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 ABSTRACT 

 
The porous medium equation with source terms (PMES) is a nonlinear degenerate 
parabolic equation and serves as a model of many physical phenomena. To obtain its 
exact solution is a difficult task; hence it is necessary to find the approximate solution 
for the equation. In this paper, we proposed the 4-point Newton-Explicit Group Kaudd-
SOR (4NEGKSOR) iterative method combined with the similarity transformation to solve 
the PMES numerically and obtain its approximate solution. The similarity 
transformation will be used to reduce the PMES into an ordinary differential equation, 
and we discretized the reduced form of the PMES using the finite difference scheme. 
Further, the processes for generating an approximation solution of the PMES proceeded 
via the 4NEGKSOR, and its formulation is derived. Moreover, the proposed method was 
tested with some numerical experiments to verify its effectiveness against existing 
iterative methods, i.e., the Newton-Gauss Seidal (NGS) and the Newton-Kaudd SOR 
(NKSOR). Based on the obtained results, the 4NEGKSOR iterative method proposed in 
this work is more efficient in getting the converged solution of the PMES compared to 
NGS and NKSOR iterative methods.  
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1. Introduction 
 

The nonlinear heat equation, usually called the porous medium equation (PME), is essential in 
developing a nonlinear analysis as it provides a number of interesting applications in modeling real-
world problems. For instance, it is used to describe a groundwater flow, the flow of an ideal gas in a 
homogeneous porous medium, and heat propagation [1]. The complete form of the PME is referred 
to as the porous medium equation with source terms (PMES) [2]. The PMES is also useful in modeling 
realistic problems, such as representing population pressure in biological systems, modeling the 
unsteady heat transfer in the quiescent medium [3] describing a more realistic population dynamics 
modeling and wound healing process [4]. Hence, a solution to the PME, particularly the PMES, is 
needed in order to understand the nature of the related problems better. However, finding an 
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accurate and efficient solution is the main issue, as the PMES is cursed with nonlinearity [5]. Hence, 
an approximate solution to such equations is necessary to address those issues. Several methods, 
such as analytical dan numerical methods for solving the PMES using various approaches, have been 
suggested.  

Estévez et al., [6] investigated the functional separation of variables of the generalized porous 
medium equations with nonlinear source terms via the conditional symmetry method. On the basis 
of their results, they were able to deduce several exact solutions to the desired equation, including 
blow-up solutions, time-periodic solutions, and global solutions. Then, Pamuk, [7] utilized an 
analytical method, namely the Adomian decomposition method (ADM), to construct a series solution 
of the PMES that rapidly converges to the exact solution. In addition, Sari, [8] provided a numerical 
solution for the PMES by combining the compact finite difference method with a total variation 
diminishing third-order Runge-Kutta scheme. The proposed method is advantageous since it requires 
less storage space and solves PMES more precisely. Moreover, Biazar et al., [9] adopted the 
homotopy perturbation technique (HPM) to solve the PMES and concluded that the HPM solution 
was comparable to the ADM solution. Next, Antar and Pamuk, [10] developed a novel technique for 
selecting a more accurate approximation of the trial function for the HPM to solve nonlinear 
problems, resulting in minimal computational load and time. Then, Saberi Nik et al., [11] integrated 
the HPM with He's polynomial in order to solve the PMES. Chew et al., [4] combine the quarter-sweep 
finite difference scheme with the modified sequential over-relaxation iterative method to 
approximate the PMES solution. The authors proved that their technique produced optimal solutions 
with fewer iterations and in less time.  

Motivated by the work done by the previous researchers in solving the PMES problem and its 
applications, we propose the Newton-MKSOR iterative method for solving the PMES, we attempt to 
introduce a numerical method to solve the PMES using the Four-Point Newton-Explicit Group KSOR 
(4NEGKSOR) iterative method based on the wave variable transformation. The wave variable 
transformation is the general form of the similarity transformation that converts a partial differential 
equation into an ordinary differential equation [12]. Hence, we are able to reduce the PMES into a 
nonlinear second-order ordinary differential equation. Multiple researchers have studied the theory 
of travelling waves, particularly for PMES, in order to demonstrate the presence of travelling waves 
in such equations, as demonstrated in the reference terrain, [13, 14].  

Additionally, other authors also presented other investigations of travelling waves analogous to 
PMES [11, 14-18]. Therefore, the PMES gives solutions based on travelling waves, allowing us to 
convert the Equation into a travelling wave equation. This reduction from two dependent variables 
to a single dependent variable will substantially cut computing costs. Then, we adopt the implicit 
finite difference method to discretize the transformed PMES in order to generate its approximation 
equation. This procedure returns a system of nonlinear equations. To address the nonlinearity, we 
employed the Newton method to linearize the nonlinear system into a simpler-to-solve linear system 
of equations. The proposed method was highly inspired by the method proposed by [20] to solve 
linear partial differential equations. Thereby, we extended their work to a nonlinear partial 
differential equation (PDE) that suffers from nonlinearity. The next section discussed the 
development of the approximate Equation for the PMES using the finite difference scheme. Then, we 
presented the formulation of the 4NEGKSOR iterative method to solve the PMES. The experiment's 
numerical findings will then be presented and analyzed. This paper concludes with a conclusion on 
our research. 
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2. Development of the Finite Difference Approximation Equation 
 

The 1-dimensional porous medium equation with source terms is defined as [9]: 
 
𝜕𝑢

𝜕𝑡
= 𝑎

𝜕

𝜕𝑡
(𝑢𝑚

𝜕𝑢

𝜕𝑥
) + 𝑏𝑢𝑟                       (1) 

 
such that 𝑎 and 𝑏 are constants, whereas 𝑚 and 𝑟 are known rational numbers. Usually, 𝑥 will be 
treated as a spatial variable while 𝑡 as a temporal variable. For convenience, we will only consider 
𝑥 ∈ [0,1] and 𝑡 > 0 in this study. To begin, we expand Eq. (1) into Eq. (2). 
 
𝜕𝑢

𝜕𝑡
= 𝑎𝑢𝑚

𝜕

𝜕𝑡
(𝑢𝑚

𝜕𝑢

𝜕𝑥
) + 𝑏𝑢𝑟                       (2) 

 
Then, Eq. (2) will be simplified from 𝑢(𝑥, 𝑡) into 𝑢(𝜉) to utilising the wave variable transformation, 

which is dependent on only one variable. Then, Equation (2) will be reduced from 𝑢(𝑥, 𝑡) into 𝑢(𝜉)  
by using the wave variable transformation, which depends only on one variable. The traveling wave 
variable 𝜉 is given as 𝜉 = 𝑥 − 𝑐𝑡, where 𝑐 is a constant representing the wave speed [12, 15]. 
Furthermore, we use the chain rule on 𝜉 to get the appropriate changes for 𝑢𝑡, 𝑢𝑥, and 𝑢𝑥𝑥 with 
respect to 𝜉, namely, 𝑢𝑡 = −𝑐𝑢

′, 𝑢𝑥 = 𝑢
′  and 𝑢𝑥𝑥 = 𝑢

′′. Substituting these changes into Eq. (2) and 
thus, the equivalent traveling wave equation for PMES can be stated as: 
 

−𝑐
𝑑𝑢

𝑑𝜉
= 𝑎𝑢𝑚

𝑑2𝑢

𝑑𝜉2
+ 𝑎𝑚𝑢𝑚−1 (

𝑑𝑢

𝑑𝜉
)
2
+ 𝑏𝑢𝑟,                 (3) 

 
where −𝑐𝑡 ≤ 𝜉 ≤ 1 − 𝑐𝑡 with 𝑡 > 0. Here, we are now dealing with an ODE instead of a PDE. Eq. (3) 
is discretized using the second-order central difference scheme given as [21, 22]: 
 

𝑢′(𝜉𝑖) =
𝑢𝑖+1−𝑢𝑖−1

2ℎ
 ,                       (4) 

 

𝑢′′(𝜉𝑖) =
𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

ℎ2
  ,                      (5) 

 
for 𝑖 = 1,2,3,⋯ , (𝑀 − 1), where ℎ = ((1 − 𝑐𝑡) − (−𝑐𝑡))/𝑀 and 𝑀 being the subinterval in 𝜉 direction. 
Figure 1 illustrates the finite grid network described by Eq. (3). 
 

 
Fig. 1. Uniform node points for the solution  
domain for Eq. (1) 

 
Substituting Eq. (4) and Eq. (5) into Eq. (3) will result in the Eq. (6), which is the finite difference 
approximation Eq. (2). 
 

−𝑐 (
𝑢𝑖+1−𝑢𝑖−1

2ℎ
) = 𝑎𝑢𝑖

𝑚 (
𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

ℎ2
) + 𝑎𝑚𝑢𝑖

𝑚−1 (
𝑢𝑖+1−𝑢𝑖−1

2ℎ
)
2
+ 𝑏𝑢𝑖

𝑟,                (6) 

 
Furthermore, we can rewrite Eq. (6) into Eq. (7): 
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𝛼(𝑢𝑖+1 − 𝑢𝑖−1) = 𝛽𝑢𝑖
𝑚(𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1) + 𝛾𝑚𝑢𝑖

𝑚−1(𝑢𝑖+1 − 𝑢𝑖−1)
2 + 𝑏𝑢𝑖

𝑟 ,               (7) 
 
where 𝛼 = −𝑐/2ℎ, 𝛽 = 𝑎/ℎ2, and 𝛾 = 𝑎/4ℎ2. Next, to form a system of equations, we rearrange 
the Eq. (7) into a nonlinear function of, 
 

𝑓(𝑢) = 𝛼(𝑢𝑖+1 − 𝑢𝑖−1) − 𝛽𝑢𝑖
𝑚(𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1) − 𝛾𝑚𝑢𝑖

𝑚−1(𝑢𝑖+1 − 𝑢𝑖−1)
2 − 𝑏𝑢𝑖

𝑟 ,                 (8) 

 

and applied the Newton method [23] to generate its corresponding linear system, which can be 
expressed as:  
 

𝐽(𝑢(𝑘))𝛿𝑢(𝑘) = −𝑓(𝑢(𝑘)) ,                     (9) 
 

where  𝑢 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑀−1)
𝑡 , 𝛿𝑢 = (𝛿𝑢1, 𝛿𝑢2, ⋯ , 𝛿𝑢𝑀−1)

𝑡, 𝒇 = (𝑓1, 𝑓2, ⋯ , 𝑓𝑀−1)
𝑡, and 𝑘 is the 

index of iteration. The 𝐽 notation in Eq. (9) is referred to as the Jacobian matrix and is defined as: 
 

𝐽(𝑢(𝑘)) =

(

 
 
 

𝜕𝑓1(𝑢)

𝜕𝑢1

𝜕𝑓1(𝑢)

𝜕𝑢2
⋯

𝜕𝑓1(𝑢)

𝜕𝑢𝑀−1
𝜕𝑓2(𝑢)

𝜕𝑢1

𝜕𝑓2(𝑢)

𝜕𝑢2
⋯

𝜕𝑓2(𝑢)

𝜕𝑢𝑀−1

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑀−1(𝑢)

𝜕𝑢1

𝜕𝑓𝑀−1(𝑢)

𝜕𝑢2
⋯

𝜕𝑓𝑀−1(𝑢)

𝜕𝑢𝑀−1 )

 
 
 

(𝑀−1)×(𝑀−1)

(𝑘)

               (10) 

 

Finally, by solving the system of linear equation in Eq. (9), we will obtain the value of 𝛿𝑢(𝑘) that 

permits us to compute the approximate solutions 𝑢(𝑘) using the formula:  
 

𝑢(𝑘+1) = 𝛿𝑢(𝑘) + 𝑢(𝑘)                                             (11) 
 
3. Implementation of the 4-Point Newton-KSOR Method 
 

The Jacobian matrix in Eq. (9) is a large-scale tridiagonal matrix subjected to the value of 𝑀; hence 
the matrix is sparse. Therefore, we utilized the iterative approach to take full advantage of this 
sparsity as its implementation in computer programming becomes simpler. In this section, we 
described the development of the 4EGKSOR as our linear solver to Eq. (9). Recall that the formulation 
of the KSOR iterative method is given by [24]: 
 

𝑥𝑖
(𝑘+1)

=
1

1+𝜔
[𝑥𝑖
(𝑘)
+

𝜔

𝑎𝑖𝑖
(𝑏𝑖 −∑ 𝑎𝑖𝑗𝑥𝑗

(𝑘+1)
−

𝑖−1

𝑗=1
∑ 𝑎𝑖𝑗𝑥𝑗

(𝑘)
𝑛

𝑗=𝑖+1
)]                           (12) 

 
where 𝑎𝑖𝑗 is the matrix entries of the matrix 𝐴 in some systems of linear equations, say 𝐴𝒙 = 𝑏, and 

𝑏 = (𝑏1
, 𝑏2
, ⋯ , 𝑏𝑛)

𝑡.  The 𝜔 notation is the relaxation parameter that takes values on ℝ \[−2,0]. Then, 

to facilitate the iteration process, we employ the 4–Point Explicit Group iterative method that was 

proposed by Evans to solve a large sparse linear system [25]. The 4-point Explicit Group iterative 

method is constructed based on the linear system Eq. (8), and the solution domain will have several 

completed groups of four-points and ungroup points. In particular, the ungrouped points are handled 
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using a three-points iteration scheme [25].  Prior to that, the Jacobian matrix in Eq. 8 can be expressed 

as: 

𝐽(𝑢(𝑘)) =

(

 
 
 
 
 

𝑏1 𝑐1 0 0 0 0 0 ⋯ 0 0 0
𝑎2 𝑏2 𝑐2 0 0 0 0 ⋯ 0 0 0
0 𝑎3 𝑏3 𝑐3 0 0 0 ⋯ 0 0 0
0 0 𝑎4 𝑏4 𝑐4 0 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 ⋯ 𝑎𝑀−2 𝑏𝑀−2 𝑐𝑀−2
0 0 0 0 0 0 0 ⋯ 0 𝑎𝑀−1 𝑏𝑀−1)

 
 
 
 
 

(𝑀−1)×(𝑀−1)

(𝑘)

                              (13) 

 
where 𝑎𝑖 = 𝜕𝑓𝑖/𝜕𝑢𝑖−1 , 𝑏𝑖 = 𝜕𝑓𝑖 𝜕𝑢𝑖⁄  , and 𝑐𝑖 = 𝜕𝑓𝑖 𝜕𝑢𝑖+1⁄   for 𝑖 = 1,2,3,⋯ , (𝑀 − 1). Now, the 4-
point EG iterative method for the completed group is given by the following equation [26]: 
 

(

 
 

𝛿𝑢𝑝
𝛿𝑢𝑝+1
𝛿𝑢𝑝+2
𝛿𝑢𝑝+3)

 
 

(𝑘+1)

=

(

 
 

𝑏𝑝 𝑐𝑝 0 0

𝑎𝑝+1 𝑏𝑝+1 𝑐𝑝+1 0

0 𝑎𝑝+2 𝑏𝑝+2 𝑐𝑝+2
0 0 𝑎𝑝+3 𝑏𝑝+3)

 
 

−1

(

𝑠𝑝
𝑠𝑝+1
𝑠𝑝+2
𝑠𝑝+3

)                (14) 

 

where  𝑝 = 1,5,⋯ , (𝑀 − 7), ( )

1

k

p p p p
s f a u

−
= − −   , 𝑠𝑝+1 = −𝑓𝑝+1, 𝑠𝑝+1 = −𝑓𝑝+1, 𝑠𝑝+2 = −𝑓𝑝+2, and 

𝑠𝑝+3 = −𝑓𝑝+3 − 𝑎𝑝+3𝛿𝑢𝑝+4
(𝑘) . To solve the ungroup points, we consider the following iterative 

method: 
 

(

𝛿𝑢𝑝
𝛿𝑢𝑝+1
𝛿𝑢𝑝+2

)

(𝑘+1)

= (

𝑏𝑝 𝑐𝑝 0

𝑎𝑝+1 𝑏𝑝+1 𝑐𝑝+1
0 𝑎𝑝+2 𝑏𝑝+2

)

−1

(

𝑠𝑝
𝑠𝑝+1
𝑠𝑝+2

)                             (15) 

 

where 𝑝 = (𝑀 − 3), 𝑠𝑝 = −𝑓𝑝 − 𝑎𝑝𝛿𝑢𝑝−1
(𝑘) , 𝑠𝑝+1 = −𝑓𝑝+1, and 𝑠𝑝+2 = −𝑓𝑝+2 − 𝑐𝑝+2𝛿𝑢𝑝+3

(𝑘) . As a result, 

the 4-point Explicit Group KSOR iterative method may be derived from Eq. (12), and the formulation 
of the 4-point Explicit Group iterative method as: 
 

(

 
 

𝛿𝑢𝑝
𝛿𝑢𝑝+1
𝛿𝑢𝑝+2
𝛿𝑢𝑝+3)

 
 

(𝑘+1)

=
1

1+𝜔

(

 
 

𝛿𝑢𝑝
𝛿𝑢𝑝+1
𝛿𝑢𝑝+2
𝛿𝑢𝑝+3)

 
 

(𝑘)

+
𝜔

1+𝜔

(

 
 

𝑏𝑝 𝑐𝑝 0 0

𝑎𝑝+1 𝑏𝑝+1 𝑐𝑝+1 0

0 𝑎𝑝+2 𝑏𝑝+2 𝑐𝑝+2
0 0 𝑎𝑝+3 𝑏𝑝+3)

 
 

−1

(

𝑠𝑝
𝑠𝑝+1
𝑠𝑝+2
𝑠𝑝+3

)                           (16) 

 
for 𝑝 = 1,5,⋯ , (𝑀 − 7) and for 𝑝 = (𝑀 − 3). 
 

(

𝛿𝑢𝑝
𝛿𝑢𝑝+1
𝛿𝑢𝑝+2

)

(𝑘+1)

=
1

1+𝜔
(

𝛿𝑢𝑝
𝛿𝑢𝑝+1
𝛿𝑢𝑝+2

)

(𝑘)

+
𝜔

1+𝜔
(

𝑏𝑝 𝑐𝑝 0

𝑎𝑝+1 𝑏𝑝+1 𝑐𝑝+1
0 𝑎𝑝+2 𝑏𝑝+2

)

−1

(

𝑠𝑝
𝑠𝑝+1
𝑠𝑝+2

)               (17) 
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In addition, we presented the general algorithm for the 4-point Newton-Explicit Group KSOR 
iterative method to solve the PMES as follows.  
Algorithm: 4-point Newton-Explicit Group KSOR iterative method 

i. Set the value of 𝑢(0) = [−𝑐𝑡 + (1 − 𝑐𝑡)]/2, 𝜀𝑢 = 10
−10, 𝜀𝛿𝑢 = 10

−10. 

ii. Set 𝛿𝑢(0) = 0. 
iii. Calculate 𝐽 and −𝑓. 
iv. Iterate the Eq. (16) and Eq. (17). 

v. Check whether  ‖𝛿𝑢(𝑘+1) − 𝛿𝑢(𝑘)‖ ≤ 𝜀𝛿𝑢. If true, then proceed to step vi. Else, repeat step 

ii. 

vi. Calculate 𝑢(𝑘+1) = 𝛿𝑢(𝑘) + 𝑢(𝑘). 

vii. Check whether ‖𝑢(𝑘+1) − 𝑢(𝑘)‖ ≤ 𝜀𝑢. If true, then display approximate solutions, 𝒖. Else, 

repeat step i until iv. 
The optimum value of the relaxation parameter 𝜔 is estimated by running a computer programming 
with multiple values of 𝜔 until the smallest iteration is achieved. 
 
4. Numerical Experiments 
 

In this section, we analyze the performance of the 4-Point Newton-EG KSOR (4NEGKSOR) iterative 
methods by comparing it to the Newton-Gauss Seidel (NGS) and Newton-KSOR (NKSOR) iterative 
methods, which act as benchmarks for solving PMES. Four PMES problems are considered, and the 
number of iterations, the execution time, and the maximum absolute error required by each method 
to get numerical results are recorded. As for the tolerance error, 𝜀 = 10−10 is utilized to determine 
the convergence of the solution at various matrix sizes, i.e., 𝑀 = 256, 512, 1024, 2048 and 4096. 
The following are the problems of interest. 
 
Example 1 [14] 
Consider 𝑚 = −1 and 𝑟 = 2  in Eq. (1). Thus, the Equation becomes:  
 
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑢−1

𝜕𝑢

𝜕𝑥
) + 𝑢2                       (18) 

 
which is a quasilinear fast diffusion equation with a quadratic reaction term. A solution for this 
equation which was provided by Polyanin and Zaitsev [14] was adopted for accuracy checking, 
namely: 
 

𝑢(𝑥, 𝑡) = (
(𝑥+𝐶1)

2

2𝑡
+ 𝐶2𝑡 − 2𝑡ln|𝑡|)

−1

 , 𝑡 ≠ 0,                              (19) 

 
where 𝑐1 and 𝑐2 are arbitrary constants. In this implementation, 𝑐1 and 𝑐2  have been set to 0.35 and 
1.35, respectively. 
 
Example 2 [14] 
Consider 𝑚 = 3  and 𝑟 = 1 in Eq. (1), which gives us an equation:  
 
𝜕𝑢

𝜕𝑡
= 𝑎

𝜕

𝜕𝑥
(𝑢3

𝜕𝑢

𝜕𝑥
) − 𝑏𝑢                     (20) 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 60, Issue 1 (2026) 39-48 

 
 

45 
 

that describes the classical case of a gravity current in air. Polyanin and Zaitsev [14] gave a particular 
solution for this Equation which is 
 

𝑢(𝑥, 𝑡) = (𝐴𝑒
2𝑏𝑚𝑡

𝑚+2 −
𝑏𝑚2(𝑥+𝐵)2

2𝑎(𝑚+2)
)

1

𝑚
,                    (21) 

 
where 𝐴 and 𝐵 are arbitrary constants. For this problem, we set 𝐴, 𝑎, 𝐵 and 𝑏 to be 1.35, 1, 0.35, and 
1, respectively. 
 
Example 3 [7] 
Taking 𝑚 = 1  and 𝑟 = 0 in Eq. (1) then, it becomes: 
 
𝜕𝑢

𝜕𝑡
= 𝑎

𝜕

𝜕𝑥
(𝑢

𝜕𝑢

𝜕𝑥
) + 𝑏                      (22) 

 
which is the heat conduction equation with source, and 𝑢(𝑥, 𝑡) = 𝑥 + (𝑎 + 𝑏)𝑡 is the given exact 
solution. We set 𝑎 and 𝑏 to be 1 and –3, respectively. 
 
Example 4 [4] 
Let us take 𝑚 = 2 and 𝑟 = 1  in Eq. (1). Therefore Eq. (1) becomes:  
 
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑢2

𝜕𝑢

𝜕𝑥
) − 𝑢                                  (23) 

 
which represents a slow diffusion of particles on a fresh membrane. The solution for this problem 
provided by Chew et al. was utilized to verify the accuracy of the numerical solutions, which is 
 

𝑢(𝑥, 𝑡) = (𝑥 −
2

𝛽
) 𝑒𝛽𝑡 + (

2

𝛽
) 𝑒2𝛽𝑡                                 (24) 

 
where 𝛽 is an arbitrary constant that has been set to −1. 

The numerical computations were executed on a laptop computer with an Intel(R) Core i7-6500U 
processor clocked at 2.60GHz and 8 GB of RAM, using C code generated by Visual Studio Code. The 
numerical results of this experiment are tabulated in Table 1, Table 2, and Table 3. Then the 
summarization of the finding is shown in Table 3.  

The collected results in Tables 1, 2, and 3 show that the 4-Point Newton-EGKSOR iterative method 
required much less iteration and computation time than the N-GS iterative method. The reduction in 
the number of iterations and computation time (in seconds), referred to in Table 3, is about 99.13% 
- 99.91%, and 97.40% - 99.86%, respectively. Similarly, in Table 3, we can show that the 4-Point 
Newton-EGKSOR required fewer iterations and less calculation time against Newton-KSOR, which is 
about 51.18% - 77.06% and 16.00% - 80.25%, respectively. In terms of accuracy, all methods have 
good agreement. However, the 4-Point Newton-EGKSOR and Newton-KSOR iterative methods are 
slightly accurate compared to NGS. 
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  Table 1 
  The iterations count (𝑘), computational time (𝑡), and maximum absolute error (𝜀) generated by NGS,    
  NKSOR, and 4NEGKSOR at different grid sizes for Examples 1 and 2 

M Method Example 1 Example 2 

  k t (sec) 𝜀 k t (sec) 𝜀 

256 
 
 
 
 

NGS 165519 0.75 1.8667E-04 289575 1.25 1.6586E-03 

NKSOR 2975 0.02 1.8709E-04 4346 0.03 1.6583E-03 

 𝜔 = −2.0240    𝜔 = −2.0260     

4NEGKSOR 1399 0.02 1.8709E-04 2079 0.02 1.6583E-03 

 𝜔 = −2.0462   𝜔 = −2.0260   
512 
 
 
 
 

NGS 547778 4.63 1.8766E-04 992710 8.33 1.6599E-03 
NKSOR 12039 0.16 1.8705E-04 8630 0.12 1.6584E-03 
 𝜔 = −2.0120   𝜔 = −2.0130    
4NEGKSOR 2762 0.03 1.8707E-04 4076 0.05 1.6584E-03 
 𝜔 = −2.0231   𝜔 = −2.0260   

1024 
 
 
 
 

NGS 1730412 28.93 1.9423E-04 3319955 55.51 1.6644E-03 
NKSOR 11667 0.30 1.8706E-04 32772 0.85 1.6584E-03 
 𝜔 = −2.0061   𝜔 = −2.0065    
4NEGKSOR 5420 0.16 1.8706E-04 8035 0.22 1.6584E-03 
 𝜔 = −2.0117   𝜔 = −2.0260   

2048 
 
 
 
 

NGS 5121184 171.14 2.2096E-04 10749133 360.14 1.6880E-03 
NKSOR 23221 1.15 1.8706E-04 34071 1.71 1.6584E-03 
 𝜔 = −2.0032   1.8706E-04 𝜔 = −2.0033    
4NEGKSOR 10709 0.55  15779 0.81 1.6584E-03 
 𝜔 = −2.0059   𝜔 = −2.0260   

4096 
 
 
 
 

NGS 13829405 925.35 3.3397E-04 33849665 2263.30 1.7731E-03 
NKSOR 45132 4.48 1.8706E-04 68403 7.46 1.6584E-03 
 𝜔 = −2.0016  1.8706E-04 𝜔 = −2.0017   
4NEGKSOR 21024 2.11  31028 3.11 1.6584E-03 
 𝜔 = −2.0030   𝜔 = −2.0260   

 
 Table 2 
 The iterations count (𝑘), computational time (𝑡), and maximum absolute error (𝜀) generated by NGS,  
 NKSOR, and 4NEGKSOR at different grid sizes for Examples 3 and 4 
M Method Example 3 Example 4 

  k t (sec) 𝜀 k t (sec) 𝜀 

256 
 
 
 
 

NGS 228186 0.97 6.0643E-07 189790 0.81 4.5050E-03 

NKSOR 3224 0.02 1.5739E-10 3433 0.03 4.5052E-03 

 𝜔 = −2.0255     𝜔 = −2.0300    

4NEGKSOR 1574 0.01 9.5551E-11 1649 0.02 4.5052E-03 

 𝜔 = −2.0518   𝜔 = −2.0618   
512 
 
 
 
 

NGS 779725 6.55 2.4306E-06 649967 5.54 4.5056E-03 
NKSOR 6424 0.09 1.7851E-10 6847 0.10 4.5052E-03 
 𝜔 = −2.0128   𝜔 = −2.0150    
4NEGKSOR 3118 0.06 1.1923E-10 3256 0.05 4.5052E-03 
 𝜔 = −2.0258   𝜔 = −2.0306   

1024 
 
 
 
 

NGS 2599500 43.52 9.9409E-06 2217716 38.24 4.5093E-03 
NKSOR 12782 0.33 2.3041E-10 25621 0.65 4.5052E-03 
 𝜔 = −2.0065   𝜔 = −2.0038    
4NEGKSOR 6186 0.16 1.3166E-10 6386 0.17 4.5052E-03 
 𝜔 = −2.0129   𝜔 = −2.0154   

2048 
 
 
 

NGS 8416693 281.10 4.4445E-05 7382980 246.89 4.5241E-03 
NKSOR 25327 1.28 3.0697E-10 27093 1.35 4.5052E-03 
 𝜔 = −2.0033    𝜔 = −2.0038    
4NEGKSOR 12222 0.60 1.9517E-10 12533 0.64 4.5052E-03 
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Table 2. Continued 
The iterations count (𝑘), computational time (𝑡), and maximum absolute error (𝜀) generated by NGS, 
NKSOR, and 4NEGKSOR at different grid sizes for Examples 3 and 4 
M Method Example 3 Example 4 

  k t (sec) 𝜀 k t (sec) 𝜀 

  𝜔 = −2.0065   𝜔 = −2.0077   
4096 
 
 
 
 

NGS 26872893 1802.07 1.5823E-04 23636169 1583.74 4.5851E-03 
NKSOR 50082 4.91 5.4396E-10 53123 5.21 4.5052E-03 
 𝜔 = −2.0017   𝜔 = −2.0020   
4NEGKSOR 24144 2.56 3.2026E-10 24584 2.93 4.5052E-03 
 𝜔 = −2.0033   𝜔 = −2.0039   

 
 Table 3 
  The reduction percentage by the 4NEGKSOR against  
  NGS and NKSOR 

Example Method K (%) Seconds t (%) 

1 
 

NGS 99.15 - 99.85 97.99 - 99.77 
NKSOR 52.97 - 77.06 37.50 - 80.25 

2 
 

NGS 99.28 - 99.91 98.80 - 99.86 
NKSOR 52.16 - 75.48 52.58 - 73.76 

3 
 

NGS 99.31 - 99.91 98.97 - 99.86 
NKSOR 51.18 - 51.79 36.26 - 58.33 

4 
 

NGS 99.13 - 99.90 97.40 - 99.82 
NKSOR 51.97 - 75.08 16.00 - 73.64 

 
4. Conclusions 
 

In this study, the 4-Point Newton-Explicit Group KSOR (4N-EGKSOR) based on wave variable 
transformation is considered to solve porous medium equations with source terms (PMES). The 
integration of the wave transformation in the proposed method allows us to transform the original 
PMES into the traveling wave equation, which only depends on the spatial variable. Therefore, we do 
not have to calculate the approximate solution at each time step, hence minimizing the 
computational time. Then, the performance of the proposed method was examined by solving 
different PMES problems, and it was found, based on the numerical results, that the method is 
effective and accurate for handling such problems. Thus, the proposed method can provide a 
promising alternative way to approximate solutions for nonlinear parabolic partial differential 
equations that admit traveling wave solutions. 
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