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Microwave technology is very promising tool for breast cancer detection. Microwave 
transmits and receives UWB signals. UWB signals carries information of the breast 
cancer. UWB signals need to be pre-processed in order to remove irrelevant and 
redundant features. Feature extraction and feature selection methods are mostly used 
to remove the unwanted features. In this paper, a statistically modelled feature 
selection (SMFS) method is proposed for microwave breast cancer detection. Initially, 
performance of different feature extraction and feature selection method are analysed 
using Anova test (p-value) and machine learning (SVM, DT, PNN, NB) accuracy. The best 
feature extraction and feature selection methods are combined and tested. Based on 
the performance of feature extraction and feature selection method, Combined 
Neighbour Component Analysis (feature selection) and Statistical features (feature 
extraction) are combined and tested. This method is able to achieve up to 85%. The 
result proves two stage methods are able to improve the accuracy compared to single 
stage method. Therefore, SMFS is able to detect breast cancer efficiently.         
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1. Introduction 
 

Microwave based technology is a potential technology which can replace the invasive and 
expensive screening traditional technology (mammography, MRI and ultrasound). Furthermore, this 
technology is safe, robust, ionizing radiation free and causes lesser physical harm to users [1-3]. There 
are three types of breast imaging methods in microwave imaging which are passive, hybrid and active 
[4]. The passive method classifies the detected tumour by measuring the differences of temperature 
between healthy and unhealthy breast and hybrid method uses more energy to identify the tumour 
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and images the breast. Microwave signals are transmitted and received rapidly for breast imaging in 
active method. 

Microwave based technology uses two approaches which are microwave tomography and radar-
based imaging. In both approaches, use the received UWB signals to classify breast cancer according 
to the dielectric properties [3,5]. Basically, the received UWB signals is obtained either in time domain 
or frequency domain but frequency domain UWB signal is better because it has better signal-to-noise 
ratio compared to time domain UWB signal [5,6]. These UWB signals need to be pre-processed before 
fed into the machine learning. The signals’ characteristics must be revealed by mathematically and 
statistically. Feature reduction, data normalization, feature extraction and feature selection are the 
methods used to preprocess the features effectively [7,8]. Initially the data sample has a huge 
number of features and some of them redundant and irrelevant. Thus, it is important to identify 
which features contribute in the greatest extent to the quality for better results and discard some of 
the irrelevant features to avoid overfitting and high complexity [9]. Feature extraction is a part of 
optimization and ensures the effectiveness of the machine learning. The feature extraction’s aim is 
to extract robust features without loss of the important information in the signals [10]. Feature 
selection method is a procedure to select a subset of features from the original set of features and 
plays a significant role in the optimization of the machine learning. According to the researchers, 
three main selection methods are widely used which are filter, wrapper and embedded [11,12]. 
Wrapper method considers a selection of features based on the learning model score. Different 
combination of feature sets is prepared and then, are evaluated and compared among them using 
the learning model. The feature set is selected based on the learning model accuracy. Due to high 
computation time needed by the wrapper method, filter method is more convenient. Filter method 
selects a set of independent features. Each feature is statistically measured and ranked up based on 
the measurement score. Features are ranked based on a suitable ranking criterion and a threshold is 
used to remove the features below the threshold. Embedded method learns which the feature is 
more suitable while the learning model is created [12]. This method selects features faster and has 
lower complexity. 

Majdi et al., [13] uses sequential backward selection (SBS) method to select features. Three 
classifiers (Support Vector Machine (SVM), Random Forest (RF) and Decision Tree (DT) are trained 
using five selected features. Local binary pattern texture features are pre-processed by using hybrid 
binary BAT algorithm and optimum path forest. The final fused features are used to classify breast 
cancer using SVM [14]. Hybrid algorithm using meta learning and Artificial Neural Network (ANN) is 
proposed and tested by using 16 features (selected using correlation method) for breast cancer 
predicating [15]. Different filter, wrapper and embedded methods are used and tested using 
classification and regression tree (CART). The improvised CART is proposed by using wrapper 
recursive Feature Elimination (obtained the highest accuracy) [11]. Rakibul et al., [16] employs 
wrapper feature selection method by using WEKA tool. Logistic regression (LR), linear SVM and 
quadratic SVM are used to test the selected features to classify the breast cancer. LR outperform 
with the selected features compared to other machine learnings. Pre-trained Convulation Neural 
Network (CNN) and the univariate based method (pearson correlation coefficient, cosine coefficient, 
Euclidien distance and mutual information) are used to select features [17]. The numbers of features 
are reduced to increase the accuracy by using generic algorithm (GA) and particle swarm optimization 
(PSO). Extreme learning machine (ELM) is used with different poly to predict breast cancer with the 
feature selection method [18].  

Two stages of feature selection are proposed where first stage consists of filter-based feature 
selection method (chi- squared, F-statistic and mutual information) and second stage consists of 
wrapper- based sequential forward selection. The selected features are fed into SVM, DT, RF and k-
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nearest neighbour (KNN) separately [12]. Extreme Gradient Boosting (XGBoost) is used to pick 
weighted features and test them with XGBoost, RF, SVM and LR [19]. Similarly, two stages are 
proposed, first stage by using filter methods ( Chi-squared, Fisher Score, ReliefF and Gini Index) and 
second stage by using boost diversity methods (least absolute shrinkage and selection operator 
(LASSO), regression with recursive feature elimination (LR-RFE), mutual information and correlation-
based feature selection (CFS). The selected features after these two stages feature selection method, 
are fed into machine learning [20]. Multi-stage feature selection (MSFS) is proposed by using principal 
component analysis (PCA), data normalization, feature extraction (statistical features) and feature 
selection (ranking method using statistical method). Out of three classifiers (Naïve bayes (NB), 
probabilistic neural network (PNN) and SVM, NB outperforms by using 8 hybridfeatures [8]. Similarly, 
MSFS- backalgorithm PSO (MSFS-BPSO) is proposed. MSFS-BPSO consists of feature normalization, 
singular vector decomposition (SVD), feature extraction (statistical features) and feature selection 
(Anova test and BPSO). This feature selection method selected 30 features [7]. 31 features are 
selected by using hybrid feature selection (PSO and adaptive local search method [21].      

Researches show hybrid or multiple stage of feature selection method is able to increase the 
accuracy and reduce the misclassification. However, the most of research can be seen to use only 
feature selection method. Therefore, in this paper, statistically modelled feature selection method 
(SMFS) is proposed by combining feature extraction method and feature selection method. SMFS is 
consists of first stage, feature extraction method and second stage, feature selection method. The 
selection of feature extraction and selection methods is done by using Anova test and accuracy of 
machine learning.  

 
2. Methodology  

 
In this section, the data collection, preprocessing and statistically modelled feature selection 

methods are explained. Figure 1 shows the overall experiment workflow conducted in this research. 
In the first stage, data is collected using breast phantom and the data is converted from analogue to 
digital values. Data dimension reduction is done by using Principal Component Analysis (PCA) to 
reduce the dimension of the data in the second stage. In the third stage, the data undergoes statically 
modelled feature selection method to select optimum features. Finally, the breast cancer is detected 
by using the selected features.  
 

 
 
Fig. 1. Overall experiment 
workflow 
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2.1 Stage 1: Data Collection 
 
Data samples are collected by using breast phantom, a pair of antennae [22,23] and UWB 

transceivers as shown in Figure 2 [8]. The steps are taken to collect the data samples are taken from 
the previous studies [7,8,35]. Breast phantom is developed by using a mixture of low-cost materials 
(petroleum jelly, wheat flour and soy oil with ratio of 100:50:37). Tumour is developed by using the 
mixture of 10:5.5 of wheat flour and water with 2mm size. Total of 2000 data samples are collected 
which consists of 1000 data samples with the presence of tumour and 1000 data samples with the 
absence of tumour. These 2000 analogue signals are converted into digital value by using Discrete 
Cosine Transform (DCT). Each analogue signals have 1632 digital values.  

 

 
 
Fig. 2. Experimental setup. (a) transmitter; (b) receiver; (c) 
breast phantom; (d) computer; (e) router [8] 

 
2.2 Stage 2: Data Dimension Reduction 

 
Principal component analysis (PCA) is a useful statistical technical method to find the pattern in 

high dimensional data. PCA generates a new set of features called principal component and simplifies 
the complexity of the high dimensional data by reducing the dimension of the data [24,25]. PCA steps 
are summarized as below: 

Step 1: Assume a sample data matrix of 𝑖 number of samples which results to 𝑘 number of 
characterization  method and can be represented by matrix 𝑋 using Eq. (1). 

 

𝑋 =
𝑋!! . . 𝑋!"
: . . :
𝑋#! . . 𝑋#"

                                                                                                                                      (1) 

 
Step 2: Matrix 𝑆 is developed by subtracting the mean of the data matrix, 𝑋 from each data point. 

This process is known as mean- centering the data. The matrix 𝑆 is as below: 
 

𝑆 =
𝑋!! −	𝑋!*** . . 𝑋!" −	𝑋"***

: . . :
𝑋#! −	𝑋"*** . . 𝑋#" −	𝑋"***

                                                                (2) 

  
where (𝑋"***) is the mean of the data matrix, 𝑋.  

Step 3: The covariance value is calculated for the data matrix, 𝑆 using Eq. (2). The dataset’s, 
covariance matrix, 𝐶 is constructed as shown in Eq. (3).   
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𝑐𝑜𝑛𝑣	(𝐶) = 	∑ %!&'̅
"
!#$
#&!

             (3) 
 

where 𝑆 is the data matrix.  
 

𝐶 = 	
𝐶!! . . 𝐶!"
: . . :
𝐶#! . . 𝐶#"

             (4) 

   
where 𝐶)* =	1 2⁄ 	{(𝑥) −	𝑋*))(7𝑥* −	𝑋**8	(𝑖, 𝑗 = 1, 2, … . , 𝑘)  

Step 4: Compute the matrix A of eigenvectors. 
 

𝐷 = 𝐴C𝐴+               (5) 
 

where 𝐴 is a matrix, whose columns are the eigenvectors of 𝐷 and 𝐷 is the matrix of eigenvalues of 
𝐶.  

 

𝐶 = 	
𝜆! ⋯ 0
⋮ ⋱ 0
0 ⋯ 𝜆#

             (6) 

 
where 𝜆! to 𝜆#are the eigenvalues of 𝐷.  

Step 5: Rearrange the eigenvector matrix, 𝑉 and eigenvalues matrix, 𝐷 in order of decreasing 
eigenvalue. The pairing between two matrixs should be correct.  

Step 6: Generate PCA component using Eq. (7). 
 
FinalData = 𝑉+ ∗ 	𝑋+                  (7) 

 
where 𝑉+  is the eigenvectors matrix and 𝑋+	 is the data matrix. Eigenvectors matrix is the output 
matrix after compute the data matrix, 𝑋 from the Step 2 until Step 5 while data matrix is the matrix 
of raw data sample.   

 
2.3 Stage 3: Statistically Modelled Feature Selection Method 

 
In this section statistically modelled feature selection (SMFS) method is explained as shown in 

Figure 3. Different types of feature extraction and feature selection methods are analysed separately. 
The best performance of feature extraction method and feature selection method (based on Anova 
test and machine learning accuracy) are combined together in the third stage for the performance 
verification.  
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Fig. 3. Workflow of development of SMFS Method 
 
2.3.1 Feature extraction method 

 
Feature extraction method is to reduce the number of features by extracting important features 

and creating new set of features. Three feature extraction method used are k-means clustering, 
reconstruction independent component analysis and statistical features.  

 
i. K-means clustering: K-means clustering is an unsupervised learning which helps in finding 

inherent structure in the data. Here, k-means clustering uses only the input without 
knowing the labels/target of the particular input [26,27]. It aggregated all similar data 
points together with the centre points. The centres are used to choose the feature. Let 𝑛 
-class problem with 𝑘 features. 𝐶!, 𝐶-, … 𝐶# are the centres of the 𝑛 cluster. Each cluster 
centre in 𝑘 dimension is  𝐶)! = [𝐶)!, 𝐶)-, … 𝐶)#]. Cluster centres can be calculated using Eq. 
(8).  

 
𝑑𝑖𝑠𝑡) =	𝐶!) −	𝐶-)              (8) 

 
where 𝑑𝑖𝑠𝑡 is the vector contains element for all dimension and 𝑖 is the attributes. The 
attributes for each cluster are identified using Eq. (9). 

 
𝑖. = max 	(𝑑𝑖𝑠𝑡 − 𝑑𝑖𝑠𝑡* 	(𝑚 − 1) for 𝑚 = 1, 2, 3 .. 𝑗              (9) 

 
where 𝑗 is the number of attributes. Once 𝑑𝑖𝑠𝑡)  is calculated, the features are extracted. 
Most relevant features on top of attribution while least relevant features on the bottom 
of the attribution. 

ii. Reconstruction independent component analysis: Independent component analysis (ICA) 
has optimization problem, high cost, sensitive to whitening and unable to learn 
overcomplete features. Therefore, reconstruction independent component analysis 
(RICA) is introduced to overcome the shortcomings of ICA. RICA uses soft reconstruction 
penalty to replace the orthogonality condition (𝑊𝑊𝑇 = 𝐼) that in ICA. ICA and RICA are 
represented as in Eq. (10) and Eq. (11) respectively [28].   
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𝐼𝐶𝐴:	 		∑ ∑ 𝑔(𝑊*𝑥()))"
*1!

.
)1!2

.)#).)34 	subject to 𝑊𝑊𝑇 = 𝐼                    (10) 

𝑅𝐼𝐶𝐴:	 		 5
.
∑ Z𝑊+𝑊𝑥()) −	𝑥())	Z

-
- +∑ ∑ 𝑔(𝑊*𝑥()))"

*1!
.
)1!

.
)1!2

.)#).)34 	        (11) 
 

where 𝑔 is a nonlinear convex function. 
iii. Statistical Features: For statistical features, only two features are considered which are 

mean and variance. Mean is the ratio of sum of all features value to total number of 
features as expressed in Eq. (12). Variance is the distance between the value to the 
mean as expressed in Eq. (13) [8]. 

 
𝑀𝑒𝑎𝑛, 𝜇6 =	

7$8	7%87&8⋯7'
6

       (12) 
 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝜎- =	∑ (7&:')%

6
	        (13) 

 
where 𝑣 is the feature value and	𝑁 is the total number of features.  

 
2.3.2 Feature selection method 

 
Feature selection method is essential in order to reduce the number of features in the data. 

Feature selection selects a small subset of significant features from the original set of features. Three 
different feature selection methods are used (Relief-F, Neighbourhood component analysis (NCA) 
and Particle Swarm Optimization (PSO)).  

 
i. Relief-F: Relief-F [29,30] is robust towards noisy and incomplete data. It basically 

calculates feature score and selects the top feature score. Feature scoring is done by 
estimation of feature value differences between nearest neighbour instance pairs. Relief 
finds for two nearest neighbours (from same class and different class). The same class 
nearest neighbour is called as nearest hit whereas the different class nearest neighbour is 
called nearest miss. Relief updates the quality estimation based on the value for selected 
instances, nearest hit and nearest miss for all attributes as in Eq. (14). 

 

𝑊[𝐴] = 𝑊[𝐴] −	∑ ;)<<	=>,@!,A(	B
.∗"

"
*1! +	;)<<	=>,@!,D(	B

.∗"
	        (14) 

 
where 𝑊[𝐴] is quality estimation, 𝑅)is instance, 𝐴 is feature, 𝐻*	is nearest hit, 𝑀*	 is 
nearest miss and k is nearest neighbour. If instances and nearest hit have different values 
of the attributes, then, the attribute separates two instances within the same class and 
reduce the quality estimation. If instance and nearest miss have different values of the 
attributes, then the attribute separates two instances in differen class and increases the 
quality estimation. The function in Eq. (15) calculates the distance between the values of 
the feature 𝐴 for two observations (𝑂!, 𝑂-) and calculates the distance between the two 
observations to find the nearest neighbors.    

 
𝑑𝑖𝑓𝑓	(𝐴, 𝑂!, 𝑂-) = 	

E$	(>)&	E%	(>)	
FGH(>)&FIJ(>)

        (15) 
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ii. Neighbourhood component analysis (NCA): Neighbour component analysis (NCA) [31-33] 

is a statistical method based on k-Nearest neighbour algorithm. It selects neighbour 
randomly and searches a vote for each class. NCA learns feature weight by maximizing the 
leave-one-out (LOO) accuracy and optimized regulation parameter. Let T, set of training 
samples {7𝑥!,	𝑦!	8, … . . 7𝑥),	𝑦)	8}, where  𝑥), is feature vector of dimension and 𝑦 is its 
corresponding class. The distance between two samples (𝑥)	 and 𝑥*	) is as in Eq. (16). 

 
𝑑K 	(𝑥), 𝑥*) = 	∑ 𝑤L-	j𝑥)L −	𝑥*Lj;

L1!         (16) 
 

where 𝑤L  is rth feature’s weight. Based on LOO, the reference point is determined by a 
probability of 𝑥)	selects 𝑥*	 as defined in Eq. (17). 

 

𝑝)* =	 l
"	(M*	=N!	N(B)

∑ "	(M*	=N!	N(B)+,$

0
		𝑖𝑓	𝑖	 ≠ 𝑗
𝑖𝑓	𝑖 = 𝑗 	n        (17) 

 
where 𝑘 is kernel function.  Therefore, the 𝑥)’s probability is classified correctly in the 
particular class using Eg. (18) and (19) respectively. 

 
𝑝) =	∑ 𝑦)* 	𝑝)**         (18) 

 
𝐻) 	= 	 o𝑗j𝑦* =	𝑦)p        (19) 

 

where 𝑦)* =	q
1,
0, 		

𝑖𝑓	𝑦) =	𝑦*
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. Final optimization can be defined as 𝑓(𝐴) = ∑ 𝑝) 	) .Gradient 

rule is used to optimized the matrix 𝐴. 
 

O<
O2

= 2𝑊	∑ 𝑝)) ∑ 𝑝)" 	𝑥)" 	𝑥)"+" −	∑ 𝑝)"*∈A! 𝑥)"𝑥)"+  (20) 
 

iii. Particle Swarm Optimization (PSO) [21,34]: PSO is a technique based on population or 
swarm social such as birds in a flock. PSO searches objective function in the landscape 
adjusting the trajectories in a quasi-stochastic manner. Each particles adjusts velocity and 
position based on own knowledge and adjoining particles as in Eq. (21) and Eq. (22).  

 
𝑥);Q8! =	𝑥);Q +	𝑣);Q8! (21) 

 
𝑣);Q8! = 𝑤	𝑥	𝑣);Q +	𝑐!	𝑥	𝑟!) 	𝑥	(𝑝); − 𝑥);Q ) +	𝑐-	𝑥	𝑟-) 	𝑥	(𝑝R; − 𝑥);Q ) (22) 

 
where 𝑖 is the position of the particle, 𝑥 is the features, 𝑑 is the space’s dimensionality,  𝑣 
is the particle’s velocity, 𝑡 is the tth iteration, 𝑤 is the weight, 𝑐!	and 𝑐- are the acceleration 
contants, 𝑟!) 	 and 𝑟-) 	 are dispersed homogeneously’s values and  𝑝);  and 𝑝R;  are the 
values of personal best and global best in the particular dimension. 

 
2.3.3 Statistically modelled feature selection method (SMFS) 
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K-means clustering, RICA and statistical features method are used to extract features from the 
data samples. Similarly, Relief-f, NCA and PSO method are used to select features from the data 
samples. These six data sets undergo performance verification by using statistical analysis (Anova 
test) and machine learning’s accuracy in breast cancer classification. Based on the performance, the 
best feature extraction method and the best feature selection method are chosen for the 
development of SMFS method.  

    
2.3.4 Performance verification  

 
For performance verification, statistical analysis (Anova test) and machine learning’s accuracy are 

used to verify the best feature extraction method. Anova test examines the significant difference 
between the mean of more than two groups which is similar to t-test. The six datasets are prepared 
by dividing the data samples into two groups (the presence of tumour and the absent of tumour). P-
value is identified for each dataset. P-value is calculated using Eq. (23) and then, refers to p-value 
table for its value. P-value should be less than 0.05 which means the null hypothesis (all group has 
same mean) is rejected and statistically significant.  
 
𝑧 = 	 N̅&	:-.

√"
	   (23) 

 
where 𝑥̅ is the sample mean, 𝜇S is the hypothesized mean, 𝜎 is sample standard deviation and 𝑛 is 
the sample size. For feature selection method, performance of each method is calculated based on 
the accuracy it provided after the method is applied on the data sample. 
 
2.4 Stage 4: Classification of Breast Cancer  

 
Classification of breast cancer is done by detecting the presence and absence of the tumour by 

using machine learning Machine learning is used to find the accuracy in classifying breast cancer for 
all six datasets. Three different machine learning are used to identify the performance of the feature 
extraction method and feature selection method. For feature extraction method, Decision tree (DT), 
Naïve bayes (NB) and Probabilistic Neural Network (PNN) are used whereas for feature selection 
method NB, DT and SVM are used. Together with the machine leaning, k-fold cross-validation is used 
for training and testing purpose. Tenfold cross-validation is used. The total of 2000 data samples 
(1000 samples with the presence of tumour and 1000 samples with the absence of tumour) are 
divided into ten sets. Therefore, each set contains 200 data samples. Confusion matrix is generated. 
From the confusion matrix as shown in Figure 4, the accuracy of each set is identified by using Eq. 
(24). Average accuracy is calculated by adding accuracy of ten folds and divided by ten.    

 

 
 

Fig. 4. Figure quality confusion matrix for two classes 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 +68+T

+68+T8U68UT
	   (24) 

 
where 𝑇𝑁 is true negative (predict absence of tumor correctly), 𝑇𝑃 is true positive (predict presence 
of tumor correctly), 𝐹𝑁 is false negative (predict absence of tumor when the tumor is present) and 
𝐹𝑃 is false positive (predict presence of tumor when the tumor is absent).   

 
3. Results and Discussion  

 
Performance of each feature extraction and feature selection methods are as shown in Table 1 

and Table 2 respectively. Based on the obtained performance in Table 1 and Figure 5, for feature 
extraction method, statistical features method outperforms compared to RICA and k-means. 
Statistical features method obtains p-value of 0.008 where closest to 0 while RICA obtains p-value of 
1. If the p-value is less than 0.05, there is difference between the groups and the data is highly 
significant. Machine learning’s accuracy supports this statement by obtaining high accuracy for the 
statistical features method. The highest average machine learning’s accuracy obtained by statistical 
feature method (75.05%) followed by k-means (73.61%) and RICA (51.78%). Therefore, statistical 
features method is chosen to develop SMFS framework.  

 
Table 1 
Performance verification for feature extraction method 
Feature Extraction Method K-means RICA Statistical features 
p-value 0.025 1.000 0.008 
Machine learning’s Accuracy (%) DT 78.98 51.40 86.28 

NB 78.88 47.80 85.99 
PNN 62.97 56.13 52.87 
Average Accuracy 73.61 51.78 75.05 

 

 
 

Fig. 5. Performance verification of feature extraction method 
 
For feature selection method as shown in Table 2 and Figure 6, the highest accuracy obtained by 

using its own accuracy measurement is by PSO (96.75%) followed by Relief-F (94.60%) and NCA 
(93.80%). Whereas the highest machine learning’s accuracy is obtained by NCA (59.94%) followed by 
Relief-F (56.72%) and PSO (50.57%). Due to two feature selection methods perform better in two 
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different performance verification methods, NCA and PSO are selected to develop statistically 
modelled feature selection (SMFS) framework.  

 
Table 2 
Performance verification for feature selection method 
Feature Selection Method Relief-F NCA PSO 
Accuracy Obtained by using its own accuracy measurement (%) 94.60 93.80 96.75 
Machine learning’s Accuracy (%) DT 60.32 65.00 51.20 

NB 59.67 64.83 50.50 
SVM 50.17 50.00 50.00 

 Average Accuracy 56.72 59.94 50.57 
 

 
 

Fig. 6. Performance verification of feature selection method 
 
Based on the performance obtain in Table 3, statistical features + NCA method (85.03%) is better 

compare to statistical features + PSO (76.50%). Therefore, the combination of statistical features 
(feature extraction method) and NCA method (feature selection method) are used for SMFS method. 
This result proves two stages of feature selection method is able to improve the accuracy compare 
to single stage of feature selection. The complete breast cancer detection framework with proposed 
SMFS after the experiment and analysis on feature extraction and selection method for breast cancer 
classification is as shown in Figure 7. 

 
Table 3 
Performance verification for Statistically Modelled Feature Selection (SMFS) 
 Statistical Features + NCA Statistical Features + PSO 
Machine learning’s Accuracy (%) DT 85.64 78.74 

NB 84.41 74.25 
 Average Accuracy 85.03 76.50 

 

DT NB SVM Average
Accuracy

Relief-F 60.32 59.67 50.17 56.72
NCA 65 64.83 50 59.94
PSO 51.2 50.5 50 50.57
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Fig. 7. The complete breast cancer detection framework by using proposed Statistically 
Modelled Feature Selection (SMFS)  

 
4. Conclusions 

 
SMFS framework is proposed to classify the existence of the breast cancer. Different types of 

feature extraction and feature selection methods are used to test its performance in classifying the 
breast cancer. The performance is measured based on Anova test and machine learning accuracy. 
NCA and statistical feature outperform compare to other methods. DT performs better compared to 
the other machine learnings. The final proposed SMFS is consisted of statistical features and NCA. 
The proposed SMFS is tested by using DT and obtained 86.64%. A complete framework is proposed 
and can be used for breast cancer classification by another researcher.  
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