 C}{\partial y^2} + \left(\frac{D_r}{T_\infty} \right) \frac{\partial T^2}{\partial y^2} - k \left(\frac{T}{T_\infty} \right)^{E_{a,T}/\beta} (C - C_\infty)$$ \hspace{1cm} (4)

For this flow, corresponding boundary conditions are

$$u = u_\infty, v = -v_\infty, -k \frac{\partial u}{\partial y} = h \left(T_w - T \right), D_B \frac{\partial T}{\partial y} + \frac{D_r}{T_\infty} \frac{\partial T}{\partial y} = 0 \text{ at } y = 0$$

$$u \to 0, T \to T_\infty, C \to C_\infty \text{ as } y \to \infty$$ \hspace{1cm} (5)

where \(u \) and \(v \) are the velocity components in their respective directions, \(\beta_T \) is the coefficient of volumetric thermal expansion, \(\beta_C \) is the volumetric concentration expansion, \(\nu \) is the kinematic viscosity, \(\rho \) is the density, \(L \) is the characteristics length, \(\tau \) is the extra stress tensor, \(\Gamma \) is the positive
time constant, \(D_B\) and \(D_T\) are the diffusion coefficients of Brownian and thermophoresis, respectively, \(\alpha\) is the thermal conductivity, \(T\) is the temperature, \(C\) is the concentration. \(E\) is the nondimensional activation energy, \(\delta\) is the temperature difference parameter. The subscripts \(w\) and \(\infty\) represent conditions near the wall and ambient from the wall, respectively.

The radiative heat flux \(q_r\) (using Roseland approximation followed [24]) is defined as

\[
q_r = -\frac{4\sigma^*}{3K^*} \left(\frac{\partial T^4}{\partial y} \right) \tag{6}
\]

We assume that the temperature variances inside the flow are such that the term \(T^4\) can be represented as linear function of temperature. This is accomplished by expanding \(T^4\) in a Taylor series about a free stream temperature \(T\), as follows:

\[
T^4 = T_w^4 + 4T_w^3 \left(T - T_w\right) + 6T_w^2 \left(T - T_w\right)^2 + \ldots \ldots \tag{7}
\]

After neglecting higher-order terms in the above equation beyond the first degree term in \((T - T_w)\), we get

\[
T^4 \approx 4T_w^3T - 3T_w^4 \tag{8}
\]

Thus substituting Eq. (8) in Eq. (6), we get

\[
q_r = -\frac{16T_w^3\sigma^*}{3K^*} \left(\frac{\partial T}{\partial y} \right) \tag{9}
\]

Using (9), Eq. (3) can be written as

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \tau \left(D_B \frac{\partial C}{\partial y} \frac{\partial T}{\partial y} + D_L \left(\frac{\partial T}{\partial y} \right)^2 \right) + \frac{1}{\rho C_p} \frac{16T_w^3\sigma^*}{\partial K^*} \left(\frac{\partial^2 T}{\partial y^2} \right) + \frac{D_T k_{fT}}{c_s c_p} \frac{\partial^2 C}{\partial y^2} \tag{10}
\]

The following similarity variables are introduced for solving governing equations (2), (6) and (4) as

\[
\eta = \frac{y}{L}, u = \frac{xD_{f}}{L} f' (\eta), v = \frac{\nu (1+m)}{L} f(\eta), \theta (\eta) = \frac{T - T_w}{T_w - T_0}, \phi (\eta) = \frac{C - C_0}{C_w - C_0} \tag{11}
\]

Substituting Eq. (11) into Eqs. (2), (3) and (4), we get the following system of non-linear ordinary differential equations

\[
f'''' + Wf f'''' + (1+m)f f'''' - f' + G r \theta \cos \alpha + G c \phi \cos \alpha - M f' = 0 \tag{12}
\]
\[\theta''(1 + R_d) + \text{Pr} \left[(1 + m) f \theta' - r_{1} f \theta + \left(N_{b} \theta' \phi' + N_{t} \theta' \phi'' \right) + D_{u} \phi' \right] = 0 \] (13)

\[\phi'' + \text{Sc} \left[(1 + m) f \phi' - r_{2} f \phi - \sigma [1 + \delta \theta]^n \exp \left[-\frac{E}{1 + \delta \theta} \right] \phi \right] + \left(S_{r} L_{e} + \frac{N_{t}}{N_{b}} \right) \theta'' = 0 \] (14)

The corresponding boundary conditions (5) become

\[f(0) = S, \quad f'(0) = 1, \quad f''(\infty) = 0, \quad \theta'(0) = B_{i}(\theta(0) - 1), \]

\[\theta(\infty) = 0, \quad \phi'(0) = -\frac{N_{t}}{N_{b}} \theta'(0), \quad \phi(\infty) = 0. \] (15)

where prime denotes differentiation with respect to \(\eta \), and the significant thermophysical parameters indicating the flow dynamics are defined by

\[W = \sqrt{2\Gamma_{u_w}} \] is the Williamson parameter,

\[\text{Pr} = \frac{\alpha}{\mu C_{p}} \] is the Prandtl number,

\[N_{b} = \frac{\tau D_{B} (C_{w} - C_{s})}{\nu} \] is the Brownian motion parameter,

\[N_{t} = \frac{\tau D_{T} (T_{w} - T_{s})}{\nu T_{\infty}} \] is the thermophoresis parameter,

\[B_{i} = \frac{L_{h_{i}}}{k} \] is the Biot number,

\[E = \frac{E_{a}}{k T_{\infty}} \] is the non-dimensional activation energy,

\[\delta = \frac{(T_{w} - T_{s})}{T_{\infty}} \] is the temperature difference parameter,

\[\sigma = \frac{k^{2}}{a} \] is the non-dimensional reaction rate,

\[Gr = \frac{g L^{2} \beta_{f} (T_{w} - T_{s})}{\nu u_{w}} \] is the thermal Grashof number,

\[Gc = \frac{g L^{2} \beta_{f} (C_{w} - C_{s})}{\nu u_{w}} \] is the concentration Grashof number,

\[R_{d} = \frac{14\sigma T_{w}^{3}}{3kK' r_{1}} \] is the thermal Radiation parameter,

\[D_{u} = \frac{D_{u} k_{f} (C_{w} - C_{s})}{C_{p} \nu \alpha^{2} (T_{w} - T_{s})} \] is the Diffusion thermo parameter,

\[S_{r} = \frac{D_{u} k_{f} (T_{w} - T_{s})}{T_{m} \alpha m (C_{w} - C_{s})} \] is the Thermal Diffusion parameter.
The quantities we are interested to study are the skin friction coefficient C_f, the local Nusselt number N_{ux} and the local Sherwood number S_{hx}. The quantities are defined as:

$$ C_f = \frac{\tau_w}{\rho u^* w} = \left[\mu \frac{\partial u}{\partial y} + \frac{\Gamma}{\sqrt{2}} \left(\frac{\partial u}{\partial y} \right)^2 \right] \bigg|_{y=0} = f''(0) + \frac{W}{2} f'^2(0) $$ \hspace{1cm} (16)

$$ N_{ux} = \frac{x q_w}{k (T_w - T_\infty)} = -x \left(\frac{\partial T}{\partial y} \right) \bigg|_{y=0} = -\theta'(0), $$ \hspace{1cm} (17)

$$ S_{hx} = \frac{x j_w}{D_B (C_w - C_\infty)} = -x \left(\frac{\partial C}{\partial y} \right) \bigg|_{y=\alpha} = -\phi'(0). $$ \hspace{1cm} (18)

3. Numerical solution

As Eqs. (12)–(14) are strongly non-linear, it is difficult or maybe impossible to find the closed form solutions. Accordingly, these boundary value problems are solved numerically by using the conventional fourth-order RK integration scheme along with the shooting technique. The first task to carry out the computation is to convert the boundary value problem to an initial value problem.

The first task to carry out the computation is to convert the boundary value problem to an initial value problem.

Let by using the following notations:

$$ f = y_1, \quad f' = y_2, \quad f'' = y_3, \quad f''' = y'_3, \quad \theta = y_4, \quad \theta' = y_5, \quad \theta'' = y'_5, \quad \phi = y_6, \quad \phi' = y_7, \quad \phi'' = y'_7. $$ \hspace{1cm} (19)

By using the above variables, the system of first-order ODEs is

$$ y'_2 = y_3, $$ \hspace{1cm} (20)

$$ y'_3 = \frac{1}{1 + y^2_3} W \left(y^2_3 - (1 + m) y_1 y_3 - Gr \cos \alpha y_4 - Ge \cos \alpha y_6 + Ky_2 \right), $$ \hspace{1cm} (22)

$$ y'_4 = y_5, $$ \hspace{1cm} (23)

$$ y'_5 = \frac{1}{1 + R_d} \left(-Pr (1 + m) y_1 y_5 + r_1 y_2 y_4 - Pr N_b \left(y_3 y_7 + \frac{Nt}{Nb} (y_5)^2 \right) - Pr Du y_7 \right), $$ \hspace{1cm} (24)
\[y'_6 = y'_7, \]
\[y'_7 = -S_y (1 + m) y'_1 y'_2 + S_y r y'_2 + \sigma [1 + \delta y'_4] \exp \left[-\frac{E}{1 + \delta y'_4} \right] y'_6 - \left(L_y + \frac{N_t}{N_y} \right) y'_5 \]

4. Code Validation

We checked the accuracy of current outcomes with previous literature in the limited case and obtained a fantastic agreement. Table 3 displays a comparison of numeric outcome for Sherwood values of the Diffusion thermo parameter with the published result of Raghunath et al., [34] with an outstanding agreement.

5. Results and Discussion

The set of nonlinear equations with appropriate boundary conditions are solved numerically by Runge Kutta method along with the shooting procedure. To analyze the variation in velocity, thermal, and concentration distributions, Figures 2–6 are displayed. Also, the skin friction factor, Nusselt number, and Sherwood number are displayed through Tables 2 and 3. For the present analysis, the values of fixed parameters are taken as \(Pr = 1.0, Rd=0.5, Sc = 0.5, K=1.5, r_1 = 1.0, r_2 = 1.0, S = 1.0, Gr = 0.5, E=0.5, \delta=0.2, \gamma = 0.6, Gc = 0.5, Nb = 0.2, Nt = 0.3, W = 1.0, Du=1.0, Sr=1.5 \) and \(\alpha = 45^\circ \).

In Figures 2-3 the effects of the thermal Grashof \(Gr \) and mass Grashof \(Gc \) numbers on the resultant velocity are displayed. As the Grashof number is a ratio of the buoyancy force to the viscous force and it appears due to the natural convection flow, so an increase in the tangential velocity as well as the transverse velocity of the fluid. It happens because of the fact that higher the Grashof number implies higher the buoyancy force which means higher the movement of the flow.
Fig. 3. Effect of Gc on velocity profile

Figures 4-7 depict the influence of the thermal and solutal Grashof number on the temperature and the concentration profile respectively. An increase in the both thermal and solutal Grashof number means a decrease in the viscous force which reduces the temperature and the concentration of the fluid.

Fig. 4. Effect of Gr on temperature profile
Figures 8-10 shows the impact of the Williamson parameter on velocity, temperature, and concentration distributions. Here, the reducing impact on velocity distribution is perceived with a
higher Williamson parameter, while a reducing impression on thermal and concentration distributions is depicted for both geometries. Physically, the increasing Williamson parameter suggests more retardation time for the nanofluid flow particles to regain their original position, increasing the fluid viscosity and, consequently, reducing the velocity distribution. Also, the greater values of the Williamson factor provide more resistance to the nanofluid flow, which concludes enhancement in thermal and concentration of the nanofluid flow.

![Fig. 8. Effect of W on velocity profile](image1)

![Fig. 9. Effect of W on temperature profile](image2)
The temperature and concentration profiles for different values of Brownian motion parameter (Nb) is summarized in Figures 11 and 12. It is investigated that an increases in (Nb), the temperature is extends as shown in Figure 11, whereas the concentration profiles depreciates in Figure 12. This is because of the Brownian motion is the random motion of suspended nanoparticles in the base fluid and is more influenced by its fast moving atoms or molecules in the base fluid. It is mentioned that Brownian motion is related to the size of nanoparticles and are often in the form of agglomerates. Clearly, it can be concluded that Brownian motion parameter has significant influence on the both temperature and concentration.
The Variation of non-dimensional temperature and concentration distributions for different values of thermophoretic parameter (Nt) is depicted in Figures 13 and 14. It is noticed from these Figures 13 and 14 that both temperature and concentration profiles boosted in the boundary layer region for the accrual values of thermophoretic parameter (Nt). This is because of the fact that as the values of (Nt) increases the hydrodynamic boundary layer thickness is reduced. This is from the reality that particles near the hot surface create thermophoretic force; this force enhances the temperature and concentration of the fluid in the fluid region.
Figure 15 depicts the temperature for the contribution of Diffusion thermo parameter Du. Temperature enhancement is noticed for higher Du values. The same behavior has observed in Figure 16 whereas enhance the concentration profile with increases of thermal diffusion parameter Sr.
The effect of thermal radiation parameter (Rd) on temperature profile is shown in Figure 17. It is acknowledged that, the thermal boundary layer thickness is enlarged with improving values of radiation parameter (Rd) in the entire boundary layer region of fluid. This is due to the fact that imposing thermal radiation into the flow warmer the fluid, which causes an increment in the temperature.

Figure 18 is drawn to show the effects of dimensionless activation energy E on concentration distribution. From the figure, it is revealed that E is dwindling function of increasing values of E with low temperature results in smaller reaction rate constant and eventually slow chemical reaction is observed. This increases the concentration’s solute. Figures 19 shows the effect of the chemical reaction rate δ on the solute concentration. It can be observed that an increase in either results in diminishes of concentration profiles as we had shown in Figures 19. This is due to the fact that an increase in either results in an increase in the factor of $[1 + \delta \theta]^n \exp \left(\frac{-E}{1 + \delta \theta} \right)$ and this results in the favor of destructive chemical reaction due to which concentration decreases.
The numerical values of C_f for dissimilar values of embedded parameters through cone is displayed in Table 1. From the tabular values, it is concluded that the higher thermal Grashof number increase the skin friction for cone and wedge, while the greater values of solutal Grashof number, wall suction parameter, and Williamson parameter reduces the skin friction. The numerical values of Nu and Sh for different values of embedded factors is displayed in Table 2. From the tabular values, it is concluded that the higher Brownian motion and Diffusion thermo parameters increases the Nusselt number, while reduces the Sherwood number. Higher thermophoresis parameter and thermal radiation diminishes the Nusselt and Sherwood numbers, whereas the reversal behavior has observed in the case of activation energy. To verify the validity and accuracy of the present analysis, the Sherwood number the results for the mass transfer were compared with those reported by Raghunath et al., [34]. The comparison in the above cases is found to be in excellent agreement, as shown in Table 3.
Table 1
Numerical values of C_f for different values of embedded factors through cone and wedge by taking $\alpha = 45^0$

<table>
<thead>
<tr>
<th>Gr</th>
<th>Gc</th>
<th>S</th>
<th>W</th>
<th>C_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>-4.6465</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>-4.4986</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>-4.1431</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>-4.5098</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td>-4.7563</td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td>-5.0098</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td>-4.5751</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>-4.8095</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td>-5.0763</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td>-4.7123</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>-4.9076</td>
</tr>
</tbody>
</table>

Table 2
Numerical values Nu and Sh for different values of embedded factors through cone by taking $\alpha = 45^0$

<table>
<thead>
<tr>
<th>W</th>
<th>K</th>
<th>Rd</th>
<th>E</th>
<th>Nt</th>
<th>Nb</th>
<th>Du</th>
<th>Sr</th>
<th>Nu</th>
<th>Sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
<td>1.5</td>
<td>1.9873</td>
<td>0.7575</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5464</td>
<td>0.7985</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4527</td>
<td>0.6537</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0544</td>
<td>0.7464</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8855</td>
<td>0.9823</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9835</td>
<td>0.8728</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9421</td>
<td>0.7547</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8765</td>
<td>0.7286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9875</td>
<td>0.9821</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3457</td>
<td>0.9878</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2978</td>
<td>0.8836</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>1.1575</td>
<td>0.9282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td>1.4173</td>
<td>0.7282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td>0.77652</td>
<td>0.42382</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>0.7292</td>
<td>0.4282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td>0.8927</td>
<td>0.8282</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.9826</td>
<td>0.6282</td>
</tr>
</tbody>
</table>

Table 3
Comparison of present Sherwood number with the published Sherwood number results of Raghunath et al., [34] when $E=\delta=S=W=r_1=r_2=Gr=Gc=0$

<table>
<thead>
<tr>
<th>Du</th>
<th>Sh Raghunath et al., [34]</th>
<th>Sh Present values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.47452142</td>
<td>0.4787646</td>
</tr>
<tr>
<td>0.4</td>
<td>0.44521478</td>
<td>0.4458363</td>
</tr>
<tr>
<td>0.6</td>
<td>0.42852147</td>
<td>0.4704746</td>
</tr>
</tbody>
</table>
6. Conclusion

The following is a condensed version of the conclusions that may be drawn from the numerical results:

i. The reducing impact of Williamson parameter on velocity distribution is higher, whereas the opposite behaviors in thermal and concentration distributions are found.

ii. While an increasing conduct is witnessed in the velocity of the nanofluid flow via thermal and solutal Grashof numbers.

iii. An increase in thermal radiation parameter results in an increase in temperature field.

iv. With increasing values of (Nb) temperature profiles optimized, whereas, concentration profiles declines in the entire fluid regime.

v. Both resultant temperature and concentration profiles are enhances with increases Du and Sr values.

Nomenclature

U and v Velocity components
\(\nu \) Kinematic viscosity
\(\rho \) Density
\(\beta_r \) Coefficient of volumetric thermal expansion
\(\beta_c \) Coefficient of volumetric concentration expansion
T Temperature
C Concentration
f Nanofluid
\(D_B \) Brownian diffusion coefficient
\(D_T \) Thermophoresis diffusion coefficient
L Characteristics length
\(\Gamma \) Positive time constant
W Williamson parameter
Nb Brownian motion
Nt Thermophoresis parameter
\(\gamma \) Biot number
Gr Thermal Grashof number
Gc Concentration Grashof number
Du Diffusion thermo parameter
Dr Thermal Diffusion parameter
Rd Thermal Radiation
E Activation energy
\(\delta \) Rate of chemical reaction
Cf Skin friction coefficient
Nu Nusselt number
Sh Sherwood number
Pr Prandtl number

Subscripts
\(w \) Condition at the wall
\(\tau \) Extra stress tensor
References

