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ABSTRACT

This paper discussed the prediction of the ionospheric F2 layer critical frequencies,
foF2, at an equatorial station using a backpropagation neural network (BPNN) model in
conjunction with a particle swarm optimization (PSO) algorithm, named the BPNN-
PSO model, for various solar and geomagnetic activities, and compared it with the
International Reference Ionosphere (IRI)-2016 model. The critical frequency data
were taken from an ionosonde located at the Universiti Tun Hussein Onn Malaysia in
Johor, Malaysia (1.86° N, 103.80° E). The model’s outputs were analyzed using root-
mean-square error (RMSE). The BPNN-PSO model outperformed the IRI-2016 model
during low, medium, and high solar activity. The BPNN-PSO model had the lowest
RMSE of 0.20 MHz and performed best during periods of high solar activity. This
outcome was much better than the RMSE for the IRI-2016 model, which was 2.95
MHz. In addition, compared with the IRI-2016 model, the BPNN-PSO model made
accurate predictions during quiet and geomagnetic storm conditions. The BPNN-PSO
model had the lowest RMSE of 0.54 MHz during an intense storm, whereas the IRI-
2016 model had the RMSE of 2.84 MHz during this storm.
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1. Introduction

Ionospheric parameters vary in response to space weather disturbances, which affect the
performance of communication, radar, and navigation systems. The critical frequency of the F2
layer (foF2) is a crucial parameter of the ionosphere. High-frequency (HF) communications
forecasting has numerous critical applications, including emergency communication in disaster
areas, communication with aircraft or ships, and nonline-of-sight military operations [1-2]. As a
result, forecasting foF2 in quiet and disturbed geomagnetic conditions is essential.

The International Reference Ionosphere (IRI), also known as an empirical model, has been the
most frequently used choice for forecasting ionospheric features in the last few decades. Several
researchers have attempted to establish and improve the empirical ionospheric model, for example,
the IRI model, which has been gradually enhanced with new data and improved modeling
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methodologies [3-4]. Despite these advancements, various research demonstrates the neural
network (NN) model’s ability to improve prediction accuracy.

In 1943, Warren S. McCulloch and Walter Pitts constructed NNs by developing a computational
model in their paper “A logical calculus of the ideas inherent in nerve activity.” An NN is a data-
driven modeling technique based on a simplified human brain function. Given its suitability for
nonlinear ionospheric events, it is often utilized in forecasting foF2. Numerous researchers have
conducted substantial research over the last few years utilizing NNs to forecast ionospheric foF2
variations under geomagnetic quiet and storm conditions. Several models for predicting
ionospheric foF2 have been developed [1, 5-13].

Given its numerous desirable properties, most previous studies undertaken in recent years have
used a backpropagation neural network (BPNN) for forecasting ionospheric parameters. Despite
these desirable features, BPNN easily slips into the local minimum without delivering a globally
optimal solution due to its conceptual framework in gradient descent [9]. Thus, some researchers
have used the genetic algorithm (GA) to optimize the weights of NNs and prevent the local
minimum phenomena [1, 13].

1.1 Ionospheric F2 Layer Critical Frequency

The ionosphere is important in completing different daily operations; it influences radio wave
propagation to distant locations on Earth [14]. The ionosphere, thermosphere, mesosphere, and
exosphere comprise Earth’s atmosphere. In particular, the ionosphere is a zone where solar X-rays
and strong ultraviolet light ionize atoms and molecules.

This phenomenon results in the formation of numerous layers, which are denoted by the letters
D, E, and F. The F layer is the most substantial region of the ionosphere for long-distance HF radio
communication. The F layer has the highest concentration of charged particles and the most solar
radiation. The F layer is subdivided into lower (F1) and upper layers (F2). F2 has a higher density than
F1. F2 exists during the day and at night. However, F1 only exists during the day.

The maximum frequency limit for each ionospheric layer allows radio signals to be transmitted
back to Earth and be refracted. foF2 refers to the F2 layer’s maximum frequency. When a radio
frequency signal is transmitted at a frequency more considerable than the critical frequency of a
particular layer, the signal passes through that layer. The identical wave is refracted back to Earth
when it reaches a higher critical frequency in the upper layer. Thus, the maximum refraction
frequency is attained. The critical frequency, fc is expressed as follows:

�� = 9 ����, (1)

where fc and Nmax denote the critical frequency and the total electron density, respectively. The
critical frequency varies with the time of day and season and the various solar trends. Abdullah and
Zain [15] examined the diurnal and seasonal fluctuation of critical frequency in Malaysia. The
authors determined that the trend of foF2 rises gradually in the early morning, peaks at midday, and
then progressively drops until late at night.

foF2 is an important ionospheric parameter influenced by local time, geographic latitude, solar
and magnetic activity, atmospheric wind, and other factors [16]. Substantial research has been
conducted to forecast ionospheric parameters, such as foF2, using a variety of methodologies [1, 5-
13]. Researchers have employed empirical models, most notably the IRI model. Numerous
investigations have also been conducted to assess the IRI model’s ability to depict foF2 parameters
accurately [17-21].
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Timoçin et al., [17] utilized foF2 data from six ionosonde stations, namely, Manila, Yamagawa,
Yakutsk, Townsville, Hobart, and Terre Adelie. These stations cover all the latitudinal zones, namely,
low, middle, and high latitudes with northern and southern hemispheres, and they are located
around the same geographic longitude 136.0°E. The result showed the IRI-2016 performance is
strongly dependent on the solar activity, latitude, season, local time, and hemisphere. For both
hemispheres, the foF2 values at the low-latitude station are larger than those at the middle-latitude
station. The foF2 values at the middle-latitude station are larger than those at the high-latitude
station. The agreement between the foF2 measured and IRI-2016-modeled on all stations in the
northern hemisphere is best for North Summer and worst for North Winter.

Rao et al., [18] compared the foF2 data over the southern low-latitude station COCO (Keeling)
Island for the period 2009–2013 with the IRI-2016 model. The general ionospheric trends in IRI
predictions are consistent with the observation data for the diurnal, seasonal, and solar cycle
variations. However, observations show a deviation in the amplitude of foF2 up to the order of
5 MHz depending on local time, seasons, and phases of the solar cycle.

In addition, Rao et al., [19] analyzed foF2 data for the period 2008–2013 over low-latitude
Chinese station at Guangzhou and compared them with the IRI-2016 model. They observed a
remarkable discrepancy in foF2 values in different seasons and local time variations. The IRI-2016
model underestimated the foF2 values in winter and equinoxes and overestimated foF2 values in
summer. The IRI-modeled foF2 values were greater during forenoon hours and smaller during
afternoon hours than the observed foF2 values.

Hong et al., [20] observed foF2 variations at Phu Thuy and Bac Lieu stations at Vietnam and
compared them with the IRI-2016 model. The performance of IRI-2016 was worst at both stations
for the high (year 2000) and low (year 2007) solar activity periods except in autumn at Bac Lieu for
the low solar year.

Regarding the forecasting of the foF2 values, several studies have demonstrated that NN models
perform better than IRI models and researchers have shifted their focus to employing NN to predict
foF2 [1, 7, 10, 12, 16]. Fan et al., [1] utilized Elman neural network (ENN) to predict foF2 values one
hour ahead at a Wuhan station. The model was optimized by the improved particle swarm
optimization (IPSO) to avoid the network falling into local minimum. The prediction results of foF2
showed the root mean square error (RMSE) of the ENN model was 4.30% lower than that of the
BPNN model. The RMSE was further reduced by 8.92% after using the IPSO to optimize the model.

Salimov et al., [7] used data from the midlatitude ionosonde in Irkutsk (Russia) for training and
data from several midlatitude ionosondes, namely, Arti (Russia), Warsaw (Poland), and Mohe
(China), for testing, using convolutional NNs with 2D convolution. The study resulted in correlation
coefficient 0.928, RMSE 0.598 MHz, mean absolute error (MAE) 10.45%, and coefficient of
determination 0.861. Yang et al., [12] combined the Gray Wolf Optimization (GWO) algorithm and
the attention mechanism based on the long short-term memory model to predict the foF2 using the
oblique ionosondes of the China Ground-based Seismo-ionospheric Monitoring Network. Their
model was superior to the IRI-2016 model.

Tshisaphungo et al., [16] used storm-time data during 1996-2014 from Grahamstown, South
Africa ionosonde station by using NN and linear regression (LR) methods. The performances of NN
and LR models were comparable during selected geomagnetic storms that fell within the data
period used in modeling. However, when validated on storm outside these periods using data 19–
23 December 2015 (with minimum Dst index of −155 nT), the NN model achieved a better
performance (R = 0.62) compared with the LR model (R = 0.56).

Therefore, the purpose of this paper is to discuss the performance of a BPNN model combined
with a PSO algorithm, named as the BPNN-PSO model, for the prediction of the F2 layer critical
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frequency (foF2) in Malaysia during various solar and geomagnetic activities. To evaluate the
proposed BPNN model with the PSO algorithm, this BPNN–PSO model is compared with the IRI-
2016 model.

2. Methodology

Variability in the ionospheric layer is dependent on universal time, latitude, solar and
geomagnetic activity, and other factors [22]. The foF2 model’s input parameters are diurnal and
seasonal variations, solar activity variations, and geomagnetic activity variations.

The proposed network was created using data of nine years of data collected from the Canadian
Advanced Digital Ionosonde at UTHM’s Advanced Telecommunications Research Centre, formerly
known as the Wireless and Radio Science Centre. The current work optimized the feedforward
network using PSO.

2.1 Backpropagation Neural Network

Backpropagation (BP) is a widely used approach for training artificial neural networks (ANNs) in
supervised learning. Rumelhart, Hinton, and William suggested a layer-based BP algorithm [23].
BPNN has three layers: an input layer, a hidden layer, and an output layer. All nodes in one layer are
connected to all nodes in the following layer. A node’s weight indicates the strength of a
connection. Prior to the training phase, the weight of a node is assumed random.

Each layer’s nodes are connected. Through the weighted output layer relation, each input node
receives a signal. The hidden layer receives data from the input layer and modifies the weights. The
output layer’s new value is specified. The output layer's activation function processes the hidden
layer’s data and generates the desired result. However, BP has considerable limitations, including a
poor convergence rate and a proclivity for collapsing into the local minimum [1]. To overcome
these limitations, several techniques, such as PSO [1] and genetic algorithm [10] are utilized.

2.2 Prediction Model Optimized by PSO

PSO is a computational method for describing species movement within flocks of birds or fish
schools, which the algorithm simplifies and optimizes. PSO allows for the maximum utilization of
potential data because each particle can learn from the findings of other particles [24]. The PSO
technique is used to initialize a set of particles randomly. Each particle has three positional
characteristics: position P(m), velocity V(m), and value of the fitness function [1]. Eq. (2) and Eq. (3)
reflect the position and velocity of the ith particle in the tth iteration, respectively. Eq. (4) and Eq. (5)
indicate the optimal position of each particle (i.e., the local optimum) and the optimal position of
the entire population (i.e., the global optimum). Thus, the position and velocity of each particle are
updated by Eq. (6) and Eq. (7), respectively. r signifies random scalars between 0 and 1 in Eq. (6).
The learning variables c1 and c2 are set to the same value, which is typically 2 [11]. If the global
optimum surpasses the predefined value or the number of iterations exceeds the limit, the PSO
satisfies the criterion. Eqs. (5) and (6) were utilized to update each particle’s velocity and location
using the known local and global bests. The termination terms were scrutinized to determine if they
had been complied with. If the prerequisites were met, PSO was halted. The NN system’s input
would be the most recent global best.

� � = �1 � , �2(�) …��(�)), (2)



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 202-218

206

� � = �1 � , �2(�) …��(�)), (3)

����� = (�1, �2…��), (4)

����� = (�1, �2…��), (5)

��(� + 1) = ��(�) + �1�(����� − ��(�) + �2�(����� − ��(�), (6)

�(� + 1) = ��(�) + ��(� + 1). (7)

Figure 1 illustrates the BPNN-PSO flowchart and specifies the position as Pi(m) and the velocity
of each particle as Vi(m). Three elements affect particle motion: the weight of inertia (iw), the
acceleration in the local system (C1), and the inertia of the system (C2).

Fig. 1. Flowchart of BPNN-PSO

2.3 Inputs to the Prediction Model

The data selection method was carried out using eight input parameters to represent diurnal
and seasonal variations, solar activity variations, and geomagnetic activity variations. These input
parameters are the day number (DN), universal time (UT), sunspot number (SSN), solar flux F10.7,
geomagnetic activity index (Kp), and disturbance storm time (Dst), which were employed throughout
the training phase.

2.3.1 Diurnal and seasonal variations

Diurnal and seasonal variations were represented by UT values ranging from 0000 to 2300 UT
and DN values ranging from 1 to 365. The sine and cosine of UT and DN were converted into
quadratic components presented in Eq. (8) until Eq. (11) [1].
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��� = sin 2� ×��
24

(8)

��� = cos 2� ×��
24

(9)

��� = sin 2� ×��
365

(10)

��� = cos 2� ×��
365

(11)

2.3.2 Solar variations

Solar activity was determined using the SSN and solar flux F10.7 acquired from the
NASA/Goddard Space Flight Center Physics Data Facility. SSN and solar flux F10.7 were classified
into three phases based on their solar activity: low, medium, and high. Table 1 shows the yearly
mean of SSN, solar flux F10.7, and solar activity level from January 2004 to December 2012. Figure 2
illustrates the daily SSN and solar flux for the same periods.

Table 1
Yearly mean of SSN and solar flux F10.7 from January 2004 to December 2012
Year Mean SSN Mean solar flux F10.7 Solar activity level
2004 65.34 106.49 High
2005 45.71 91.71 Medium
2006 24.67 79.99 Medium
2007 12.64 73.07 Low
2008 4.15 74.16 Low
2009 4.76 70.54 Low
2010 24.90 79.99 Medium
2011 80.81 115.70 High
2012 84.39 122.29 High

Fig. 2. Daily SSN dan solar flux F10.7 data from January
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2004 to December 2012 [25]
2.3.3 Geomagnetic variations

A geomagnetic storm is a major disturbance of the Earth’s magnetosphere induced by a
tremendous energy flow from solar activity into the planet’s atmosphere [26]. The F2 layer’s critical
frequency, foF2, fluctuates substantially in response to solar and geomagnetic activity. Geomagnetic
indicators, such as Kp and Dst, indicate the presence of geomagnetic storms. Table 2 specifies the
level of equatorial geomagnetic disturbance, Dst, during the study. Table 3 summarizes the global
geomagnetic disturbance level, Kp, and its equivalent value. Figure 3 illustrates the three-hour Kp

and one-hour Dst data from January 2004 to December 2012.

Table 2
Equatorial geomagnetic disturbance level, Dst

Geomagnetic disturbance level Dst (nT)
Quiet condition Peak ��� >− 20
Weak storm Peak ��� >− 50
Moderate storm −100 < ���� ��� <− 50
Intense storm Peak ��� <− 100

Table 3
Global geomagnetic disturbance level, Kp

Geomagnetic disturbance level Kp index Equivalent Kp index
Quiet condition 0–4 3–43
Weak storm 5 47–53
Moderate storm 6–7 57–73
Intense storm 8–9 77–93

Fig. 3. 3-hour Kp and 1-hour Dst data from January 2004 to December
2012 [25]
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2.4 Training, Validation, and Testing Phases

The raw ionogram data were manually scaled to provide the output for the BPNN-PSO model,
which is the foF2. The data were split into two sets: training and testing datasets. The training data
period ranged from 2004 to 2012. The input ranges for the solar and geomagnetic activities in Table
4 indicate a wide range of activity levels to represent many solar and geomagnetic activities. Table
5 shows the training parameter settings for the model. The number of hidden layers and hidden
neurons were chosen based on a few trials during the training phase.

Table 4
Input ranges of the training dataset
Parameter Range
SSN 0 to 167
Solar flux F10.7 70.7 to 170.4
Kp index 0 to 87
Dst index (nT) −320 to 30

Table 5
Settings for training parameters for BPNN-PSO
Parameter Setting
Number of training data 10500
Number of hidden layers 2
Number of hidden neurons 11
Training function TRAINLM
Adaption learning function LEARNGDM
Transfer function TANSIG
Performance function MSE

Tables 6 and 7 show the testing dataset period. The testing datasets were not included in the
training and validation phases. The testing datasets in Table 6 were used to examine the
performance of the BPNN-PSO models over a range of solar activities. The months were chosen to
represent low, medium, and high solar activity. Table 7 provides the testing datasets on selected
dates to compare the performance of the BPNN-PSO models under different geomagnetic
conditions: quiet and storms.

Table 6
Monthly mean of SSN and solar flux F10.7 for testing dataset
Month/year Mean SSN Mean solar flux F10.7 Solar activity level
May 2008 and April 2009 8.39 71.22 Low
November 2004 and May 2005 44.72 93.00 Medium
October 2011 and January 2012 110.00 146.71 High

Table 7
Range and mean of SSN diurnally under quiet and geomagnetic storm conditions and its Dst and Kp
Month/year Geomagnetic condition Dst range (nT) Equivalent Kp range
14 August 2004, 4 March 2011, and 28
March 2011

Quiet −27 to 10 0 to 33

2 March 2008, 9 March 2008, and 10
March 2008

Moderate storm −86 to −16 17 to 57

8 November 2004, 11 November 2004,
and 15 May 2005

Intense storm −374 to −40 13 to 97
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2.5 Error Analysis

The test dataset was used to assess the final output of the BPNN-PSO models during the
training phase. During the testing phase, the test dataset was utilized to evaluate the final output of
the BPNN-PSO model. The root-mean-square error (RMSE) was used to evaluate the model’s
performance by using the measured foF2, fobs, and the modeled fof2, fpre.

���� = 1
� �=1

� ����� ��� − ����� ��� 2� (12)

2.6. IRI-2016 Parameters

The IRI-2016 model required several inputs, including location, time, and date. Other optional
inputs can also be included. With these inputs, the IRI-2016 model provided the electron density
values from which the critical frequency foF2 can be extracted. Then, RMSEs were calculated by
using the measured foF2 and the modelled foF2.

3. Results
3.1 Testing Result During Low, Medium, and High Solar Activity

Table 8 summarizes the prediction results of the BPNN-PSO and IRI-2016 models for years of
low, moderate, and high solar activity. The forecast results for the output of BPNN-PSO models in
the table correspond to those conducted by Zhao et al., [10], where foF2was forecasted using an NN
with GA. The IRI-2016 model overestimated the actual value of foF2. The RMSE of BPNN-PSO’s
predictions ranged between 0.20 MHz to 0.47 MHz, whereas Zhao et al., [10] revealed an RMSE of
between 0.55 MHz and 2.09 MHz.

Table 8
Daily test results for low, medium, and high solar activity for
the IRI-2016 and BPNN-PSO models
Solar epoch RMSE (MHz)

IRI-2016 BPNN–PSO
Low solar activity 3.05 0.25
Medium solar activity 2.84 0.47
High solar activity 2.95 0.20

The RMSE of the BPNN-PSO model was lower than that of the IRI-2016 model. The IRI-2016
model’s RMSE was between 2.84 MHz and 3.05 MHz. The BPNN-PSO model surpassed the IRI-2016
model with a smaller RMSE. These findings were consistent with the findings by Fan et al., [1],
which claimed BPNN with PSO had higher prediction accuracy than the IRI model. Figure 4
illustrates the observed foF2and the models’ predictions during periods of low solar activity.
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Fig. 4. Comparison of actual foF2 and the models’ predictions during low solar activity (May 2008 and April
2009) (a) Daily SSN and solar flux F10.7 (b) Dst and equivalent Kp indices (c) Actual (black), IRI-2016 (red), and
BPNN-PSO (blue)

The BPNN-PSO model outperformed the IRI model during low solar activity, with an RMSE of
0.25 MHz compared with 3.05 MHz for the IRI model. The larger the RMSE was, the less accurate
the prediction became. The BPNN-PSO model outperformed the IRI-2016 model in general. The
BPNN–PSO model’s forecast mirrored the trend of the actual value. The BPNN-PSO forecast was
accurate for most data points.

On 5 May 2008, the BPNN-PSO model predicted foF2 of 6.21 MHz, which was close to the actual
value of foF2of 6.42 MHz. The IRI-2016 model underestimated foF2’s actual value by providing foF2 of
4.46 MHz. On 20 May 2008, the BPNN-PSO model predicted foF2 4.96 MHz. This value was closer to
the actual value of 5.01 MHz than the IRI-2016 model, which predicted a decrease of foF2 at only
3.88 MHz.

Figure 5 compares the predictions of the BPNN-PSO and IRI-2016 models during periods of
moderate solar activity. Although the geomagnetic storms occurred on 8 November 2004, both
models adequately fit the rising and falling regions of the foF2 curve during periods of moderate
solar activity. The RMSE for the BPNN-PSO model was 0.47 MHz, whereas that for IRI-2016 was 2.84
MHz. On 8 November 2004, Dst and equivalent Kp values were -343 nT and 83 (Kp= 8+), respectively,
thus indicating an intense storm. The BPNN-PSO model predicted 4.39 MHz, an improvement of
40.67% over the IRI-2016 prediction, which overpredicted the actual value (i.e., 4.18 MHz) of 6.09
MHz.
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Fig. 5. Comparison of actual foF2 and the models’ predictions during medium solar activity (November 2004
and May 2005) (a) Daily SSN and solar flux F10.7 (b) Dst and equivalent Kp indices (c) Actual (black), IRI-2016
(red), and BPNN-PSO (blue)

Additionally, on 16 November 2004, the BPNN-PSO model confirmed its accuracy in forecasting
during a geomagnetic storm. Dst and equivalent Kp values of –58 nT and 40 (Kp= 4), respectively,
implied an intense storm. Compared with IRI-2016 (i.e., 4.12 MHz), the forecast of the BPNN–PSO
model improved by 17.24% with 5.42 MHz. The BPNN–PSO model’s prediction came closer to the
actual foF2 of 5.22 MHz. These findings suggested the BPNN-PSO forecast outperformed the IRI-
2016 model, especially during periods of moderate solar activity.

During periods of high solar activity, the BPNN–PSO model also outperformed the IRI-2016
model. The RMSE of the BPNN-PSO model was 0.20 MHz, whereas that of the IRI-2016 model was
2.95 MHz. Figure 6 compares the actual foF2 and model predictions under high solar activity. The
prediction of foF2 using our BPNN-PSO model provided much better result compared with the IRI-
2016 model. On 20 October 2011, Dst and equivalent Kp were –12 nT and 7 (Kp=1), respectively. The
BPNN-PSO forecast foF2 of 8.23 MHz was higher than the IRI-2016 model’s prediction (i.e., 7.27
MHz), which was closer to the actual foF2 value (8.14 MHz). These findings revealed the BPNN-PSO
model could make accurate forecasts during periods of high solar activity because it attained the
lowest prediction error at each data point and increased prediction performance compared with
the IRI-2016 model.
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Fig. 6. Comparison of actual foF2 and the models’ predictions during high solar activity (October 2011 and
January 2012) (a) daily SSN and solar flux F10.7 (b) Dst and equivalent Kp indices (c) actual (black), IRI-2016
(red), and BPNN-PSO (blue)

3.2 Testing Result During Quiet, Moderate, and Intense Storm Condition

Table 9 summarizes the diurnal testing results under quiet and geomagnetic storm conditions
using both models. The IRI-2016 model’s RMSE under quiet conditions was 2.72 MHz. The RMSE of
the BPNN-PSO model was 0.51 MHz, which was substantially less than that of the IRI-2016 model.
This finding showed that the BPNN-PSO model performed better with a smaller RMSE than the IRI-
2016 model in quiet conditions.

Table 9
Diurnal testing results under quiet, moderate, and intense
storm conditions for IRI-2016 and BPNN-PSO models
Solar epoch RMSE (MHz)

IRI-2016 BPNN-PSO
Quiet condition 2.72 0.51
Moderate storm 3.17 0.33
Intense storm 2.84 0.54

Figure 7 compares the IRI-2016 and BPNN-PSO models’ predictions with the equivalent Kp and
Dst indices under quiet conditions. The BPNN-PSO model performed better than the IRI-2016 model
in predicting the actual foF2 on 14 August 2004 at 1110 UT. The BPNN-PSO model predicted 6.57
MHz, which was closer to the actual value of foF2, 6.37 MHz, than the IRI-2016 model, which
predicted 6.10 MHz. In addition, on 28 March 2011 at 1045 UT, the BPNN-PSO model prediction
was more accurate than that of the IRI-2016 model. The model predicted 7.59 MHz, which was
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0.39% closer to the actual value of foF2 (i.e., 7.56 MHz). The IRI-2016 model predicted a value of
6.70 MHz, 11.36% lower than the actual value. In general, the BPNN-PSO model performed better
under quiet conditions, owing to its consistently low prediction errors across all data points. The
IRI-2016 model underperformed in quiet conditions due to its large error percentage.

Fig. 7. Comparison of actual foF2 and the models’ predictions under quiet geomagnetic conditions (14 August
2004, 4 March 2011, and 28 March 2011) (a) Dst and equivalent Kp indices (b) Actual (black), IRI-2016 (red),
and BPNN-PSO (blue)

Figure 8 compares the actual foF2 and model projections during moderate storms. Table 9 shows
the RMSE of the BPNN-PSO model was substantially less than that of the IRI-2016 model during
moderate storms. The BPNN-PSO model had an RMSE of 0.33 MHz. The IRI-2016 model’s RMSE
during moderate storms was 3.17 MHz. The prediction result of the BPNN-PSO model was
compatible with the model reported by Rumelhart et al., [23] and Xie et al., [24], in which the
response of foF2 to a geomagnetic storm was highly evident. The predicted foF2 value decreased
with the Dst index value, which decreased from –52 nT to –86 nT (moderate storm) between 0430
and 0930 UT on 9 March 2008. These findings corroborate studies published by Wang et al., [27],
which demonstrated the variance of foF2 during geomagnetic storms is dependent on storm
intensity.

On 2 March 2008 at 2130 UT during a weak storm, the BPNN-PSO model predicted a frequency
of 6.62 MHz, which was only 0.15% difference from the actual value of foF2 (6.61 MHz). The BPNN-
PSO model was more accurate than the IRI-2016 model. The IRI-2016 model predicted 2.21 MHz,
66.57% higher than the actual value. However, on 9 March 2008 at 0930 UT during a moderate
storm, the BPNN-PSO model overestimated the actual value of foF2 by 29.31%, thus resulting in a
value of 4.50 MHz, whereas the actual value was 3.48 MHz. The IRI-2016 model forecasted a value
that was 18.38% lower (4.12 MHz) than the actual value. Both provided relatively higher prediction
error, but IRI-2016 model provided better result at this instance. However, in general, our BPNN-
PSO still provided better results during these periods.
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Fig. 8. Comparison of the actual foF2 and the models’ predictions during a moderate storm (2, 9, and 10
March 2008) (a) Dst and equivalent Kp indices (b) Actual (black), IRI-2016 (red), and BPNN-PSO (blue)

Figure 9 compares the actual foF2 and model predictions during an intense storm. BPNN-PSO
models adequately fit the rising and falling parts of the foF2 curve despite the intense storms that
occurred between 0000 and 2300 UT on 8 November 2004, 11 November 2004, and 25 October
2011. On 8 November 2011 at 1000 UT, with Dst and equivalent Kp values of –299 nT and 70,
respectively, the percentage error between the BPNN-PSO prediction (foF2=3.22 MHz) and the
actual value of foF2 (3.06 MHz) was 5.23%. The IRI-2016 model provided the foF2 of 7.21 MHz,
resulting in 135.62% error. In general, the BPNN-PSO model’s prediction was more accurate
because of its low error percentage in many cases during these periods. The RMSE of the IRI-2016
model was 2.84 MHz under intense storm conditions. The RMSE of the BPNN-PSO model was
smaller than the results of the IRI-2016 model at 0.54 MHz. The BPNN-PSO prediction performed
remarkably better than the IRI-2016 model during an intense storm, owing to its smaller error
percentage. The results corroborated those found by Timoçin et al., [28], which concluded that the
NN model is critical for developing an ionospheric storm forecasting system because it can predict
the presence of such severe disturbances.
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Fig. 9. Comparison of actual foF2 and the models’ predictions during an intense storm (8 November 2004, 11
November 2004, and 25 October 2011) (a) Dst and equivalent Kp indices (b) Actual (black), IRI-2016 (red), and
BPNN-PSO (blue)

4. Conclusions

This paper utilized BPNN and PSO for predicting foF2 during quiet and geomagnetic storm
conditions. The BPNN-PSO model’s predictive ability for foF2 was investigated under a variety of
solar activity and geomagnetic storm conditions. Moreover, this paper compared the proposed
model’s prediction findings with the IRI-2016 model’s performance. The BPNN-PSO model
outperformed the IRI-2016 model during low, medium, and high solar activity. The BPNN-PSO
model had the lowest RMSE of 0.20 MHz and performed best during periods of high solar activity.
The RMSE of IRI-2016 was 2.95 MHz during these times. In addition, compared with the IRI-2016
model, the BPNN-PSO model made accurate predictions during quiet and geomagnetic storm
conditions. The BPNN-PSO model had the lowest RMSE of 0.54 MHz during an intense storm,
whereas the RMSE of the IRI-2016 model was 2.84 MHz. The presented work can be expanded by
modifying the weight and bias of the PSO algorithm during training to increase the prediction
model’s performance accuracy, especially under disturbed conditions.
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