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This study aims to analyse and determine the stability of the equilibrium point 
of the spread model consists of TB infection, HIV infection, and TB-HIV co-
infection disease. This model considers eight compartments, namely 
unvaccinated susceptible, vaccinated susceptible, exposed, infected with TB, 
infected with HIV, infected with TB and HIV, treatment, and recovered by 
considering vaccination and treatment in the compartments as the strategies 
to manage spread of the diseases. The stability of non-endemic equilibrium 
point is carried out by determining the basic reproduction number and 
eigenvalues. Simulation is conducted to investigate effect of vaccination and 
treatment. By giving appropriate values of parameters and varying values of 
vaccination rate we found that increasing value of vaccination rate will reduce 
and eliminate TB infection, HIV infection, and TB-HIV co-infection disease from 
the population.  The curve solutions of the dynamics of each compartment are 
given to confirm the analytical results. 
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1. Introduction 
 

One of the problems facing the global community is health. Various efforts have been made to 
prevent and treat diseases, but the diseases are still not solved. A number of diseases continue to be 
of global concern, for example kidney disease, breast cancer, and Covid-19 [1-3]. Mathematical 
models as an approach method and a tool to understand the real phenomena have been widely used 
not only to understand population dynamics but also spreading of infectious diseases. The problem 
of spreading infectious diseases in humans is one of the interesting studies in epidemiology and it 
can be expressed in the form of mathematical models. Some strategies as the efforts in dealing with 
infectious diseases have been widely discussed by researchers, such as vaccination, immunization, 
fogging, and treatment [4-8]. The spread of malaria disease has also been studied using an SIR model 
[9]. The authors have considered the migration factor as an attempt to find out the effect of migration 
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from one area to another on dealing with the spread of malaria disease. Vaccination and fogging have 
been used as strategies to reduce the spread of malaria disease [10].  

Tuberculosis is an infectious disease caused by the mycobacterium tuberculosis bacteria that 
usually affects the lungs. The TB disease can be transmitted through droplets containing bacteria that 
are inhaled by healthy people. This disease is one of the highest causes of death in the world, along 
with HIV/AIDS. The phenomenon of TB spread has been studied through modelling by analysing the 
stability criteria of endemic and non-endemic equilibrium points [11]. Blower, et al., [12] have 
constructed a theoretical framework to assess the dynamics of TB spread. The study found that it 
takes one to several hundred years for the spread of TB to fall and reach a stable endemic level. It 
seems that the decline in TB is simply due to the natural behaviour of an epidemic. Studies of the 
spread of TB through an SIR model with four compartments that consider time delay and the 
provision of vaccines to the susceptible compartment have been carried out and found that the 
provision of vaccines can reduce the number of TB patients [13]. A TB spread model also considered 
the factors of treatment, migration, and vaccination [14]. The model studied the existence and 
singularity of solutions as well as the stability of the non-endemic disease point and the basic 
reproduction number. From the analysis, a threshold value of the vaccination level that causes TB 
disease to disappear was found. Determining the vaccination level by BCG is still a challenge to be 
used in eliminating TB from a population. 

Tuberculosis was first discovered in developing countries in the early 1980s, along with HIV/AIDS. 
HIV/AIDS causes a person's immunity to become weak, so the patient cannot fight the tuberculosis 
bacteria. The HIV/AIDS spread model can be analysed not only using the SEIR model, but can also be 
expressed in a system of fractional derivatives [15]. Sensitivity analysis and qualitative analysis are 
used to determine the behaviour of the spread of the disease. From the graphical representation of 
the sensitivity criteria, a way to reduce the spread of HIV/AIDS in society was found. The dynamics of 
HIV/AIDS spread considering treatment was analysed using Caputo-Fabrizio and fractal fractional 
derivatives [16]. From numerical simulations, it was found that the effects of changing the fractional 
order on the dynamics of the spread of HIV/AIDS. The study of the spread of TB with treatment and 
drugs conducted by Ozcaglar et al., [17] and found a control strategy for increasing compliance to 
compartment of treatment, TB-HIV co-infection, and patients. 

There are many cases where people with HIV also suffer from TB. This is because patients who 
are infected with HIV, if not treated properly, will suffer AIDS with immunity slowly weakening and 
then susceptible to other diseases, such as tuberculosis. Wang et al., [18] considered a spread model 
of TB-HIV co-infection by involving four compartments. The local and global stability of non-endemic 
equilibrium points are analysed to understand trajectory behaviour on both diseases and the effects 
on the disease. To analyse the dynamics of TB-HIV co-infection spread, the model is not only 
expressed in SEIR variants and some other factors such as vaccination [19], but the model can also 
be expressed into other forms such as Caputo operator and fractional-derivatives [20,21]. The TB-
HIV spread model was developed by making five compartments [22]. The model analysed global 
stability conditions for endemic and non-endemic equilibrium points. The analysis also found an 
effective measure to reduce the incidence of TB by 80%. Roeger et al., [23] considered eight 
compartments in studying the spread of TB-HIV co-infection. Basic reproduction number for the HIV 
and TB compartments are analysed one by one and then the basic reproduction number for all 
infected compartments is determined to analyse when TB-HIV co-infection occurs and its dynamics 
as well as ways to reduce the number of cases of both diseases. 

The TB-HIV co-infection disease is still a major health problem in several countries. Anyone can 
be infected with TB, and people living with HIV are more susceptible to TB disease. Some cases of 
people living with HIV have a high chance of becoming active TB if they are always around other 
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people who have active TB. People with HIV who also have latent TB or who are infected with TB can 
still be cured. Patients who are infected with latent TB and are not treated can develop TB disease in 
patients with HIV. This is because the immune system is weakened. Untreated TB patients can die. 
People with HIV and untreated active tuberculosis have a higher risk of death. This model is a 
development of some models previously studied by the researchers, considering eight compartments 
with the addition of vaccination and treatment compartments. The influence of the two strategies is 
analysed analytically and numerically simulated to show the behaviour of the solution curves for each 
compartment. 
 
2. Formulation of a Model for the Spread of TB-HIV Co-Infection Diseases 

 
A model describing the spread of TB disease in terms of the SEIR type has been developed [12,17]. 

A development of model is introduced to model co-dynamics of TB and HIV. The total population is 
divided into eight compartments. The infected class is divided into three compartments, namely 
infectious with TB (𝑰𝑻), HIV infectious (𝑰𝑯) and TB-HIV co-infection (𝑰𝑻𝑯). Individuals in the newborn 
class were considered healthy and susceptible and then moved to the unvaccinated susceptible (𝑺𝒖) 
and vaccinated susceptible (𝑺𝒗) with birth rate 𝝅. Individuals in the 𝑺𝒗 susceptible compartment 
were vaccinated and became immune. This vaccine can weaken the bacteria in the body so that the 
individual does not get sick and then move to compartment 𝑬 which is exposed but not yet 
categorized as an infected with TB and HIV at a rate (𝟏 − 𝝈)𝜷𝒗𝑺𝒗𝑰𝑻, where 𝝈 is the effectiveness 
rate of the vaccination. The individual may also move to compartment 𝑹 or recovered at a rate of 𝝋. 

The individuals in the susceptible compartment 𝑆%	are not vaccinated, so that their immunity 
becomes weak and moves to the compartments		𝐸,	𝐼&, 𝐼', and	𝐼&' at the rate of 	𝑞𝛽(𝑆%𝐼&, 
(1 − 𝑞)𝛽(𝑆%𝐼&, 𝑞𝛽)𝑆%𝐼', and 𝛽*𝑆%𝐼&' respectively. The constants		𝛽(, 𝛽),	and 𝛽* indicate the 
average contact that occurs between healthy individuals who are exposed and TB infected, HIV 
infected, and infected with TB-HIV. Individual in compartment infected with TB can be handled by 
treatment because the main symptom is still mild such as continuous cough can occur for three weeks 
or more. Based on these complaints, the individuals can be categorized to be an infected with TB. 
Before a patient suffering from TB is treated first to prevent infection, so the individuals can move to 
compartment 𝑇 or treatment at a rate of		𝜔(𝐼&. 

The compartment 𝐼' or HIV infected can be handled by treatment because the diagnosis of HIV 
usually does not appear immediately when someone is newly infected with HIV and with the same 
symptoms of flu that appear for 1-2 weeks after HIV infection occurs. Before infection occurs, 
prevention is carried out and individuals move to compartment 𝑇 or treatment at a rate of 𝜔)𝐼&'. 
After giving a treatment, the individual can move to the compartment 𝑅 or recovered naturally at a 
rate of 𝜏. It is also assumed that the individuals in the recovered or cured compartment are not re-
infected with TB and HIV disease, or co-infected with TB-HIV. Based on the above assumptions, the 
dynamics of TB and HIV spread in compartments is shown in Figure 1 below. 
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Fig. 1. Spread dynamics of TB-HIV co-infection diseases with vaccination and treatment 

 
Based on the given assumptions and the spread flow shown in Figure 1, the dynamics of the 

spread of TB-HIV co-infection diseases with vaccination and treatment is given by the following 
system of differential Eq. (1) below. 

 
𝑑𝑆%
𝑑𝑡 =

(1 − 𝑐)𝜋𝑁 − 𝛽(𝑆%𝐼& − 𝑞𝛽)𝑆%𝐼' − 𝛽*𝑆%𝐼&' − 𝜇𝑆% 
𝑑𝑆+
𝑑𝑡 = 𝑐𝜋𝑁 − (1 − 𝜎)𝛽+𝑆+𝐼& − 𝜇𝑆+ 
𝑑𝐸
𝑑𝑡 = 𝑞𝛽(𝑆%𝐼& + (1 − 𝜎)𝛽+𝑆+𝐼& − (𝜑 + 𝜀 + 𝜇()𝐸 

,-!
,.
= (1 − 𝑞)𝛽(𝑆%𝐼& + 𝜀𝐸 − (𝛼) + 𝜔( +	𝜇()𝐼&                                                                                          (1) 

𝑑𝐼'
𝑑𝑡 = 𝑞𝛽)𝑆%𝐼' − (𝛼( +	𝜇))𝐼' 
𝑑𝐼&'
𝑑𝑡 = 𝛼(𝐼' + 𝛼)𝐼& + (𝛽*𝑆% − 𝜔) − 𝜇*)𝐼&' 
𝑑𝑇
𝑑𝑡 = 𝜔(𝐼& + 𝜔)𝐼&' − (𝜏 + 𝜇)𝑇 

,/
,.
= 𝜑𝐸 + 𝜏𝑇 − 𝜇𝑅. 

 
The total of population is denoted as	𝑁 = 𝑆% + 𝑆+ + 𝐸 + 𝐼& + 𝐼' + 𝐼&' + 𝑇 + 𝑅. The initial state 

of each compartment at time 𝑡 = 0 are symbolized as		𝑆%(0) = 𝑆(%1),	𝑆+(0) = 𝑆(+1),	𝐸(0) =
𝐸(1),	𝐼&(0) = 𝐼(&1), 	𝐼'(0) = 𝐼('1) 𝐼&'(0) = 𝐼(&'1), 𝑇(0) = 𝑇(1), and 𝑅(0) = 𝑅(1). The notations  ,3"

,.
, 

,3#
,.

, ,4
,.

, ,-!
,.

, ,-$
,.

, ,-!$
,.

, ,&
,.

 and ,/
,.

  indicate the growth rate for compartments susceptible without 
vaccination, susceptible with vaccination, exposed, infected with TB, infected with HIV, infected with 
TB-HIV, treated, and recovered. The parameters used in the model are assumed to be positive.  
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3. Stability Analysis of the Model 
 
The constructed TB-HIV co-infection spread disease model is analysed focusing on the existence 

and stability of endemic and non-endemic equilibrium points. For simplification, the model Eq. (1) is 
normalized and suppose that 𝑥( =

3"
5

,		𝑥) =
3#
5

,	𝑥* =
4
5

,	𝑥6 =
-!
5

,	𝑥7 =
-$
5

,	𝑥8 =
-!$
5

,	𝑥9 =
&
5

,	and 𝑥: =
/
5

. Therefore, the model Eq. (1) is then rewritten in the form  
 

𝑑𝑥(
𝑑𝑡 =

(1 − 𝑐)𝜋 − 𝛽(𝑥(𝑥6 − 𝑞𝛽)𝑥(𝑥7 − 𝛽*𝑥(𝑥8 − 𝜇𝑥( 
𝑑𝑥)
𝑑𝑡 = 𝑐𝜋 − (1 − 𝜎)𝛽+𝑥)𝑥6 − 𝜇𝑥) 
𝑑𝑥*
𝑑𝑡 = 𝑞𝛽(𝑥(𝑥6 + (1 − 𝜎)𝛽+𝑥)𝑥6 − (𝜑 + 𝜀 + 𝜇()𝑥* 

,;%
,.
= (1 − 𝑞)𝛽(𝑥(𝑥6 + 𝜀𝑥* − (𝛼) + 𝜔( + 𝜇()𝑥6                                                                                        (2) 

𝑑𝑥7
𝑑𝑡 = 𝑞𝛽)𝑥(𝑥7 − (𝛼( +	𝜇))𝑥7 
𝑑𝑥8
𝑑𝑡 = 𝛼(𝑥7 + 𝛼)𝑥6 + (𝛽*𝑥( − 𝜔) − 𝜇*)𝑥8 
𝑑𝑥9
𝑑𝑡 = 𝜔(𝑥6 + 𝜔)𝑥8 − (𝜏 + 𝜇)𝑥9 

,;&
,.
= 𝜑𝑥* + 𝜏𝑥9 − 𝜇𝑥:. 

 
The equilibrium condition of the model occurs when the growths of all compartments are zero. 

The endemic and non-endemic equilibrium points can be determined by setting		,;'
,.
= ,;(

,.
= ,;)

,.
=

,;%
,.
=	 ,;*

,.
= ,;+

,.
= ,;,

,.
= ,;&

,.
= 0 and then solving the system of equations simultaneously. To 

obtain the non-endemic equilibrium point, which means that there is no spread of disease, the 
compartments with infection should be set to be zero. Thus, we have		𝑥* = 0, 	𝑥6 = 0,	𝑥7 = 0,	𝑥8 =
0, 𝑥9 = 0,	𝑥: = 0. Substituting 𝑥* = 𝑥6 = 𝑥7 = 𝑥8 = 𝑥9 = 𝑥: = 0 into the system of equations gives  
𝑥(1 =

((<=)>
?

 and 𝑥)1 =
=>
?

.  Therefore, the non-endemic equilibrium point is written as 𝑇1 =

G𝑥(1, 𝑥)1, 	𝑥*1, 𝑥61, 𝑥71, 𝑥81, 𝑥91, 𝑥:1H = I((<=)>
?

, =>
?
, 0, 0, 0, 0, 0, 0J. 

 
The TB-HIV co-infection disease model includes the compartments of susceptible without 

vaccination, susceptible with vaccination, exposed, infected without treatment, infected with 
treatment, and recovered. Following standard methods, the infected and exposed individuals are 
grouped. Let Y be a group that includes susceptible without vaccination, susceptible with vaccination, 
exposed, infected with treatment, and recovered. While the other compartments are grouped in Z 
which includes infected individuals. Then we have 𝑌 = (𝑥(, 𝑥), 𝑥*, 𝑥9, 𝑥:) and 𝑍 = (𝑥6, 𝑥7, 𝑥8). 

Suppose that 
 

⎝

⎜
⎛

,;%
,.
,;*
,.
,;+
,. ⎠

⎟
⎞

 = S
(1 − 𝑞)𝛽(𝑥(𝑥6 + 𝜀𝑥* − (𝛼) + 𝜔( +	𝜇()𝑥6

𝑞𝛽)𝑥(𝑥7 − (𝛼( +	𝜇))𝑥7
𝛼(𝑥7 + 𝛼)𝑥6 + (𝛽*𝑥( − 𝜔) − 𝜇*)𝑥8

T.                                                                        (3)                   
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The non-endemic equilibrium points in group 𝑌 is written as 𝑌∗ = G𝑥(1, 𝑥)1, 𝑥*1, 𝑥91, 𝑥:1H =
I((<=)>

?
, =>
?
, 0, 0, 0J. Substituting 𝑌∗ into Eq. (3) gives  

 

𝒉(𝑌∗, 𝑍) =

⎝

⎜
⎛

((<A)B'((<=)>
?

𝑥6 − (𝛼) + 𝜔( +	𝜇()𝑥6
AB(((<=)>

?
𝑥7 − (𝛼( +	𝜇))𝑥7

𝛼(𝑥7 + 𝛼)𝑥6 + I
B)((<=)>

?
− 𝜔) − 𝜇*J 𝑥8⎠

⎟
⎞

.                                                                      (4) 

 
Apply partial derivatives of 𝒉(𝑌∗, 𝑍) with respect to 	𝑍 = (𝑥6, 𝑥7, 𝑥8) to get  

C𝒉(E∗,G)
CG

=

⎝

⎜
⎛

((<A)B'((<=)>
?

− (𝛼) + 𝜔( +	𝜇() 0 0

0 AB(((<=)>
?

− (𝛼( +	𝜇)) 0

𝛼) 𝛼(
B)((<=)>

?
− 𝜔) − 𝜇*⎠

⎟
⎞

. 

 
Thus, we have matrix A as follows, 

 

𝐴 =

⎝

⎜
⎛

((<A)B'((<=)>
?

− (𝛼) + 𝜔( + 𝜇() 0 0

0 AB(((<=)>
?

− (𝛼( +	𝜇)) 0

𝛼) 𝛼(
B)((<=)>

?
− 𝜔) − 𝜇*⎠

⎟
⎞
.                     (5) 

 
If the matrix 𝐴  is decomposed in terms of 𝑭 − 𝑽 where 𝑭 is a positive definite matrix and 𝑽 is a 

diagonal matrix, we get 

𝑭 =

⎝

⎜
⎛

((<A)B'((<=)>
?

0 0

0 AB(((<=)>
?

0

𝛼) 𝛼(
B)((<=)>

? ⎠

⎟
⎞
,  and  𝑽 = Z

𝛼) + 𝜔( +	𝜇( 0 0
0 𝛼( +	𝜇) 0
0 0 𝜔) + 𝜇*

[. 

The inverse of matrix  𝑽 is written as 

𝑽<𝟏 =

⎝

⎜
⎛

(
I(JK'J	?'

0 0

0 (
I'J	?(

0

0 0 (
K(J?)⎠

⎟
⎞

. 

From matrices 𝑭 and 	𝑽<𝟏 , the next generation matrix is determined by the matrix 

𝑭𝑽<𝟏 =

⎝

⎜
⎛

((<A)B'((<=)>
?(I(JK'J	?')

0 0

0 AB(((<=)>
?(I'J	?()

0
I(

I(JK'J	?'

I'
I'J	?(

B)((<=)>
?(K(J?))⎠

⎟
⎞

.    

The eigenvalues from the next generation matrix are found by solving the characteristic equation 
𝑓(𝜆) = ^(𝑭𝑽<𝟏 − 𝜆𝑰)^ = 0,	where 
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𝑓(𝜆) = _
_

((<A)B'((<=)>
?(I(JK'J	?')

− 𝜆 0 0

0 AB(((<=)>
?(I'J	?()

− 𝜆 0
I(

I(JK'J	?'

I'
I'J	?(

B)((<=)>
?(K(J?))

− 𝜆
_
_, 

 
that is 
 
I((<A)B'((<=)>
?(I(JK'J	?')

− 𝜆J IAB(((<=)>
?(I'J	?()

− 𝜆J IB)((<=)>
?(K(J?))

− 𝜆J = 0.                                                                       (6) 

 
The roots of characteristic Eq. (6) are  𝜆( =

((<A)B'((<=)>
?(I(JK'J	?')

, 𝜆) =
AB(((<=)>
?(I'J	?()

, and 𝜆* =
B)((<=)>
?(K(J?))

.  We 

can write  ℛ( =
((<A)B'((<=)>
?(I(JK'J	?')

, 	ℛ) =
AB(((<=)>
?(I'J	?()

, and 	ℛ* =
B)((<=)>
?(K(J?))

,  then we have ℛ1 =
max{ℛ(, 	ℛ), ℛ*}. 

The endemic equilibrium point occurs when TB and HIV are spreading in the population. This 
situation occurs when the infected compartments are always positive. To obtain the endemic 
equilibrium point we assume that	𝑥* > 0, 𝑥6 > 0, and 𝑥7 > 0 which implies that 𝑥8, 𝑥9, 𝑥: > 0. 
Therefore, we reach the equilibrium point		𝑇( = G𝑥((, 𝑥)(, 𝑥*(, 𝑥6(, 𝑥7(, 𝑥8(, 𝑥9(, 𝑥:(H. With the 
appropriate values of the parameters, the endemic equilibrium point will occur. The endemic 
equilibrium point is quite difficult to get analytically because the model is more complex with high 
dimensions. The existence and stability of endemic and non-endemic equilibrium points are 
determined by evaluating the value of the basic reproduction number ℛ1. The eigenvalue method is 
also used to confirm the results obtained using the basic reproduction number. 

 
4. Numerical simulations 

 
Numerical simulations are performed to confirm the existence of endemic and non-endemic 

equilibrium points and to determine the stability of each equilibrium point. This simulation is done 
to confirm that the non-endemic equilibrium point 𝑇1 is stable when		ℛ(, ℛ), ℛ* < 1, otherwise it 
becomes unstable when		ℛ(, ℛ), ℛ* > 1. When the non-endemic equilibrium point is unstable, the 
endemic equilibrium point appears and becomes stable. The dynamics of each compartment with 
various values of vaccination and treatment are shown in the given figures. In addition, this 
simulation is conducted to show the effects of vaccination rate (𝑐) and effectiveness of vaccination 
(𝜎) on the rate of spread disease in the population. Simulations on the model of TB-HIV co-infection 
disease are carried out with some values of dominant parameters that affect the behaviour of the 
compartments in the model. 
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Table 1  
Parameter values of related to the TB-HIV co-infection disease spread model 
Parameters Description Values References 

𝜋 Natural birth rate 0.027-
1.33 [24] 

𝜇 Natural death rate 1.001 Assumed 
𝜇. Death rate caused by TB disease  0.3 [24] 
𝜇/ Death rate caused by HIV disease 0.3 Assumed 
𝜇0 Death rate caused by TB and HIV  0.4 Assumed 
𝑐 Vaccination rate 0.01-0.9 [24] 
𝜎 Vaccination effectiveness level 0.01 Assumed 

𝛽1 Transmission rate due to contact between vaccinated susceptible or 
healthy and exposed  0.35 [24] 

𝛽. Average contact that occurs between susceptible and TB infected 1.5-1.9 Assumed 
𝛽/ Average contact that occurs between susceptible and HIV infected 1.5-1.9 Assumed 
𝛽0 Average contact that occurs between susceptible and TB-HIV infected 1.5 Assumed 
𝑞 Level of disease transmission  0.5 [24] 

𝛼. Average contact that occurs between HIV infected and TB infected 0.03-
0.003 Assumed 

𝛼/ Average contact that occurs between TB infected and HIV infected  0.03-
0.003 Assumed 

𝜔. Transition rate from TB infected to treated  1 Assumed 
𝜔/ Transition rate from TB-HIV infected treated 1 Assumed 
𝜑 Transition rate from exposed to recovered  0.03 Assumed 
𝜀 Transition rate from exposed to TB infected 0.0003 [24] 
𝜏 Treatment rate  0.03 Assumed 

 
To plot the solution curves of the compartments, we take the initial conditions as		𝑆%(0) =

0.73,			𝑆+(0) = 0.27,				𝐸(0) = 0.25, 		𝐼&(0) = 0.32, 			𝐼'(0) = 0.32, 		𝑇(0) = 0.15, and 𝑅(0) =
0.10. The parameter values used in the simulation are  𝛽( = 1.9, 𝛽) = 1.9, 	𝐼&'(0) = 1.554, 𝛽* =
1.5, 𝛽+ = 0.35, 𝑐 = 0.01, 𝜎 = 0.01, 𝜔( = 1, 𝜔) = 1, 𝜋 = 1.33, 𝜇 = 1.001, 𝜇( = 0.3, 𝜇) = 0.3,	𝜇* =
0.4, 𝑞 = 0.5, 𝛼( = 0.03, 𝛼) = 0.03, 𝜀 = 0.0003, 𝜑 = 0.03, and 𝜏 = 0.03 with appropriate units. 
Then we have a non-endemic equilibrium point  𝑇1 = (3.1071, 0.0314, 0, 0, 0, 0, 0, 0) with 
eigenvalues 𝜆( = −1.001, 𝜆) = −1.0010, 𝜆* = −1.0001,		𝜆6 = −1.0310, 𝜆7 = 3.2606, 𝜆8 =
−0.3307, 𝜆9 = 1.7222, and  𝜆: = 2.6217. Since ℛ( = 1.2496, ℛ) = 1.2622, and ℛ* = 1.9930, we 
get ℛ1 = 1.9930. From the basic reproduction number and the values of eigenvalues, we know that 
the non-endemic equilibrium point 𝑇1 is not stable. This means that with the given parameter values, 
the non-endemic case will occur and the TB-HIV co-infection disease will remain in the population. 
The solution curves of the compartments are shown in Figure 2. 
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Fig. 2. Solution curves of all compartments for endemic case 
 
Figures 2(a) and 2(b) show that the number of individuals in the unvaccinated and vaccinated 

susceptible compartments will reach the equilibrium point, the two compartments will always exist. 
While Figures 2(c) and 2(d) show that the number of individuals in the exposed and TB infected 
compartments will go to zero. The exposed individuals will die out, and TB infected individuals will 
also disappear from the population. Although TB infected will disappear, individuals infected with 
HIV, TB-HIV co-infected, treated, and recovered will not tend to zero. Individuals in the HIV infected 
and TB-HIV co-infected compartments will remain coexist and still occur endemically, Figures 2(e), 
2(f), 2(g) and 2h). 

In the next simulation, we take the values of vaccination rate is quite high, which is expected to 
reduce the infection rate. We take the parameter values as 𝛽( = 1.5, 𝛽) = 1.5, 𝛽* = 1.5, 𝛽+ = 0.35, 
𝑐 = 0.9, 𝜎 = 0.0001, 𝜔( = 1, 𝜔) = 1, 𝜋 = 0.1, 𝜇 = 1.001, 𝜇( = 0.3, 𝜇) = 0.3,	𝜇* = 0.3, 𝑞 = 0.5, 
𝛼( = 0.0003, 𝛼) = 0.0003, 𝜀 = 0.0003, 𝜑 = 0.03, and 𝜏 = 0.03 with appropriate units. From the 
given parameter values, we get the non-endemic equilibrium point		𝑇1 =
(0.314, 2.825, 0, 0, 0, 0, 0, 0) and from which we get the eigenvalues 𝜆( = −1.001, 𝜆) = −1.001, 
𝜆* = −1.001,	𝜆6 = −1.001, 𝜆7 = −0.929, 𝜆8 = −0.338, 𝜆9 = −1.065, and 𝜆: = −0.065. We also 
have 	ℛ(, ℛ), ℛ* < 1, where ℛ( = 0.0020, ℛ) = 0.0202, and ℛ* = 0.0405. Therefore, we have 
ℛ1 = 0.0405. Since ℛ1 < 1 and the real part of all eigenvalues are negative, then the non-endemic 
equilibrium point is locally asymptotically stable. This means that there is no more endemic after tens 
year and the population will be free from the TB and HIV diseases. The solution curves of each 
compartment are plotted in Figure 3. 

  
(g) (h) 
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Fig. 3. Solution curves of each compartment for non-endemic case 
 
Figures 3(a) and 3(b) show that the number of individuals in the unvaccinated and vaccinated 

susceptible compartments will move towards the equilibrium point, both compartments always 
exist. The equilibrium value for compartment 	𝑆% decreases while the equilibrium value for 
compartment 	𝑆+ increases compared to Figure 2(a) and 2(b) This is because in the second simulation 
there is an increase in the vaccination level. While Figures 3(c) to 3(h) show that the number of 
individuals in the exposed, TB infected, HIV infected, TB-HIV co-infected, treatment and recovered 
compartments will go to zero, there will be no more endemic in the population. This shows the 
effectiveness of vaccine administration, which can turn the endemic state into non-endemic by 
increasing the vaccination level in the susceptible compartment. 

 
5. Conclusion 

 
A spread model consisting of tuberculosis, HIV, and TB-HIV with eight compartments has been 

developed, taking into account the vaccination of the susceptible compartment and the addition of 
the treatment compartment. The existence and stability of non-endemic equilibrium points are 
analysed using the method of eigenvalues and the determination of basic reproduction number (ℛ1). 
The influence of vaccination and treatment on the spread of the disease is simulated by varying the 
vaccination rate. In the first simulation, a low vaccination rate is given, and in the second simulation, 
a relatively high vaccination rate is given, while the other parameter values are unchanged. When 
the value of vaccination rate is sufficiently low (𝑐 = 0.01), an unstable non-endemic equilibrium 
point is obtained. Individuals in compartments 	𝐼', 	𝐼&', T, and R will not tend to zero. This means 
that endemicity is still occurring in these compartments. 

In the second simulation, a fairly high value of vaccination rate (𝑐 = 0.9) was given and a stable 
non-endemic equilibrium point is obtained. Individuals in the compartments 	𝐼&   	𝐼', 	𝐼&', T, and R 
will tend to zero, which means that there is no more endemic occurrence. The TB and HIV infection 
will disappear from the population after ten years. By increasing the vaccination rate, the endemic 
state becomes non-endemic. Treatment does not give a significant effect on the spread of TB and 
HIV disease. Increasing the vaccine rate also has the effect of increasing the value of equilibrium point 
for compartment	𝑆+ at the non-endemic equilibrium point, while decreasing the value of equilibrium 
point for 𝑆% at the non-endemic equilibrium point. In addition, increasing the vaccination rate will 
decrease the value of the basic reproduction number. This means that vaccination can help reduce 

  
(g) (h) 
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the rate of spread of TB infection, HIV infection, and TB-HIV co-infection disease and population will 
be free from endemic cases. 
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