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ABSTRACT

Software-defined networking (SDN) is being more widely acknowledged as a
beneficial method for improving network flexibility and administration operations.
The selection of controller architecture significantly impacts SDN performance. This
study assesses the efficiency of centralized and multi-controller architectures in
Software-Defined Networking (SDN) using the Mininet emulator and Ryu Controller
for experimentation. Performance measures such as throughput, jitter, and memory
utilization are examined. The study shows that the selection of controller design
significantly impacts network performance. The centralized architecture showed
increased throughput along with increasing memory usage. In some cases, the multi-
controller equal role setup used less memory but had slightly higher jitter. The results
emphasize the importance of carefully designing and optimizing controller
architectures in SDNs to achieve specified performance objectives.
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1. Introduction

Software-defined networking (SDN) has emerged as a revolutionary paradigm in recent years.
According to [1], SDN increases network flexibility, scalability, and management by separating the
control plane from the data plane. SDN makes it possible to centralize the management and control
of network resources, which makes dynamic network setups and the enforcement of policies easier.
The controller architecture used in SDN is a crucial element that determines the operation of the
control plane and its interaction with the network infrastructure, as referenced in [2]. The overall
performance of SDN is substantially impacted by the selected controller architecture.

The architecture is the most essential aspect of the SDN concept since it can overcome the
constraints of traditional networks through its design, as stated in [3]. Figure 1 displays how the

* Corresponding author.
E-mail address: virakwan@studentmail.unimap.edu.my

https://doi.org/10.37934/araset.57.2.146156



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 57, Issue 2 (2026) 146-156

147

SDN architecture separates the network into separate layers of data plane, control plane, and
management plane. There are two (2) fundamental features of SDN architecture. The first is the
separation of the data and control planes, and the second is the integration of network intelligence
into a centralized controller. A controller must have connectivity with all network elements to
control the network.

Fig. 1. Three-layer SDN architecture

1.1 Controller Architectures in Software-Defined Networks

Two well-known types of controller architecture are the centralized controller architecture and
the distributed controller architecture, also known as the multi-controller architecture, as seen in
Figure 2. The entire network is managed by a single controller in a centralized control architecture.
As mentioned in [4], this controller is responsible for making global decisions and carrying out
network policies. On the other hand, as noted by [5], distributed controller design enables localized
decision-making and scalability by distributing control responsibilities across several controllers.

(a) (b)
Fig. 2. SDN controller architecture (a) Centralized control plane (b) Distributed control plane
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In connection with the existence of the type of controller architecture, numerous types of
OpenFlow SDN controllers based on their control plane architecture are available. Most SDN
controllers utilize the OpenFlow protocol to establish SDN communication standards for interaction
between the controller and other networking devices, as referenced in [6]. NOX was the first
OpenFlow controller released in early 2008, as mentioned in reference [7]. Initially, NOX was
delivered in a single-threaded manner. Later in 2011, the current version of NOX was released,
which is a C++ based controller that now enables a multithreaded learning switch application. In
2010, several alternative OpenFlow controllers were introduced. Beacon is a high-performance,
multithreaded OpenFlow controller developed in Java as referenced in [8]. This controller can
terminate both existing and new applications in real time as described in [9]. Ryu controller is a
commonly used open-source SDN controller in research evaluations. The Python-based controller
enables centralized control in Software-Defined Networks by supporting several OpenFlow versions.
Ryu may be expanded to accommodate distributed controller designs and can be coded in the C
programming language as specified in [10]. According to [11], developers can quickly design new
network management and control applications by using Ryu's components, which provide excellent
programming interfaces. Existing components can be readily updated and integrated into existing
networks to meet the evolving requirements of applications that use these components. Ryu is a
good alternative for small commercial and experimental applications as mentioned in references [7]
and [10] due to its excellent characteristics.

1.2 Related Work

Software-defined networking (SDN) has garnered significant attention in the research
community, leading to numerous studies investigating various aspects of control architectures in
SDNs. This section reviews the related work that has examined the performance evaluation of
control architectures in SDN, focusing on scalability and network performance. Numerous studies
have evaluated the effectiveness of controller architectures in SDN. In earlier works, scalability
evaluation has taken significant focus. The constraints of centralized controller architectures in
large-scale networks have been studied, with a focus on the difficulties encountered when handling
growing network size and traffic volume. Author in [12] examined the performance of various
topological SDN networks, including bus, star, and tree, using a POX centralized controller. They
observed that networks with a greater number of hosts had significantly lower performance, and
the POX controller was incredibly simple to use and configure but struggled in complex networks
with higher bandwidths.

The author in [7] assessed the performance of the parameters bandwidth, throughput, round-
trip time, jitter, and packet loss between nodes. In this study, a Mininet emulator with a controller
RYU with a switching hub component, one Open Flow switch, and three nodes is employed. Similar
research was done by Bhardwaj and Panda [10] to examine the performance of the bandwidth,
throughput, and roundtrip time for a four-host bus SDN network topology employing Ryu as the
centralized controller. The primary focus of these investigations has been measuring network traffic
analysis for node-to-node performance. The author of [13] compared the impact of heavy network
traffic on centralized and distributed SDN architectures. The authors of this study implemented
a Mininet emulator with the POX SDN controller to evaluate the average delay, maximal delay,
average jitter, and average bitrate of complex topologies. In [14] and [15], a comparison was made
between the effectiveness of centralized and distributed controllers using a load-
balancing algorithm. A Mininet platform with a POX controller was used to simulate an SDN
environment. According to the findings of this study, distributed SDN controllers are the best
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option for achieving higher performance and reducing the bottleneck, single point of failure, and
scalability issues that plague centralized controllers. Lastly, the authors of [11] and [16] focused on
the comparison of various types of centralized and distributed controllers. The authors use the
Mininet simulator to build numerous networks with different topologies, various nodes, and
OpenFlow switches for varying SDN controllers such as beacon, POX, ONOS, IRIS, RYU, ODL, and
floodlight. In [16] the author obtained results for comparing the characteristics of centralized and
distributed controllers by focusing on the performance, bandwidth, and round-trip time of
Floodlight and Open Daylight (ODL) controllers. The results reveal that ODL outperforms Floodlight
in the growing nature of a single topology. Floodlight, on the other hand, outperforms in both linear
and tree topology. Additionally, the author recommends a centralized controller over a distributed
controller for complex structures. However, the author of [11] determined that Open Daylight (ODL)
as a distributed controller is the best choice for a full-detailed SDN controller. As a result, the
author proposed that future research compare ODL or RYU controllers with further
implementations.

According to previous research, most researchers concentrated on analysing either centralized
or multi-controller architectures separately. Few research has used the Mininet emulator and Ryu
controller to conduct a direct and comprehensive comparison of these architectures. The
motivation for this research was the need to fill this research gap. The proposed study will
contribute to the existing body of knowledge on controller architectures in SDN by addressing these
research gaps and providing a comprehensive evaluation and comparison of centralized and multi-
controller architectures. This research study has significance for academics, researchers, network
architects, and operators to acquire a better understanding of each architecture's performance
features, strengths, and weaknesses. It will aid in making educated judgments regarding the
selection of controller architecture for specific network requirements. Therefore, the objective of
this study is to evaluate and compare centralized and multi-controller architectures in SDN using
the Mininet emulator and Ryu Controller. The effects of centralized and multi-controller
architectures on network jitter, throughput, and memory usage are examined.

2. Methodology

The Mininet network emulator is used to construct three networks for this study. Mininet
includes MiniEdit, a simple graphical user interface editor, and CLI-based commands for designing
standard or custom topologies. This study utilized two virtual machines. The first system executes
Mininet, which emulates network topology, while the second system runs the Ryu controller. The
two virtual machines must be interconnected and run experiment-required services, including SSH,
the X Server software client, and Wireshark. Mininet Python API version 2.3.0d1 was installed
together with Open vSwitch (OVS) version 2.5.4 and Ryu controller on Ubuntu 20.04.4 LTS. In
addition, the Xming server was employed to visualize and generate traffic between the source and
destination in Wireshark. The configurations are constructed with Open Vswitches (OVS) software
switches, and the Southbound control traffic protocol is OpenFlow version 1.3.

Three custom network topologies are constructed with four switches and four hosts
communicating to a single controller as a centralized topology, and two multi-controller topologies
with two controllers performing equal and master-slave roles, respectively. The RYU controller has
been deployed in the control plane via ports 6653 and 6654 and the loopback IP address 127.0.0.1.
The range of IP addresses assigned to all hosts and switches is 10.1.1.0/24. After network
topologies have been established, tools such as ping and iperf are used to compare the
performance of centralized and multi-controller SDN architectures in terms of throughput under
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TCP data flow, jitter, and memory utilization. The Wireshark protocol analyzer is utilized to monitor
and gather network traffic statistics.

2.1 Centralized SDN Controller Architecture

In the initial stage of SDN design, a single controller manages the entire network. In Figure 3(a)
exhibits the network topologies created in Mininet connected to an RYU controller (C0) and
manages four switches in the network. Figure 3(b) shows the sequence processes of OpenFlow
packet processing in centralised network topology. In this example, when the source host (h1)
sends a new packet to the OpenFlow switch (s1), the s1 sends (packet IN) messages to the RYU
controller (C0) to get the routing for the new packet. After getting the response message from the
controller, the switch forwards the packet to the destination device. Finally, the packet reaches the
destination host (h2) successfully. The controller plays a major role in the process of traffic
transmission. Ping command tests were run inside Mininet CLI to test the connection in each
topology. The data traffic transmitted from node to node is monitored using Wireshark. The
performance is measured in terms of throughput under TCP data flow, and the jitter and ‘top’
commands are used to display real-time information on the controller’s memory usage.

(a) (b)
Fig. 3. SDN network topology (a) Centralized network topology (b) Sequence processes of OpenFlow
packet in centralized network topology

2.2 Multi-Controller SDN Architecture

According to [17], a switch could be connected to several controllers simultaneously. A switch
may have a maximum of one controller in the master state and multiple controllers in equal roles,
or slave states, connected at the same time. Each controller may send a role request message to
the switch to inform it of its role, and the switch is required to keep track of each controller
connection's role. Therefore, to simulate the performance of multi-controller SDN architecture,
network topology with two controllers has been designed. Figure 4(a) shows the topology of multi-
controller SDN architecture with equal roles. The controller with an equal role has complete access
to the OpenFlow switch. It receives all asynchronous communications from the switch and
transmits commands to change its state as illustrated in Figure 4(b). Figure 5(a) exhibits that each
switch is connected to a single master controller and a slave controller. Figure 5(b) illustrates the
slave role controller that has read-only access to the switch. It does not receive asynchronous
messages, unlike the master role controller, which has full access to the switch, which is the same
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finding as earlier research by [18-19]. In addition, the master controller is used to process packet-IN
requests from switches, while the slave controllers serve as backups.

(a) (b)
Fig. 4. SDN network topology (a) multi-controller with equal role network topology (b) Sequence
processes of OpenFlow packet in multi-controller with equal role network topology

(a) (b)
Fig. 5. SDN network topology (a) multi-controller with master-slave role network topology (b) Sequence
processes of OpenFlow packet in multi-controller with master-slave role network topology

After establishing all connections effectively, network traffic is established between all nodes.
Using the ping command and the iperf tool, the performance of the multi-controller network and
the ability of the multi-controller to use the different roles in the SDN network were observed. Iperf
is a widely used network testing application that can generate TCP and UDP data streams and
measure the throughput of a network by generating traffic between two nodes in network topology
as described in [15-20]. One host utilized it as a sender or client, while the other utilized it as a
receiver or server. Generated TCP and UDP traffic will be allocated specific bandwidth, time interval,
window size, and buffer size. Therefore, the TCP and UDP protocols are selected for evaluation in
this study. The throughput performance metrics for TCP traffic are evaluated by running
simulations between the two nodes for 10 minutes per simulation. In addition, jitter is considered
for UDP traffic through the allocation of bandwidth between 10Mbps, 20Mbps, 30Mbps, 40Mbps,
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and 50Mbps. After executing the iperf traffic generator on an Ubuntu terminal, the data was
gathered for analysis.

3. Results
3.1 Throughput

To determine how many packets the controller can handle in a second, throughput tests are
used. The quantity of data transferred per unit of time determines the throughput of a network.
After the experiment was studied, throughput network analysis graphs were made that showed the
anticipated outcomes. The throughput has been evaluated using iperf command “<node> iperf -s”
and “<node> iperf -c <node> -i 1 -t 10”, which was executed for 10 seconds on the client and
gathered data every 1 second on the server. The result of average throughput between each node
for the centralized, equal role controller and master-slave controller is shown graphically in Figure 6.

Fig. 6. Comparison of throughput for three SDN controller architecture

Based on the findings of the throughput comparison across the three SDN network controller
architectures, it was discovered that the centralized SDN network transmission between h2 and h3
nodes obtained the greatest throughput of 22.16 Gigabits. In contrast, the multi-controller SDN
network with equal roles showed the lowest throughput of 18.57 Gigabits between the h2 and h4
nodes. These findings illustrate the influence of various network controller architectures on
throughput performance. It appears that the centralized architecture, in which a single controller
manages the entire network, offers advantages in terms of attaining higher throughput on specific
network paths. In contrast, the multi-controller SDN network with equal roles may encounter
difficulties sustaining comparable throughput levels.

3.2 Jitter

The inconsistency or irregularity in the arrival time of packets at their destination is referred to
as jitter. This test has used UDP packets where packets are sent to the receivers without any checks.
To measure jitter, the iperf utility has been executed on different bandwidths under UDP node-to-
node connection using iperf command “<node> iperf -u -s” and “<node> iperf -u -c <node> -b
<bandwidth>”. Based on the comparison of jitter among the three SDN network controller
architectures in Figure 7, the results indicate that all the networks generally exhibited low jitter
levels, typically below 0.02ms. However, the multi-controller SDN network with equal roles at a
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bandwidth of 30Mbps displayed the highest jitter with a value of 0.06ms. The slight increase in
jitter observed in the multi-controller SDN network with equal roles at higher bandwidth could be
attributed to various factors, such as increased network congestion, suboptimal packet scheduling,
or buffer management.

Fig. 7. Comparison of jitter for three SDN controller architecture

The analysis indicates that both centralized and multi-controller SDN architectures can
guarantee the delivery of time-sensitive data with minimal jitter. The centralized architecture
reveals consistently reliable performance, whereas the multi-controller architecture with equal
roles performs well but may require optimization to reduce jitter in certain circumstances.

3.3 Memory Usage

It is essential to observe that memory usage and management can vary based on the controller
implementation, network size, and enabled features. Memory utilization must be optimised to
ensure optimal performance, responsiveness, and scalability of the SDN network controller. In this
study, the 'top' command was used to observe the controller's real-time memory consumption in
centralized and multi-controller SDN networks. The ‘top’ command is a Linux utility that provides a
summary of the current state of the system.

Fig. 8. Comparison of memory usage for three SDN controller architecture
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The comparison of the memory usage percentage on three networks is shown in Figure 8. As
can be seen, the higher memory usage is 38.09% in the centralized SDN controller network and the
lowest memory usage is 25.46% in the controller slave role in multi-controller SDN (master-slave
role). These results demonstrate that equal role controller 2 and the slave controller in multi-
controller SDN (master-slave role) configuration have comparatively lower memory usage than the
centralized controller and equal role controller 1. The lower memory usage could be due to the
reduced responsibilities and functionalities assigned to the slave controller in this configuration.
Meanwhile, higher memory usage can be defined by various factors, including storing network
topology information, managing flow tables, processing events, and supporting various controller
applications and modules.

4. Conclusions

In conclusion, this study used the Mininet emulator and Ryu controller to assess and compare
the performance of centralised and distributed control systems in SDN. This study examined the
effects of centralized and multi-controller SDN architectures on network throughput, jitter, and
memory consumption. The study discovered differences in network throughput among the
architectures. According to the result, the centralized architecture outperformed the equal role
architecture in terms of achieving higher throughput. Additionally, the findings show that all the
evaluated architectures displayed generally low levels of network jitter, with most values falling
below 0.02ms. The multi-controller SDN network, on the other hand, showed significantly higher
jitter with a value of 0.06ms at a bandwidth of 30Mbps for equal role architecture. This result
indicates that the equal role configuration would need more optimization to reduce jitter in
particular circumstances. The study discovered that the centralized architecture requires more
memory resources than the equal role configuration in terms of memory consumption. Therefore,
it can be concluded that the choice of controller architecture has a significant impact on network
performance. Compared to the multi-controller equal role configuration, the centralized control
architecture exhibited a higher throughput, but a higher memory consumption. Moreover, while all
architectures maintained minimal levels of jitter, the equal role configuration exhibited slightly
higher jitter in certain circumstances.

This study highlights the significance of appropriately constructing and optimizing SDN
controller architecture. When deciding between centralized and distributed controller architectures,
network administrators should evaluate the trade-offs between throughput, memory utilization,
and jitter. Further research and optimization efforts can be made to improve the efficiency of the
equal-role multi-controller configuration and reduce jitter. Overall, this study provides valuable
insights into the performance characteristics of different control architectures in software-defined
networks.
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