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This paper obtains semi-analytical solutions for the nonlinear Schrodinger equations 
(NLSEs) using the multistep reduced differential transform method (MsRDTM). The 
implemented method yields an analytical approximate solution over a longer time 
frame, in which the method applied is treated as an algorithm in a sequence of small 
sub-division of intervals of identical length compared to the traditional reduced 
differential transform method (RDTM). Excluding the need of perturbation, 
linearization, or discretization, this method offers the benefit and reliability of the 
multistep algorithm. The outcomes show that the MsRDTM generated highly accurate 
solutions of NLSEs than the RDTM. In addition, the results show that the suggested 
method is straightforward to use, saves a significant amount of computing work when 
solving NLSEs, and has potential for broad application in other complex partial 
differential equations (PDEs) in the fields of engineering and science. The accuracy of 
the method is shown through the tables and graphical illustrations provided.  
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1. Introduction 
 

The concept of differential equations and its applications has been one of the most important 
areas of pure and modern mathematics [1-3]. Scientific phenomena in optics, acoustics, fluid 
mechanics, hydrodynamics, and astronomy [4-6] is explained through differential equations which 
are modelled as nonlinear ordinary equation (ODE) or partial differential equation (PDE). This 
knowledge leads to new and various approximate accurate efficient solutions for these issues [7]. A 
few analytical techniques used to solve these applied models since their structural complexity is 
typically high [8,9]. Effectual methods in solving PDEs include the linear superposition principle [10], 
symmetry reduction strategy [11], and Hirota bilinear forms [12]. 

One of the most famous equations, the NLSEs appear in various fields, including hydrodynamics, 
plasma waves, solitary waves in semiconductors (thin plates), fluid-filled viscoelastic tubes, and 
nonlinear optical waves, biology, elastic media, quantum mechanics, magneto-static rotating waves, 
oceanography, and other disciplines [13]. As a model for other scientific processes, such as optics, 
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the physics of optical waves, and light emission in cables of fibre optics, this kind of equation has also 
been utilized. It has also been used to fluids, deep surface water waves, and ocean roughness. Also 
characterised by the NLSE are optical solitons [14]. This equation has been solved numerically and 
analytically using various methods, such as the Bernoulli sub-ODE and the (G’/G)-expansion method 
[15], and the modified exponential Jacobi method [16], and several other methods [17-20]. Then, a 
method called inverse scattering transform method was introduced in 2023 by Adukov and Mishuris 
[21] for solving discrete NLSEs. In 2022, Jawad and Al-Fayadh [22] applied the variational homotopy 
transform method (VHTM) to solve Schrodinger equations. 

The origin of the method used in this paper called the differential transform method (DTM) and 
its improved variants have been brought into light by scientists. An improved version of the DTM, the 
RDTM was initially introduced by Keskin et al., [23,24]. This semi-analytical method has been used in 
solving time fractional nonlinear Schrodinger-Korteweg-de Vries equation by Owyed et al., [25], and 
fifth order of KdV equation also known as damped Kawahara Equation (KE) by Aljahdaly and Alharbi 
[26]. It gained plenty attention since it solved a wide variety of problems by many researchers. In 
2021, RDTM was implemented in solving many types of differential equations with great 
effectiveness [27]. 

The multistep DTM (MsDTM) was first introduced in 2010 by Odibat et al., [28] and applied to 
various systems. It produces a solution where its convergent series rapidly converges in a large time 
frame which then improves the convergence of the series solution. Other researchers also used the 
multistep scheme by applying it on RDTM, called the multistep RDTM (MsRDTM) [29-31]. In 2018 and 
2019, Hussin et al., [32,33] proposed and implemented the Multistep Modified RDTM (MMRDTM) in 
solving NLSEs and fractional NLSEs (FNLSEs) respectively. Furthermore, Che Hussin et al., [34,35] used 
MMRDTM then used in solving forced nonlinear Korteweg-de Vries (fNkdVE) and KdV equations with 
compact support. Recently, the same method, MMRDTM is also used in [36,37] by Sabdin et al., to 
solve nonlinear telegraph equations (NLTEs) and time-fractional NLTEs with source term. 

This paper aims in implementing the MsRDTM to solve NLSE as its main goal. The answers are 
compared with exact solutions and RDTM solutions. The finding indicates accuracy of the approach 
in tackling the considered problems. The remaining portions of this work are organized as follows. 
The definitions, solution formulations, fundamental operations related to the MsRDTM discussed in 
Section 2. Section 3 illustrates the application of the RDTM in several NLSEs with analytical answers 
are presented in tables and graphical illustrations. Lastly, Section 5 provides concluding observations. 

 
2. Multistep Reduced Differential Transform Method  
2.1 Reduced Differential Transform Method 

 
Two-variable function 𝑢(𝑥, 𝑡) is considered that may be written as the product of two single-

variable functions: 𝜈(𝑥, 𝑡)  =  𝑓(𝑥)𝑔(𝑡). On the foundational properties of the one-dimensional 
differential transform, the function 𝑢(𝑥, 𝑡) may be written as follows: 

 

𝑢(𝑥, 𝑡) = (∑ 𝐹(𝑖)𝑥𝑖∞
𝑖=0 )(∑ 𝐺(𝑗)𝑡𝑗∞

𝑗=0 ) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0                     (1) 

 
where the t-dimensional span function of 𝑢(𝑥, 𝑡) is denoted by 𝑈𝑘(𝑥). The following [23,24] are the 
fundamental definitions of RDTM: 

 
Definition 1. If the domain of interest's function 𝑢(𝑥, 𝑡) is analytical and continuously 

differentiable with regard to time 𝑡 and space 𝑥, then letting 
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𝑈𝑘(𝑥) =
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑢(𝑥, 𝑡)]
𝑡=0

                        (2) 

 
where the transformed function is the 𝑡-dimension span function 𝑈𝑘(𝑥). In this paper, the primary 
function is denoted by the small letter 𝑢(𝑥, 𝑡), while the altered function is symbolized by the capital 
letter 𝑈𝑘(𝑥). 

 
Definition 2. Given the following for the differential inverse transform of 𝑈𝑘(𝑥): 
 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0 ,                        (3) 

 
Then, by fusing Eq. (2) and Eq. (3), we obtain 
 

𝑢(𝑥, 𝑡) = ∑
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑢(𝑥, 𝑡)]
𝑡=0

𝑡𝑘∞
𝑘=0 .                       (4) 

 
According to the preceding definitions, the RDTM concept is obtained from the expanded power 

series. Consider the following operator-form nonlinear PDE to explain the fundamental RDTM 
concepts as in Eq. (5) 

 
ℒ𝑢(𝑥, 𝑡) + ℛ𝑢(𝑥, 𝑡) + 𝒩𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),                      (5) 

 
with initial condition  

 
𝑢(𝑥, 0) =  𝑓(𝑥)                         (6) 

 

where ℒ =
𝜕

𝜕𝑡
, ℛ is a partial derivatives linear operator, 𝒩𝑢(𝑥, 𝑡) is a nonlinear operator and 𝑔(𝑥, 𝑡) 

is an inhomogeneous term.  
Based on MsRDTM, the iteration formula shown below may be formed: 
 

(𝑘 +  1)𝑈𝑘+1(𝑥) =  𝒢𝑘(𝑥) −  ℛ𝑈𝑘(𝑥) −  𝒩𝑈𝑘(𝑥),                     (7) 
 

where 𝑈𝑘(𝑥), ℛ𝑈𝑘(𝑥), 𝒩𝑈𝑘(𝑥) 𝑎𝑛𝑑 𝒢𝑘(𝑥) are the transformations of the functions 
ℒ𝑢(𝑥, 𝑡), ℛ𝑢(𝑥, 𝑡), 𝒩𝑢(𝑥, 𝑡), 𝑎𝑛𝑑 𝑔(𝑥, 𝑡) respectively.  

Based on initial condition Eq. (6), we write  
 

𝑈0(𝑥) =  𝑓(𝑥),                         (8) 
 
The following 𝑈𝑘(𝑥) values are obtained by substituting Eq. (8) into Eq. (6) and doing a simple 

computation. The n-terms approximation solution is then obtained as follows by applying inverse 
transformation on the set of values {𝑈𝑘(𝑥)}𝑘=0

𝑛 : 
 

𝑢𝑛(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0 , 𝑡 ∈ [0, 𝑇]                       (9) 
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2.2 Multistep Scheme 
 

The multistep scheme is as follows. The interval [0, 𝑇] is divided by 𝑠 =
𝑇

𝑅
 to generate R equal size 

subintervals [𝑡𝑟−1, 𝑡𝑟] and nodes 𝑡𝑟 = 𝑟𝑠 such that for 𝑟 = 1,2, … , 𝑅. The upcoming procedures are 
used to compute MsRDTM. Firstly, RDTM is applied to the initial value problem of interval [0, 𝑡1]. 
Then by using the initial conditions 
 
𝑢(𝑥, 0) =  𝑓0(𝑥).                       (10) 

 
We obtain the result 
 

𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑘,1(𝑥)𝑡𝑘k
𝑘=0 , 𝑡 ∈ [0, 𝑡1].                    (11) 

 
At each subinterval [𝑡𝑟−1, 𝑡𝑟], the initial conditions  
 

𝑢𝑟(𝑥, 𝑡𝑟−1) = 𝑢𝑟−1(𝑥, 𝑡𝑟−1)                      (12) 
 

are used for 𝑟 ≥ 2 and the implementation of MsRDTM to the initial value problem on [𝑡𝑟−1, 𝑡𝑟], 
where 𝑡𝑟−1 replaces 𝑡0. For 𝑟 = 1,2, … , 𝑅, the repetition of the process is performed and carried out 
to construct an approximate solutions sequence 𝑢𝑟(𝑥, 𝑡) such as, 

 
𝑢𝑟(𝑥, 𝑡) = ∑ 𝑈𝑘,𝑟(𝑥)(𝑡 − 𝑡𝑟−1)𝑘𝐾

𝑘=0 , 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟].                   (13) 
 
Finally, the MsRDTM proposes the following solutions: 
 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡),   𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡1]

𝑢2(𝑥, 𝑡),   𝑓𝑜𝑟 𝑡 ∈, [𝑡1, 𝑡2] 
⋮

𝑢𝑅(𝑥, 𝑡),   𝑓𝑜𝑟 𝑡 ∈, [𝑡𝑅−1, 𝑡𝑅]

                    (14) 

 
It is crucial to note that when the step size 𝑠 = 𝑇, the RDTM is derived from MsRDTM. 
 

3. Results  
 
Consider the three numerical examples to show the reliability of the MsRDTM and its benefit for 

solving NLSE. 
Example 1. Cubic NLSE of the form [38] 
 

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2|𝑢|2𝑢 = 0                      (15) 
 

is considered with initial condition 
 

𝑢(𝑥, 0) = 𝑒𝑖𝑥.                        (16) 
 

𝑒𝑖(𝑥+𝑡) is the exact solution of this equation. 
By applying the MsRDTM to Eq. (15) and using fundamental properties of MsRDTM, we have 
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𝑈𝑘+1,r(𝑥) = (
𝐼

𝑘+1
) (

𝜕2

𝜕𝑥2 𝑈𝑘,𝑟(𝑥) + 2 ∑ 𝑈𝑘−𝑙,𝑟(𝑥)𝑘
𝑙=0 ∑ 𝑈𝑚.𝑟(𝑥)𝑈𝑙−𝑚.𝑟(𝑥)𝑙

𝑚=0 ).               (17) 

 
We write the transformed initial condition Eq. (16) as 
 

𝑈0(𝑥) = 𝑒𝑖𝑥.                        (18) 
 
The multistep algorithm is then implemented to get approximate solution. 
The comparison through graphical illustrations of the approximate solution MsRDTM, RDTM and 

exact solution for 𝑡 ∈ [2.9, 3.0] 𝑎𝑛𝑑 𝑥 ∈ [−5, 5], which involves the real and imaginary part, are 
shown in Figure 1(a), Figure 1(b), Figure 1(c), and Figure 1(d) respectively. Figure 1(a) and Figure 1(b) 
show that the graphs of the MsRDTM have similar shape and size with their exact solutions than the 
graph of RDTM as shown in Figure 1(c) and 1(d). The MsRDTM solutions for this sort of NLSE are 
therefore proved to be quite near to the exact solutions. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 1. The graphs shown in (a) and (b) are the comparison between 
exact solutions, and the MsRDTM, while (c) and (d) are the 
comparison between exact solutions, the RDTM and the MsRDTM 
involving the real and imaginary part, respectively. 

 
In Table 1, the performance error analysis is presented. Based on the table, numerical results for 

absolute error and error norms, 𝐿2 and 𝐿∞ from MsRDTM are smaller which mirrors that it is accurate 
than RDTM. MsRDTM give better results in solving the NLS equation compared to the RDTM. 
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Table 1 
Error analysis of semi-analytic solution for RDTM and MsRDTM 
T Exact Solutions Absolute Error RDTM Absolute Error MsRDTM 

0 0.5403023059 + 0.8414709848I 0 0 
0.1 0.4535961214 + 0.8912073601I 2.996664813 × 10−10 3.162277660 × 10−10 
0.2 0.3623577545 + 0.9320390860I 2.580697580 × 10−9 3.605551275 × 10−10 
0.3 0.2674988286 + 0.9635581854I 4.330415684 × 10−8 3.000000000 × 10−10 
0.4 0.1699671429 + 0.9854497300I 3.246369357 × 10−7 5.385164807 × 10−10 
0.5 0.07073720167 + 0.9974949866I 1.547822690 × 10−6 6.660330322 × 10−10 
0.6 -0.02919952230 + 0.9995736030I 5.542108513 × 10−6 6.797793760 × 10−10 
0.7 -0.1288444943 + 0.9916648105I 1.629145204 × 10−5 8.944271910 × 10−10 
0.8 -0.2272020947 + 0.9738476309I 4.144872897 × 10−5 8.246211251 × 10−10 
0.9 -0.3232895669 + 0.9463000877I 9.443486255 × 10−5 1.104536102 × 10−9 
1.0 -0.4161468365 + 0.9092974268I 1.972130480 × 10−4 1.200000000 × 10−9 
 𝐿2 2.232208684 × 10−4 2.056720691 × 10−9 
 𝐿∞ 1.972130480 × 10−4 1.200000000 × 10−9 

 
Example 2. NLSE with zero trapping potential was taken consideration [38]  
 

𝑖𝑢𝑡 +
1

2
𝑢𝑥𝑥 + |𝑢|2𝑢 = 0                      (19) 

 
with initial condition  

 

𝑢(𝑥, 0) = 𝑒𝑖𝑥.                        (20) 
 

𝑒𝑖(𝑥+
𝑡

2
) is this equation’s exact solution. By applying the MsRDTM to Eq. (19) and using 

fundamental properties of MsRDTM, we have 
 

𝑈𝑘+1,r(𝑥) = (
𝐼

𝑘+1
) (

1

2

𝜕2

𝜕𝑥2 𝑈𝑘,𝑟(𝑥) + ∑ 𝑈𝑘−𝑙,𝑟(𝑥)𝑘
𝑙=0 ∑ 𝑈𝑚,𝑟(𝑥)𝑈𝑙−𝑚,𝑟(𝑥)𝑙

𝑚=0 )               (21) 

 
We write the transformed initial condition Eq. (20) as 
 

𝑈0(𝑥) = 𝑒𝑖𝑥.                        (22) 
 
Then, apply the multistep algorithm to have approximate solution for this example. 
The graphs illustrated portray the comparison between the approximate solutions MsRDTM, 

RDTM and exact solution for 𝑡 ∈ [5.5, 6.0] and 𝑥 ∈ [−5, 5], which involves the real and imaginary 
part, as shown in Figure 2(a), Figure 2(b), Figure 2(c), and Figure 2(d) respectively. Based on Figure 
2(a) and Figure 2(b), it shows that the graphs of the MsRDTM are similar with their exact solutions 
than the graph of RDTM as shown in Figure 2(c) and Figure 2(d). The MsRDTM solutions for this sort 
of NLSE are therefore proved to be near to the exact solutions. 
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(a) (b) 

  
(c) (d) 

Fig. 2. The graphs shown in (a) and (b) are the comparison 
between exact solutions, and the MsRDTM, while (c) and (d) are 
the comparison the RDTM, the MsRDTM, and exact solutions 
which involve the real and imaginary part, respectively. 

 
In Table 2, the performance error analysis is shown. The error analysis consists of absolute error 

and the error norms, 𝐿2 and 𝐿∞. Numerical results from MsRDTM are significantly more accurate 
than those of RDTM. MsRDTM give better results in solving the NLS equation compared to the RDTM. 

 
Table 2 
Error analysis of semi-analytic solution for RDTM and MsRDTM 
T Exact Solutions Absolute Error RDTM Absolute Error MsRDTM 

0 0.5403023059 + 0.8414709848I 0 0 
0.1 0.4975710479 + 0.8674232256I 3.551056181 × 10−10 3.605551275 × 10−10 
0.2 0.4535961214 + 0.8912073601I 2.996664813 × 10−10 5.099019514 × 10−10 
0.3 0.4084874409 + 0.9127639403I 2.441311123 × 10−10 5.099019514× 10−10 
0.4 0.3623577545 + 0.9320390860I 2.580697580 × 10−9 5.099019514 × 10−10 
0.5 0.3153223624 + 0.9489846194I 1.204408569 × 10−8 5.385164807 × 10−10 
0.6 0.2674988286 + 0.9635581854I 4.330415684 × 10−8 5.000000000 × 10−10 
0.7 0.2190066871 + 0.9757233578I 1.276094040 × 10−7 5.656854249 × 10−10 
0.8 0.1699671429 + 0.9854497300I 3.246369357 × 10−7 6.403124237 × 10−10 
0.9 0.1205027694 + 0.9927129910I 7.404440897 × 10−7 7.071067812 × 10−10 
1.0 0.07073720167 + 0.9974949866I 1.547822690 × 10−6 8.848163651 × 10−10 
 𝐿2 1.751488817 × 10−6 7.277561405 × 10−9 
 𝐿∞ 1.547822690 × 10−6 8.848163651 × 10−10 
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Example 3. We considered NLSE with trapping potential of the form [38] 
 

𝑖𝑢𝑡 +
1

2
𝑢𝑥𝑥 − 𝑢𝑐𝑜𝑠2(𝑥) − |𝑢|2𝑢 = 0                     (23) 

 
with initial condition  

 
𝑢(𝑥, 0) = sin(𝑥).                       (24) 

 

sin(𝑥)𝑒(−
3𝑖

2
𝑡) is this equation’s exact solution. By applying the MsRDTM to Eq. (23) and using 

fundamental properties of MsRDTM, we have 
 

𝑈𝑘+1,r(𝑥) = (
𝐼

𝑘+1
) (

1

2

𝜕2

𝜕𝑥2
𝑈𝑘,𝑟(𝑥) − 𝑈𝑘,𝑟(𝑥)𝑐𝑜𝑠2(𝑥) − ∑ 𝑈𝑘−l,𝑟(𝑥)𝑘

𝑙=0 ∑ 𝑈𝑚,𝑟(𝑥)𝑈𝑙−𝑚,𝑟(𝑥)𝑙
𝑚=0 )  (25) 

 
We write the transformed initial condition Eq. (24) as 
 

𝑈0(𝑥) = sin(𝑥).                       (26) 
 
The multistep algorithm is then applied to get accurate approximate solution for this example. 

The comparison by graphical pictorials of approximate solutions MsRDTM, RDTM and exact solution 
for 𝑡 ∈ [0, 3.5] and 𝑥 ∈ [−3.5, 3.5], with piecewise solution of 𝑢(𝑥, 𝑡) for MsRDTM and 𝑅 = 7 
subintervals which involve the real and imaginary part, are shown in Figure 3(a), Figure 3(b), Figure 
3(c) and Figure 3(d), respectively. Figure 3(a) and Figure 3(b) shows that the graphs of the MsRDTM 
are similar with their exact solutions than the graph of RDTM as shown in Figure 3(c) and Figure 3(d). 
The MsRDTM solutions for this form of NLSE are therefore proved to be significantly near to the exact 
solutions. 
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(a) (b) 

  
(c) (d) 

Fig. 3. The graphs shown in (a) and (b) are the exact solutions, 
and MsRDTM, while (c) and (d) are the exact solutions, the 
RDTM, and the MsRDTM which involve the real and imaginary 
part, respectively. 

 
In Table 3, the performance error analysis is presented. Absolute error and error norms, 𝐿2 and 

𝐿∞ have been used to elucidate the error analysis. Numerical results from MsRDTM are 
consequentially more accurate than those of RDTM. MsRDTM give better results in solving the NLS 
equation compared to the RDTM. 

 
Table 3 
Error analysis of semi-analytic solution for RDTM and MsRDTM 
T Exact Solutions Absolute Error RDTM Absolute Error MsRDTM 

0 0.8414709848 0 0 
0.1 0.8320221727 - 0.1257478525I 2.660964897 × 10−10 2.714758068 × 10−10 
0.2 0.8038879363 - 0.2486716794I 3.644744902 × 10−8 7.238607115 × 10−10 
0.3 0.7577001100 - 0.3660108763I 6.230741499 × 10−7 1.077608651 × 10−9 
0.4 0.6944959727 - 0.4751302582I 4.663560160 × 10−6 1.250936551 × 10−9 
0.5 0.6156949531 - 0.5735792387I 2.221039714 × 10−5 1.551595830 × 10−9 

0.6 0.5230667522 - 0.6591468660I 7.946428659 × 10−5 1.775084987 × 10−9 
0.7 0.4186915997 - 0.7299114759I 2.333622902 × 10−4 1.957211586 × 10−9 
0.8 0.3049135365 - 0.7842838476I 5.930457850 × 10−4 2.208761158 × 10−9 
0.9 0.1842877727 - 0.8210428948I 1.349438602 × 10−3 2.428631626 × 10−9 
1.0 0.05952330275 - 0.8393630887I 2.814081292 × 10−3 2.714758068 × 10−9 
 𝐿2 3.186381856 × 10−3 5.555141621 × 10−9 
 𝐿∞ 2.814081292 × 10−3 2.714758068 × 10−9 
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4. Conclusions 
 
This work uses the MsRDTM approximation analytical method for dealing with NLSEs. The 

findings demonstrate the accuracy, effectiveness, and dependability of the procedure, as shown by 
the outcomes and the graphical representations. Moreover, MsRDTM is a valuable mathematical 
approach for dealing with nonlinear Schrodinger equations since it produces solutions with high 
accuracy, and it is significantly more accurate than RDTM. This paper's calculations were all 
performed using Maple 2021. 
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