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This study presents numerical solution of time-fractional linear parabolic partial 
differential equations (PDEs) using the Caputo finite difference scheme. The 
discretization process is based on the second-order implicit finite difference scheme 
and the Caputo fractional derivative operator. The resulting system of linear 
approximation equations is solved using the Kaudd Successive Over Relaxation (KSOR) 
iterative method. A comparison is made with the Gauss-Seidel (GS) iterative method 
through three numerical examples. The results demonstrate that the KSOR method 
requires fewer iterations and reduced computational time compared to the GS 
method. 
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1. Introduction 
 

Fractional differential equations (FDEs) have recently garnered substantial attention due to their 
capacity to simulate various complex phenomena in fields such as sciences, engineering and physics 
including anomalous diffusion [1,2], fluid mechanics [3,4], and image processing [5]. The research 
area in time-fractional parabolic equations (TFPEs) has evolved as a useful mathematical tool for 
explaining time-fractional events where the derivative order is non-integer. This is because it may 
produce superior models that capture non-classical occurrences for complex physical real-world 
problems in particular cases [6]. Moreover, fractional operators are crucial for understanding a wide 
range of complicated mechanical and physical behaviours, as well as problem-solving involving non-
Markovian random walks [6], which involve systems with long-term memory. However, there are 
major practical challenges in solving the corresponding fractional differential equation. It should be 
emphasized that only a few fractional differential equations may be solved analytically utilizing 
complex functions such as the Mittag-Lefer function [7], H-function [8], and Wright function [9]. As a 
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result, various numerical techniques for solving TFPE have recently been devised, which appear to be 
more capable of dealing with the complexities of fractional-order equations. Recent studies have 
employed the reduced spline (RS) method based on a proper orthogonal decomposition (POD) 
technique [10,11], while the Crank-Nicholson strategy leverages the finite element approach [12,13].  

Researchers have proposed and explored the following strategies in the literature: Method for 
alternating segment explicit-implicit/implicit explicit parallel difference method [14] is one way. A 
new method based on fractional finite differences [15], the use of localized radial basis functions 
(RBFs) [16], and the fractional differential quadrature (FDQ) method [17]. Other researchers had 
previously concentrated on the implicit scheme [10-12] to discretize the TFPEs problem. They 
implemented the Caputo finite difference scheme and the Caputo fractional operator into the 
approximation equations, generating a linear system at each time step. The numerical solution of 
TFPE generated a large and sparse system of linear equations (SLE), which demands iterative methods 
for effective computation. Due to the slow convergence rate of the point iterative family, such as GS 
technique, the SOR iterative method has arisen as a notable option for resolving this problem [22-
27]. 

Extensive study has been undertaken in the literature to investigate point iterative approaches 
for solving SLE deriving from the discretization of differential equations with integer-order. However, 
there has been limited study on the application of these approaches to fractional differential 
equations [25,26]. Currently, most of the previous research in this field has been employing the 
Caputo fractional derivative operator. The primary goal of this study is to evaluate the effectiveness 
of the KSOR iterative approach in solving TPPDEs using Caputo's implicit finite difference 
approximation equation. In addition, we developed the GS iterative methods as a benchmark to 
compare and demonstrate the capabilities of the KSOR approach. To assess the efficiency of the KSOR 
technique, we consider TFPEs, which are defined as the target equations in our analysis as follows: 
 
!!"
!#"

= 𝛾 !
""
!$"

+ 𝜌 !"
!$
+ 𝜃𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), 𝑥 ∈ [𝜌%, 𝜌&], 0 ≤ 𝑡 ≤ 𝑇        (1) 

 
subject to the following initial and boundary conditions  

  
𝑢(𝑥, 0) = 𝑢%(𝑥), 
	
and 
 
𝑢(𝑥, 𝑡) = 𝑓(𝑥) 

 
where 𝛾, 𝜌  and 𝜃	were arbitrary constants, and 𝑓(𝑥, 𝑡) was a known function. The parameter 𝛼 
characterizes the fractional order of the time derivative, taking a value in the inclusive range of 0 ≤
𝛼 ≤ 1. The discretization of the time component in Eq. (1) involves the use of a fractional operator. 
In this study, we employ the Caputo-type fractional derivative operator, as defined in [10,26,33,]. 
Additionally, we provide a comprehensive exposition of our numerical approach, emphasizing its 
theoretical foundation, implementation strategy, and validation through numerical experiments.   

 
2. Preliminaries   

 
We begin with some fundamental definitions before constructing the finite difference 

approximation equation of Eq. (1).   
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2.1 Definition 
 

The Riemann-Liouville [28] fractional integral operator, 𝐽'of order-𝛼 is defined as 
 
𝐽'𝑓(𝑥) = &

	)(')∫ (𝑥 − 𝑡)',&$
% 𝑓(𝑡)𝑑𝑡,						𝛼 > 0, 𝑥 > 0.         (2) 

 
2.2 Definition  

 
The Caputo’s [28] fractional partial derivative operator, 𝐷∝ of order-𝛼 is defined as 

 

𝐷'𝑓(𝑥) = &
	)(.,')∫

/($)(#)
($,#)!&$'(

$
% 𝑑𝑡,						𝛼 > 0.          (3) 

 
with 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁, 𝑥 > 0. 

This paper compares the KSOR with the GS iterative methods for solving Eq. (1), incorporating 
variable coefficients. The numerical solution employs Caputo's derivative formulation, integrating 
Dirichlet boundary conditions, and the non-local fractional derivative operator. The proposed 
approximation equation belongs to a category of schemes that are unconditionally stable. By utilizing 
Eq. (1), the solution domain is confined to a finite space domain, of 0 ≤ 𝑥 ≤ 𝛼, with 0 ≤ 𝛼 ≤ 1, and 
the parameter 𝛼 correlates with the fractional order of the space derivative. The initial boundary 
conditions of Eq. (1) are considered to obtain the solution. 

 
𝑈(𝑥, 0) = 𝑈%(𝑥), and 𝑈(𝑥, 𝑡) = 𝑓(𝑥) 

 
where 𝑈%(𝑥), and f(x) are given functions. Caputo’s fractional partial derivative of order 𝛼, defined 
by [25,26], is used for constructing the discrete approximation to the time fractional derivative in Eq. 
(1). 
 
!!"($),#*)

!$!
= &

	)(1,')∫
!""($),#*)

!$"
#*
% (𝑡2 − 𝑠)&,'𝑑𝑠					          (4) 

 
The subsequent sections of the paper are organized as follows: Section 2 provides an 

approximation formula for the fractional derivative and outlines a numerical strategy for solving the 
time fractional parabolic Eq. (1) using Caputo's implicit finite difference method. Section 3 details the 
formulation of the KSOR iterative method, and Section 4 presents the numerical experiments. 
Conclusions are drawn in Section 5. 

 
3. Derivation of Caputo’s Implicit Finite Difference Approximation Equation 

 
Before constructing the Caputo’s implicit finite difference approximation equation, we provide a 

succinct overview of the discretization methodology applied to address Eq. (1). The formulation of 
Caputo's fractional partial derivative is encapsulated in Eq. (4), adhering to the first-order 
approximation framework as elucidated by Murio (2008) [34] 
 
𝐷#'𝑈3,2 ≅ 𝜎',4 ∑ 𝜔5

(')F𝑈3,2,56& − 𝑈3,2,5G2
57&           (5) 

 
where 
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𝜎',4 =
1

	𝛤(1 − 𝛼)(1 − 𝛼)𝑘'  

 
and  

 
𝜔5
(') = 𝑗&,' − (𝑗 − 1)1&,'  

 
We assume that the problem’s solution domain is uniformly partitioned before discretizing Eq. 

(1). To do this, we consider positive integers m and n, which define the grid sizes in the space and 
time directions for the finite difference algorithm. These grid sizes are denoted as ℎ = ∆𝑥 = 8,%

.
 and 

𝑘 = ∆𝑡 = 9
2

 respectively. Based on these grid sizes, we construct a uniformly divided grid network for 
the solution domain. The grid points in the space interval [0, 𝛾] are represented by the numbers 𝑥3 =
𝑖ℎ,			𝑖 = 0,1,2, … ,𝑚. Similarly, the grid points in the time interval are labelled 𝑡3 = 𝑗𝑘, 𝑗 =
0,1,2, … , 𝑛. The values of the function 𝑈(𝑥, 𝑡)	at these grid points are denoted as 𝑈3,5 = 𝑈(𝑥&, 𝑡5). 
We obtain Caputo’s implicit finite difference approximation equation of Eq. (1) by utilizing Eq. (5) and 
employing the implicit finite difference discretization scheme, for the grid point centered F𝑥3 , 𝑡5G =
(𝑖ℎ, 𝑛𝑘). This equation is expressed as follows: 
 
𝜎',4 ∑ 𝜔5

(')F𝑈3,2,56& − 𝑈3,2,5G =
8
:"
F𝑈3,&,2 − 2𝑈3,2 + 𝑈36&,2G +

;
1:
F𝑈36&,2 − 𝑈3,&,2G + 𝜃𝑈3,2 +2

57&

𝑓3,2                (6) 
 
For 𝑖 = 1,2, … ,𝑚 − 1. 
The Eq. (6) highlights that the obtained approximation equation, referred to as Caputo's implicit 

finite difference approximation equation, exhibits consistent first-order accuracy in time and second-
order accuracy in space. Importantly, the structure of this approximation equation is adaptable based 
on the chosen time level. For instance, let’s consider the case where 𝑛 ≥ 2: 
 
𝜎',4 ∑ 𝜔5

(')F𝑈3,2,56& − 𝑈3,2,5G = R 8
:"
− ;

1:
S𝑈3,&,2 + R𝜃 −

18
:"
S𝑈3,2 + R

8
:"
+ ;

1:
S𝑈36&,2 + 𝑓3,22

57&     (7) 
 

∴ 𝜎',4U𝜔5
(')F𝑈3,2,56& − 𝑈3,2,5G = 𝛽%𝑈3,&,2 + 𝛽&𝑈3,2 + 𝛽1𝑈36&,2 + 𝑓3,2

2

57&

 

 
where 
 

𝛽% =
𝛾
ℎ1 −

𝜌
2ℎ , 𝛽& = 𝜃 −

2𝛾
ℎ1 , 𝛽1 =

𝛾
ℎ1 +

𝜌
2ℎ 

 
Finally, by rearranging Eq. (7), we arrive at the case where the value of 𝑛 = 1,𝜔5

(') = 1 
 
𝜎',4F𝑈3,& − 𝑈3,%G = 𝛽%𝑈3,&,& − 𝛽&𝑈3,& + 𝛽1𝑈36&,& + 𝑓3,&         (8) 

 
Therefore, the approximation Eq. (8) can be rewritten as follows. 

 
−𝑝3𝑈3,&,& + 𝑞3𝑈3,& − 𝑟3𝑈36&,& = 𝑓3,&∗ ,					𝑖 = 1,2, … ,𝑚 − 1         (9) 
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where, 
 
𝑝3 = 𝜎',4 − 𝛽%,			𝑞3 = −𝛽&, 			𝑟3 = 𝜎',4 − 𝛽1, 	𝑓3,&∗ = 𝑓3,& − 𝜎',4 	. 
 
Again Eq. (9) can be expressed in a matrix form as  

 
𝐴𝑈
~
= 𝑓

~
                         (10) 

 
where, 
 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑞 ∗ −𝑟 ∗
−𝑝 ∗ 𝑞 ∗ −𝑟 ∗

−𝑝 ∗ 𝑞 ∗ −𝑟 ∗
⋱ ⋱ ⋱

−𝑝 ∗ 𝑞 ∗ −𝑟 ∗
−𝑝 ∗ 𝑞 ∗ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

(.,&)×(.,&)

, 

 
𝑈
~
= [𝑈&& 𝑈1& 𝑈?& ⋯ 𝑈.,1,& 𝑈.,&,&]9 , 

 
𝑓
~
= [𝑈&& + 𝑝&𝑈%& 𝑈1& 𝑈?& ⋯ 𝑈.,1,& 𝑈.,&,& + 𝑝.,&𝑈.,&]9 . 

 
The structure of Eq. (9) was identified as a tridiagonal matrix, given that its nonzero elements are 

present solely on the main diagonals immediately above and below it. This tridiagonal matrix 
representation facilitated the application of KSOR iterative method. 

    
4. Results Implementation of KSOR Iterative Method 

 
In this part, we investigate the application KSOR method [17] for solving the linear system that 

results from discretizing Eq. (1). The KSOR method is a modified version of SOR iterative method. As 
a comparison, we consider the GS iterative method as a benchmark to assess the efficiency of KSOR 
iterative method. When the relaxation parameter 𝜔 = 1, GS iterative method is equivalent to the 
SOR iterative method. The purpose of this study is to demonstrate the efficiency of the KSOR iterative 
method for solving Eq. (1). This method is specifically designed to handle the second-order implicit 
finite difference scheme and the Caputo fractional derivative operator. To develop the formulation 
of the KSOR iterative method, we decompose the coefficient matrix A in Eq. (9) as follows:  
 
𝐴 = 𝐷 + 𝐿 + 𝑉                        (11) 
 
where D, L and V are the diagonals, lower triangulation, and upper triangulation matrices, 
respectively. The SOR iterative method can be obtained and presented in matrix form using the 
decomposition matrix in Eq. (11) as [19-21]. 
 
𝑈
~5
(46&) = (𝐷 − 𝜔𝐿),&[𝜔𝑉 + (1 − 𝜔)𝐷]𝑈

~5
(4) + (𝐷 − 𝜔𝐿),&𝑓,                  (12) 

 
where 𝑈

~5
(4) represents the unknown vector at the 𝑘#: iteration and relaxation parameter 𝜔	 ∈ 	 [1,2). 
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 Meanwhile, Using Eq. (8) and Eq. (12), the SOR scheme based on the point iteration can be 
expressed as 
 
𝑈3,5
(46&) = (1 − 𝜔)𝑈36&,5

(4) + @
A)
(𝑝3𝑈3,&,& + 𝑟3𝑈36&,& − 𝑓3,&∗ )					𝑖 = 1,2, … , 𝑛; 			𝑗 = 1,2,3, … ,𝑀              (13) 

 
Recently, [21] introduced a new type of SOR iterative method called the KSOR iterative method, 

in which the relaxation parameter ω* within the range of R	− [−2,0]. In matrix representation, the 
generic form of KSOR is written as 
 
𝑈
~5
(46&) 	= (F(1 − 𝜔∗)𝐷 − 𝜔∗𝐿),&(𝐷 + 𝜔∗𝑉)G𝑈

~5
(4) + F(1 − 𝜔∗)𝐷 − 𝜔∗𝐿G,&(𝜔∗𝑓

~
5)               (14) 

 
For the KSOR iterative approach, the relaxation parameter 𝜔 is extended to R- [-2,0]. Remember 

that the relaxation parameter for the conventional SOR iterative approach is 0	 ≤ 𝜔 < 2. Algorithm 
1 summarises the general algorithm of the KSOR iterative technique for solving SLE (9). 

 
Algorithm 1: KSOR scheme 
i. Initialize 𝑈

~5
(46&) = 0 and 𝜀 = 10,&% 

ii. Assign the optimal value of 𝜔 
iii. For 𝑖 = 1,2, … , 𝑛 − 1 and 𝑗 = 1,2,3, … ,𝑚 − 1 assign 

𝑈3,5
(46&) = (1 − 𝜔)𝑈36&,5

(4) +
𝜔
𝑞3
(𝑝3𝑈3,&,& + 𝑟3𝑈36&,& − 𝑓3,&∗ )					 

iv. Check the convergence test. If the convergence criterion i.e 
j𝑈
~
(46&) − 𝑈

~
(4)j ≤ 𝜀 = 10,&% is satisfied, go to step (v). Otherwise, go back to step (iii) 

v. Display approximate solutions. 
 

5. Numerical Experiments 
 
In this paper, numerical experiments were performed to assess the efficiency of the suggested 

method utilizing the C programming language, which is a versatile and efficient tool for 
computational tasks. To do this, we evaluated three examples of time fractional parabolic partial 
differential equations. The goal was to validate the efficiency of the KSOR and GS iterative methods, 
based on the three criteria: the number of iterations (K), the computational time in seconds (t), and 
the maximum error at three different values of α = 0.25, α = 0.50, and α = 0.75. Throughout the 
implementation of the point iterations, a convergence test was performed considering a tolerance 
error, 𝜀 = 10,&%. This ensured that the iterative methods continued until the desired level of 
accuracy was achieved.  
 
5.1 Example 1 [29] 

 
Consider the following time fractional initial boundary value problem  

 
!!"(#,$)
!#"

− !""(#,$)
!$"

= 𝑓(𝑥, 𝑡), 𝑡 ∈ [0,1], 𝑡 ≥ 0, 0 < 𝑥 < 1,                   (15) 
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Where the boundary conditions are given in 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,				𝑡 ∈ [0,1],		and initial 
condition is 𝑢(𝑡, 0) = 0, 𝑢(𝑡, 1) = 0,			0 < 𝑥 < 1 

 
Where the exact solution is 𝑢(𝑥, 𝑡) = 𝑡1sin2𝜋𝑥 and 𝑓(𝑥, 𝑡) =
1

	)(?,')
𝑡1,' sin(2𝜋𝑥) + 4𝜋1sin(2𝜋𝑥)𝑡1. 

 
5.2 Example 2 [30]  
 

Consider the following time fractional initial boundary value problem  
 
!!"(#,$)
!#"

− !""(#,$)
!$"

= 3.009011112𝑡
+
" sin(𝜋𝑥) cos(𝜋𝑥) + 4𝑡1 sin(2𝜋𝑥)𝜋1,			(0 < 𝑥 < 1, 0 < 1)   (16) 

 
Where the boundary conditions are given in 
 

𝑢(0, 𝑥) = 𝑢(1, 𝑥) − 𝑠𝑖𝑛(2𝜋𝑥),					0 ≤ 𝑥 ≤ 1, 
 

and initial condition 𝑢(𝑡, 0) = 0,				𝑢(𝑡, 1) = 0,			0 ≤ 𝑥 ≤ 1. The exact solution is 𝑢(𝑡, 𝑥) =
𝑡1 sin(2𝜋𝑥). 

 
5.3 Example 3 [31]  
 

Consider the following time fractional initial boundary value problem  
 
!!"(#,$)
!#"

= !""(#,$)
!$"

+ 𝑓(𝑥, 𝑡), 𝑥 ∈ [0,1], 𝑡 ≥ 0, 0 < 𝛼 < 1,                   (17) 
 
Where the exact solution is 𝑢(𝑥, 𝑡) = 𝑡1 (x − 1)1sin(2𝜋𝑥) and  
 

𝑓(𝑥, 𝑡) = 0.5𝑡1𝑒1𝑥1(x − 1)1𝛤(𝛼 + 3) − 𝑡(16')𝑒$(𝑥B + 6𝑥? + 𝑥1 − 8𝑥 + 2). 
 
Table 1 to Table 3 presents the results of numerical experiments for Problems 1-3 acquired by 

the implementation of GS and KSOR iterative methods at various mesh sizes, m = 512, 1024, 2048, 
4096, and 8192. 
 
Table 1 
Comparison of the number of iterations (K), computational time, t (Seconds), and maximum errors for 
iterative algorithms using Example 1 at α = 0.25, α = 0.50, and α = 0.75 

m Method α = 0.25 α = 0.50 α = 0.75 
  K t Max 

Error 
K t Max 

Error 
K t Max 

Error 
512 GS 53857 114.98 1.2810E

-03 
24085 89.63 4.4632E

-03 
6330 52.28 7.9839E

-03 
KSOR 2364 9.50 1.2801E

-03 
513 7.90 4.4628E

-03 
605 8.12 7.9838E

-03 
𝜔=-2.0346 𝜔=-2.0346 𝜔=-2.0346 

102
4 

GS 173277 517.97 1.2831E
-03 

82433 265.18 4.4645E
-03 

21924 152.50 7.9844E
-03 

KSOR 26385 86.41 1.2801E
-03 

2537 35.83 4.4632E
-03 

733 16.10 7.9839E
-03 
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𝜔=-2.0346 𝜔=-2.0346 𝜔=-2.0346 
204
8 

GS 569412 4134.55 1.2898E
-03 

276232 1662.40 4.4687E
-03 

74187 536.33
3 

7.9857E
-03 

KSOR 78926 745.85 1.2805E
-03 

8527 239.90 4.4633E
-03 

1999 36.52 7.9840E
-03 

𝜔=-2.0346 𝜔=-2.0346 𝜔=-2.0346 
409
6 

GS 968304 6223.24 1.2910E
-03 

893663 7568.23 4.4851E
-03 

24279
6 

2772.3
3 

7.9911E
-03 

KSOR 78926 1088.85 1.2814e
-03 

27707 754.98 4.4637E
-03 

6906 107.61 7.9841E
-03 

𝜔=-2.0346 𝜔=-2.0346 𝜔=-2.0346 
819
2 

GS 129246
8 

15634.8
9 

1.2981E
-03 

109366
4 

13246.3
0 

4.4913E
-03 

75507
8 

9497.1
2 

8.0123E
-03 

KSOR 213651 2345.88 1.2850E
-03 

91168 1030.26 4.4649-
03 

23731 444.45 7.9845E
-03 

𝜔=-2.0346 𝜔=-2.0346 𝜔=-2.0346 
 

Table 2 
Comparison of the number of iterations (K), computational time, t (Seconds), and maximum errors for 
iterative algorithms using Example 1 at α = 0.25, α = 0.50, and α = 0.75 

m Method α = 0.25 α = 0.50 α = 0.75 
  K t Max 

Error 
K t Max 

Error 
K t Max 

Error 
512 GS 54367 69.28 7.4630E-

04 
6985 2.36 4.4619E-

03 
6262 7.97 8.1975E-

03 
KSOR 21583 17.44 7.4557E-

04 
2462 6.63 4.4632E-

03 
1863 2.06 8.1974E-

03 
𝜔=-2.7088 𝜔=-2. 7088 𝜔=-2. 7088 

1024 GS 174667 444.32 7.4834E-
04 

82432 207.83 4.4647E-
03 

21651 61.32 8.1980E-
03 

KSOR 61284 99.40 7.4663E-
04 

25350 44.14 4.4637E-
03 

6534 12.19 8.1977E-
03 

𝜔=-2. 7088 𝜔=-2. 7088 𝜔=-2. 7088 
2048 GS 574443 2851.48 7.5512E-

04 
276231 1314.58 4.4689E-

03 
73097 384.56 8.1994E-

03 
KSOR 185180 611.75 7.4894E-

04 
86153 288.38 4.4649E-

03 
22557 76.37 8.1981E-

03 
𝜔=-2. 7088 𝜔=-2. 7088 𝜔=-2. 7088 

4096 GS 1035653 6225.50 7.5511E-
04 

564235 3576.54 4.4689E-
03 

189546 752.56 8.1980E-
03 

KSOR 299989 1321.12 7.5604E-
04 

157696 1021.95 4.4693E-
03 

51235 128.65 8.1995E-
03 

𝜔=-2. 7088 𝜔=-2. 7088 𝜔=-2. 7088 
8192 GS 2054687 9216.66 7.5532E-

04 
1307158 7635.36 4.4688E-

03 
702565 1532.56 8.1980E-

03 
KSOR 497983 2523.11 7.4663E-

04 
331544 2143.41 4.4693E-

03 
114080 246.64 8.1995E-

03 
𝜔=-2. 7088 𝜔=-2. 7088 𝜔=-2. 7088 
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Table 3 
Comparison of the number of iterations (K), computational time, t (Seconds), and maximum errors for 
iterative algorithms using Example 1 at α = 0.25, α = 0.50, and α = 0.75 

M Method α = 0.25 α = 0.50 α = 0.75 
  K t Max 

Error 
K t Max 

Error 
K t Max 

Error 
512 GS 93567 168.38 8.2271E-

03 
24584 66.33 4.5947E-

03 
5102 43.86 2.5436E-

03 
KSOR 21631 23.48 1.8086E-

04 
5833 11.63 2.1951E-

04 
1197 8.31 1.6509E-

04 
𝜔=-2.6999 𝜔=-2.6999 𝜔=-2.6999 

1024 GS 308691 1076.17 2.5983E-
03 

80866 265.29 4.6239E-
03 

17184 124.50 2.5799E-
03 

KSOR 69441 110.17 1.8203E-
04 

18673 39.68 2.1993E-
04 

3866 19.86 1.6518E-
04 

𝜔=-2.6999 𝜔=-2.6999 𝜔=-2.6999 
2048 GS 55978 2537.32 2.5983E-

03 
254484 1222.56 4.6386E-

03 
55978 140.95 2.5983E-

03 
KSOR 20936 512.31 1.8667E-

04 
56184 159.39 2.2162E-

04 
11800 56.67 1.6555E-

04 
𝜔=-2.6999 𝜔=-2.6999 𝜔=-2.6999 

4096 GS 174175 4869.22 2.6075E-
03 

750184 5845.53 4.6459E-
03 

174175 691.32 2.6075E-
03 

KSOR 56246 1194.00 2.0515E-
04 

151274 611.69 2.2809E-
04 

32395 173.13 1.6703E-
04 

𝜔=-2.6999 𝜔=-2.6999 𝜔=-2.6999 
8192 GS 2361262 53241.22 2.6075E-

03 
1990784 19038.98 4.6496E-

03 
506195 5638.00 2.6121E-

03 
KSOR 843690 5856.00 2.0515E-

04 
314776 2173.42 2.5148E-

04 
66565 475.05 1.7284E-

04 
𝜔=-2.6999 𝜔=-2.6999 𝜔=-2.6999 

 
Table 4 summarizes the percentage decrease of the KSOR iterative approach in comparison to 

the GS iterative method for the Problems 1–3. According to the results, the KSOR iterative method 
manages to lower the GS iteration numbers. Furthermore, the computational time increases as the 
mesh size increases. This clearly shows that the KSOR iterative approach is more efficient than the 
GS iterative method. 

 
Table 4 
Reduction in the number of iterations (Iter) and computational time 
(Time) for the KSOR when compared to the GS iterative approach in 
percent 

Example  α = 0.25 α = 0.50 α = 0.75 
1 Iter 83.50% - 95.61% 91.66% - 97.87% 90.44% - 96.85% 
 Time 84.94% - 91.74% 91.20% - 91.66% 84.50% - 95.32% 
2 Iter 60.30% - 72.62% 64.75% - 74.64% 70.25% - 80.20% 
 Time 72.62% - 74.83% 71.62% - 78.76% 74.15% - 83.94% 
3 Iter 64.30% - 76.88% 76.27% - 84.18% 76.54% - 86.85% 
 Time 86.05% -89.00% 82.50% - 88.60% 81.05% - 91.57% 

 
 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 48, Issue 1 (2025) 168-179 

177 
 

6. Conclusion 
 
The KSOR method was introduced in the preceding section utilizing a second-order implicit finite 

difference scheme with the Caputo fractional derivative operator. Based on the numerical results 
presented in Table 1 to Table 3, the KSOR iterative method performs better than the GS iterative 
method in terms of iteration numbers and computational time. This improved performance due to 
the selection of an optimal relaxation parameter, which helps int the achievement of an optimal 
convergence rate. Furthermore, the numerical solutions obtained from the KSOR iterative method 
demonstrate a strong correlation with those obtained from the GS iterative method [18,30]. The 
concept, introduced by [16], presents an alternative method to reduce the computational time for 
solving TFPEs. This expansion will allow for further enhancements and improvements in solving such 
equations efficiently. This study can be expanded in the future by considering the utilization of the 
half-sweep iteration concept as discussed in [18], which was inspired by Abdullah (1991) as an 
alternative approach to speed up the execution time for solving one-dimensional TFPEs. Other point 
iterations, such as [19] and red-black half-sweep iteration [33] can be utilized in addition to the half-
sweep iteration to solve the proposed problem. 
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