
Journal of Advanced Research in Applied Sciences and Engineering Technology 63, Issue 1 (2026) 191-201

191

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Hardware Implementation of Hough Transform for the Application in
Lane Detection in Smart Vehicles

Chessda Uttraphan1,3*, Dhivaakar Ravindran1, Chua Wee Heng1, Kok Boon Ching2, Nabihah
Ahmad1,3, A Arul Edwin Raj4

1 Department of Electronic Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,
Batu Pahat, Johor, Malaysia

2 Department of Electrical Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,
Batu Pahat, Johor, Malaysia

3 VLSI and Embedded System Technology (VEST) Research Group
4 Department of ECE, Saveetha Engineering College, Chennai, India

ABSTRACT

Lane detection is one of the important features of smart vehicles. It is used to assist
drivers in achieving the best driving experience. Lane detection utilizes the line
detection algorithm where there are many algorithms that are available, but the most
effective algorithm is the Hough Transform because it is simple and can be applied in
both software and hardware implementations. However, studies have shown that
Hough Transform implementation of video in the software environment could result in
sub-par performance because it requires extremely high computation resources and
memory. Therefore, we propose hardware implementation of the Hough Transform
for lane detection in this work. The targeted hardware is the Field Programmable Logic
Array (FPGA) as its reconfigurable nature allows for rapid design. Hardware
implementation of video processing enables parallel data processing, which reduces
overall system latency. Furthermore, the hardware design can be optimized to reduce
the number of logics that will lead to lower power consumption. The hardware logic
was designed based on the Hough Transform equation by using the Verilog Hardware
Description Language (HDL) in Intel Quartus Prime software. After the design is
successfully completed and verified through simulation, the execution speed of the
hardware implementation is then compared with the same design in the software
environment (MATLAB). Results show that the hardware-based Hough Transform is
over 100 times faster, with less than 1% of logic resources utilized, resulting in a lower
power consumption at 146 mW.

Keywords:
Hough transform; straight line
detection; lane detection; FPGA;
hardware implementation

1. Introduction

Lane detection is a crucial component of modern autonomous driving systems, enabling
vehicles to stay within their designated lanes and navigate safely on the road [1]. To achieve this,
computer vision algorithms are employed to identify the lane markings on the road and track them

* Corresponding author.
E-mail address: chessda@uthm.edu.my

https://doi.org/10.37934/araset.XX.X.XX

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

192

in real-time. One popular technique used for this purpose is the Hough transform, which is a
mathematical method that can detect lines in an image or video even if they are broken or
distorted [2].

The Hough transform was first introduced by Paul Hough in 1962, and it has since been widely
used in computer vision and image processing applications [3]. The technique works by
transforming an image into a parameter space, where lines can be represented as points. By
searching for clusters of points in this parameter space, the Hough transform can identify lines in
the original image.

In lane detection, the Hough transform is used to detect the straight lines that make up the lane
markings. These lines can then be used to determine the position and orientation of the vehicle
within its lane. The Hough transform is particularly useful in this application because it can handle a
variety of lane marking types, such as solid lines, dashed lines, and even curved lines [4].

In the previous study, Kumar et al., [5] proposed effective and efficient vision-based real-time
lane markings and tracking lane detection methods for straight and curved lane lines. They claimed
that the proposed approaches are able to achieve real-time response and high accuracy for a
vehicle in lane change assistant system on highways. A better technique was proposed in [6, 7]
where shadows and low light conditions are taking into account. They used edge detection and
gradient techniques to process the images before applying the Hough Transform. A more advanced
approach was reported in [8] where the work focused in the pre-processing stage. They proposed
smoothing and edge detection operators that applied on input frames to automatically obtain
binary images, then, lane markings segmentation is carried out. After that, An Adaptive Region of
Interest (AROI) is extracted to reduce the computational complexity. Other works on lane detection
using Hough Transform can be found in [9-12]. Deep learning approaches for lane detection were
also have been reported in [13-16]. However, this technique is not on our focus as it usually
increases computation complexity.

FPGA devices can also achieve low latency, as they do not require the overhead of an operating
system or additional software layers [17, 18]. This makes them suitable for applications where real-
time processing is critical, such as lane detection in autonomous vehicles. By using FPGA to
implement the Hough transform, the latency can be significantly reduced, resulting in more timely
and accurate detection of lane markings. Furthermore, FPGA devices are known for their energy
efficiency, as they can be programmed to consume only the power needed for the task at hand [19].
This is important for battery-powered devices, such as smart vehicles, where energy consumption is
a critical consideration. By implementing the Hough transform on an FPGA, the power consumption
can be minimized, resulting in longer battery life, and reduced operating costs.

As stated earlier, Hough Transform needs extremely high computation resources and huge
memory space because the computation to calculate Hough parameters are repeated for each
image pixel and for all angles [20]. Therefore, recently many works have proposed the hardware
implementation of the Hough Transform in lane detection applications. Hardware implementation
such as FPGAs are highly parallel and can perform multiple computations simultaneously. This
makes them well-suited for processing image data, where multiple calculations need to be
performed on large amounts of data in real-time. By using FPGA, the Hough transform algorithm
can be parallelized and executed much faster than on traditional CPUs or GPUs, resulting in
improved real-time performance and reduced latency. The programmability of FPGAs allows the
system designers to configure the design to meet specific requirements. The Hough transform
algorithm can be implemented on an FPGA by designing custom hardware circuits that are
optimized for the algorithm's specific needs. This enables the algorithm to be tailored for a specific
application or task, resulting in improved efficiency and accuracy.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

193

For example, Hajjouji et al., [21] proposed a novel FPGA implementation of Hough Transform
for straight lane detection. The design in [22] is claimed to have less logics with reduced overall
complexity. However, the algorithm is to detect the circle lines instead of straight line. Other
hardware implementation of Hough Transform for lane detection were reported in [23-26].
Although there were many works that have explored the possibility of implementing Hough
Transform on the hardware with promising performance improvement as compared to the
software implementation counterparts. However, if we carefully analyze the previous works, there
is still much room for improvement. In this work, we propose a unique design of the hardware
architecture for executing the Hough Transform algorithm. The design can achieve faster speed and
lower power consumption as compared to the software implementation.

This paper is organized as follows: Section 1 introduces the implementation of Hough Transform
in the lane detection and discusses related works with the current implementation issues. Section 2
discusses the fundamentals of Hough Transform Algorithm with the aid of numerical examples
together with the proposed designed based on the algorithm, while Section 3 provides the
experimental works, results, and analysis. Finally, Section 5 concludes the proposed work and
discusses the future direction of this work.

2. Methodology

The Hough Transform equation, Eq. (1) describes the relationship between and , two
essential parameters used to detect straight lines in a 2D plane. represents the distance from the
origin to the closest point on the identified line, while denotes the angle between the x-y axis and
the line connecting the origin with that closest point as illustrated in Figure 1.

� = � ∙ cos � + � ∙ sin � (1)

The linear Hough transform algorithm uses the two parameters that define a straight line, (,).
Consider the 2-D plane in Figure 2, where the size is 7 × 6 pixels.

Suppose the edge pixels provided by the Sobel filter are as follows: (0, 5), (1, 4), (2, 3), (3, 2), (3,
5), (4, 1), (4, 3) and (5, 5). By using Eq. (1), for between 0 to 180 of each edge pixel can be
calculated. The example of the calculation for incremented by 45 is given in Table 1 (note that
this is the simplified calculation, where in practice, the smaller the resolution, the more accurate
the line detection). From Table 1, it can be observed that the most value detected is 3.54, which
indicates that the pixels (0, 5), (1, 4), (2, 3), (3, 2) and (4, 1) must be on the same strait line. All
those pixels point to the same value, which is 45. That’s exactly what is illustrated in Figure 3. To
implement this, the Hough Transform algorithm can now be created as given in Figure 4. In the
algorithm, for each given pixel, for from 0 to 180 will be calculated. The value of the
calculated will be counted in the accumulator. The most hit value indicates the straight line at
the pixel with specific angle.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

194

Fig. 1. A line on 2-D plane Fig. 2. Edge pixels of an image

Fig. 3. Straight line construction by Hough Fig. 4. Simplified Hough Transform algorithm
Transform

Table 1
Hough Transform calculation example
Pixel 0° 45° 90° 135° 180°
(0, 5) 0.00 3.54 5.00 3.54 0.00
(1, 4) 1.00 3.54 4.00 2.12 −1.00
(2, 3) 2.00 3.54 3.00 0.71 −2.00
(3, 2) 3.00 3.54 2.00 −0.71 −3.00
(3, 5) 3.00 5.66 5.00 1.41 −3.00
(4, 1) 4.00 3.54 1.00 −2.12 −4.00
(3, 3) 3.00 4.24 3.00 0.00 −3.00
(5, 5) 5.00 7.07 5.00 0.00 −5.00

The hardware logic implementation of the Hough Transform is based on Eq. (1) and the
algorithm depicted in Figure 4. Figure 5 illustrates the proposed hardware design for the Hough
Transform, which is modelled after the algorithm presented in Figure 4. The detected pixels,
representing (x, y) coordinates, are stored in dedicated Random-Access Memories (RAMs) called X
Pixel and Y Pixel, respectively. Additionally, the cosine and sine values required for calculations
are stored in lookup tables (LUTs) implemented as Read-Only Memories (ROMs) named Cos and Sin.
For each pixel, the corresponding values are calculated for angles ranging from 0 to 180 degrees,
and these values are accumulated in the Accumulator RAM (Acc Rho). As demonstrated in the
numerical example, the highest value at a specific angle indicates the presence of a straight line,

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

195

as shown in Figure 3. To ensure synchronized operations in the proposed design, a controller is
employed to generate the necessary control signals. The controller's arithmetic state machine
(ASM), which models its behaviour, is provided in Figure 6.

Fig. 5. The proposed hardware implementation of the Hough Transform

Fig. 6. ASM chart of the controller

The sine and cosine values, represented by 8-bit signed numbers, are initialized in the ROM
using memory initialization files (mif files). The specific contents of the ROMs can be seen in Figure
7. Furthermore, the synthesized top-module level of the proposed design is provided in Figure 8.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

196

(a)

(b)
Fig. 7. 8-bit signed values in ROMs (a) Sine (b) Cosine

Fig. 8. The synthesized top-level module of the proposed hardware Hough Transform

3. Results
3.1 Experiment Setup

The proposed hardware design depicted in Figure 5 was implemented in Verilog HDL using the
Intel Quartus Prime development tool. The design was synthesized using Quartus, which allowed us
to record important metrics such as the total number of logic elements, timing information
including the maximum operating frequency (Fmax), and the total power consumption. To evaluate
the performance of the design, we conducted simulations using ModelSim. The execution speed of
the design was determined by referring to the obtained Fmax. Multiple tests were carried out, each
with different image (line) settings. It is worth noting that, in this initial phase of the work, we
utilized constructed images in which the edge pixels were manually generated, as illustrated in
Figure 7. This approach was chosen instead of using actual images as the latter would require
preprocessing using modules such as the Sobel Filter. The inclusion of such preprocessing modules
is planned for our future work. The objective of this study was primarily to demonstrate the
efficient hardware implementation of the Hough Transform. Once the design was successfully
simulated and the execution speed was obtained, we compared this speed with the execution time

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

197

of the same settings in MATLAB. This comparison allowed us to assess the effectiveness and
efficiency of our hardware implementation.

3.2 Experimental Results and Analysis
3.2.1 Verification results

To ensure the correctness of the design, a thorough verification process was conducted using an
input image depicted in Figure 3. The simulation results of the verification test for the proposed
design are presented in Figure 9, with the corresponding output values tabulated in Table 2. In the
simulation results, the sine and cosine values were represented as 8-bit signed values. For instance,
for = 45, the sine value (sine) and cosine value (cosine) both equal 90 or 0x5A in the 8-bit
representation. Analyzing the obtained results, specifically for the pixel coordinates (x, y) = (0, 5),
we observe the calculated values for angles of 0, 45, 90, 135, and 180 degrees to be 0, 450, 635,
450, and 0, respectively. Examining the calculated values for all pixels, it becomes evident that the
 value of 450 is the most frequently stored value in the RAM. Based on this observation, we can
conclude that pixels (0, 5), (1, 4), (2, 3), (3, 2), and (4, 1) lie on the same straight line, while pixels (3,
5), (4, 3), and (5, 5) do not. This outcome provides compelling evidence that the proposed design
operates correctly, aligning with the principles of the Hough Transform algorithm.

Fig. 9. Simulation result of the verification test

Table 2
Output of the proposed hardware Hough Transform
 Cos () Sin () x y x y x y x y x y
0 127 0 0 5 0 1 4 127 2 3 254 3 2 381 3 5 381
45 90 90 0 5 450 1 4 450 2 3 450 3 2 450 3 5 720
90 0 127 0 5 635 1 4 508 2 3 381 3 2 254 3 5 635
135 -90 90 0 5 450 1 4 526 2 3 602 3 2 678 3 5 948
180 -127 0 0 5 0 1 4 129 2 3 258 3 2 387 3 5 387

Table 2. Continued
Output of the proposed hardware Hough Transform
 Cos () Sin () x y x y x y
0 127 0 4 1 508 4 3 508 5 5 635
45 90 90 4 1 450 4 3 630 5 5 900
90 0 127 4 1 127 4 3 381 5 5 635
135 -90 90 4 1 754 4 3 934 5 5 1280

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

198

180 -127 0 4 1 516 4 3 516 5 5 645

3.2.2 Experimental results

The proposed hardware implementation of the Hough Transform was subjected to testing using
various constructed images. These images were created using PIXILART software, with each image
set to a size of 100 × 100 pixels. In Table 3, we present both the original images and the output
generated by the proposed hardware design, showcasing successful construction of the straight
lines in each image. To compare the performance of the hardware implementation with the
software counterpart, the execution times for each image were recorded for both MATLAB and the
hardware design. These results are summarized in Table 4. It should be noted that while the
execution time for the hardware implementation remains fixed, the software execution time can
vary due to the computer load during algorithm execution. Across all the test cases, it is evident
that the hardware execution outperforms the software execution in terms of speed, achieving up to
a 100-fold improvement. This is remarkable considering that the hardware implementation
operates at a much lower frequency of 50 MHz, in contrast to the 3.2 GHz clock speed of a personal
computer. These findings affirm the superior efficiency and effectiveness of the proposed hardware
design for the Hough Transform.

Table 3
Experimental results for the test in different constructed images
Original image Line constructed Original image Line constructed

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

199

Table 3. Continued
Experimental results for the test in different constructed images
Original image Line constructed Original image Line constructed

Table 4
Execution time test results
Image Execution time (s) in MATLAB Execution time (s) in hardware implementation
Image D1 0.083178 0.000803
Image D2 0.082436 0.000803
Image D3 0.080723 0.000803
Image D4 0.081263 0.000803
Image D5 0.078437 0.000803
Image D6 0.080891 0.000803
Image D7 0.077648 0.000803
Image D8 0.086015 0.000803
Image D9 0.079168 0.000803
Image D10 0.079433 0.000803

Table 5 presents a benchmark comparison of our work with references [24-26]. Notably, our
proposed Hough Transform hardware design showcases the lowest utilization of logic elements,
amounting to only 237 4-input lookup tables (LUTs). Consequently, it achieves the lowest total
power consumption, measured at 146.29 mW. Regarding the maximum operating frequency
(Fmax), our design achieves a clock rate of up to 128.9 MHz. It is important to note that direct
comparisons with [24, 25] are not feasible due to the use of different FPGA devices in those works,
thereby influencing the obtained Fmax values. Memory utilization is dependent on the built-in
memory employed within our design. As such, it is not directly comparable to the memory
utilization in the referenced works.

Table 5
Performance comparison with other works
Performance metrics Proposed work [24] [25] [26]
Maximum operating frequency 128.9 MHz 69.2 MHz 226.7 MHz 200 MHz
Total logic elements 237 278 5,717 15,704
Total registers 87 431 6,010 13,727
Total memory bits 1,581,056 38,280 - 3,052,544
Total thermal power dissipation 146.29 mW - - 640.89 mW

4. Conclusions

In this study, we have introduced a novel implementation of the Hough Transform algorithm on
an FPGA. The results demonstrate that the proposed design achieves a significant speedup of up to
100 times compared to the software implementation in MATLAB, despite running at a lower clock
speed on a slower platform. This is due to the parallel execution of the computation modules,

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

200

which results in faster processing times. Moreover, the design consumes low power at 146 mW,
utilizing less than 1% of the total logic elements of the FPGA device. We also show that the
proposed design utilizes the lowest logic elements as compared to other similar works. However,
due to the large size of the RAM accumulator, RAM for storing image pixels, and LUTs (ROMs) for ,
sine, and cosine values, the design utilized a total of 66% memory bits. While the improved speed
was achieved, the proposed design still requires multiple iterations of calculating . In future work,
we aim to explore other logic design configurations to allow for more parallel computation by
applying proper operation scheduling and constraints resources allocation. We also plan to
optimize the design by using logic transformation techniques, such as replacing multiplication with
shift operations, to reduce the overall cost. These efforts will further enhance the performance of
the proposed design and make it suitable for a broader range of applications in computer vision and
image processing.

Acknowledgement
This research was funded by a grant from Universiti Tun Hussein Onn Malaysia (UTHM) through
GPPS (vot. Q288).

References
[1] Ma, Long Yang, Hao Zhu, and Hong Duan. "A method of multiple lane detection based on constraints of lane

information." In 2021 China Automation Congress (CAC), p. 4059-4064. IEEE, 2021.
https://doi.org/10.1109/CAC53003.2021.9727491

[2] Jiang, Yan, Feng Gao, and Guoyan Xu. "Computer vision-based multiple-lane detection on straight road and in a
curve." In 2010 International Conference on Image Analysis and Signal Processing, p. 114-117. IEEE, 2010.
https://doi.org/10.1109/IASP.2010.5476151

[3] Fokkinga, Maarten. "The hough transform." Journal of functional programming 21, no. 2 (2011): 129-133.
https://doi.org/10.1017/S0956796810000341

[4] Dharsini, Ms Visnu, K. Karthik, M. Gopichandd, Jorige Venkatesh, and S. Sabarish. "Advanced road lane line
detection." In 2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI) 1, p. 1-5.
IEEE, 2022. https://doi.org/10.1109/ICDSAAI55433.2022.10028920

[5] Kumar, Sunil, Manisha Jailia, and Sudeep Varshney. "An efficient approach for highway lane detection based on
the Hough transform and Kalman filter." Innovative infrastructure solutions 7, no. 5 (2022): 290.
https://doi.org/10.1007/s41062-022-00887-9

[6] Weganofa, Riza, Ayu Liskinasih, Gunadi Harry Sulistyo, and Punadji Setyosari. "Bridging the expectation and actual
learning." International Education & Research Journal 5, no. 1 (2019): 40-41.

[7] Istiningrum, Astika, Umi Salamah, and Nurcahya Pradana Taufik Prakisya. "Lane detection with conditions of rain
and night illumination using hough transform." In 2022 5th International Conference on Information and
Communications Technology (ICOIACT), p. 429-434. IEEE, 2022.
https://doi.org/10.1109/ICOIACT55506.2022.9972068

[8] Marzougui, Mehrez, Areej Alasiry, Yassin Kortli, and Jamel Baili. "A lane tracking method based on progressive
probabilistic Hough transform." IEEE access 8 (2020): 84893-84905.
https://doi.org/10.1109/ACCESS.2020.2991930

[9] Lin, Yancong, Silvia-Laura Pintea, and Jan van Gemert. "Semi-supervised lane detection with deep Hough
transform." In 2021 IEEE International Conference on Image Processing (ICIP), p. 1514-1518. IEEE, 2021.
https://doi.org/10.1109/ICIP42928.2021.9506299

[10] Qiu, Dong, Meng Weng, Hongtao Yang, Weibo Yu, and Keping Liu. "Research on lane line detection method based
on improved hough transform." In 2019 Chinese Control And Decision Conference (CCDC), p. 5686-5690. IEEE,
2019. https://doi.org/10.1109/CCDC.2019.8833139

[11] Jiang, Libiao, Jingxuan Li, and Wandong Ai. "Lane line detection optimization algorithm based on improved Hough
transform and R-least squares with dual removal." In 2019 IEEE 4th advanced information technology, electronic
and automation control conference (IAEAC) 1, p. 186-190. IEEE, 2019.
https://doi.org/10.1109/IAEAC47372.2019.8997573

[12] Syed, Mohammad Haider, and Santosh Kumar. "Road lane line detection based on roi using hough transform
algorithm." In Proceedings of Third International Conference on Computing, Communications, and Cyber-Security:

https://doi.org/10.1109/CAC53003.2021.9727491
https://doi.org/10.1109/IASP.2010.5476151
https://doi.org/10.1017/S0956796810000341
https://doi.org/10.1109/ICDSAAI55433.2022.10028920
https://doi.org/10.1007/s41062-022-00887-9
https://doi.org/10.1109/ICOIACT55506.2022.9972068
https://doi.org/10.1109/ACCESS.2020.2991930
https://doi.org/10.1109/ICIP42928.2021.9506299
https://doi.org/10.1109/CCDC.2019.8833139
https://doi.org/10.1109/IAEAC47372.2019.8997573

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 191-201

201

IC4S 2021, p. 567-580. Singapore: Springer Nature Singapore, 2022. https://doi.org/10.1007/978-981-19-1142-
2_45

[13] Ren, Chao, Xiuling Huang, and Harutoshi Ogai. "Lane detection based on deep learning and SSIM method."
In 2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), pp. 48-51.
IEEE, 2022. https://doi.org/10.1109/IHMSC55436.2022.00020

[14] Yalabaka, Srikanth, Ch Rajendra Prasad, P. Sanjana, B. Lokesh, T. Shradha, and Srinivas Samala. "Lane detection
using deep learning techniques." In 2022 8th International Conference on Signal Processing and Communication
(ICSC), p. 412-416. IEEE, 2022. https://doi.org/10.1109/ICSC56524.2022.10009637

[15] Gopal, K. Venu, Ch Rohith, D. Siddhartha, and Shubhangi Mahule. "Lane detection on roads using computer
vision." International journal of engineering technology and management sciences 6, no. 4 (2022): 8-15.
http://dx.doi.org/10.46647/ijetms.2022.v06i04.002

[16] Jiang, Yan, Feng Gao, and Guoyan Xu. "Computer vision-based multiple-lane detection on straight road and in a
curve." In 2010 International Conference on Image Analysis and Signal Processing, p. 114-117. IEEE, 2010.
https://doi.org/10.1109/IASP.2010.5476151

[17] Bailey, Donald G. "Image processing using FPGAs." Journal of Imaging 5, no. 5 (2019): 53.
https://doi.org/10.3390/jimaging5050053

[18] Zakaria, Fazrul Faiz, Asral Bahari Jambek, Norfadila Mahrom, Rafikha Aliana A. Raof, Mohd Nazri Mohd Warip,
Phak Len Al Eh Kan, and Muslim Mustapa. "Tuberculosis classification using deep learning and FPGA
inferencing." Journal of Advanced Research in Applied Sciences and Engineering Technology 29, no. 3 (2023): 105-
114. https://doi.org/10.37934/araset.29.3.105114

[19] Ibro, Marsida, and Galia Marinova. "Review on low-power consumption techniques for FPGA-based designs in IoT
technology." In 2021 16th International Conference on Telecommunications (ConTEL), p. 110-114. IEEE, 2021.
https://doi.org/10.23919/ConTEL52528.2021.9495970

[20] Solod, Panadda, Nattha Jindapetch, Kiattisak Sengchuai, Apidet Booranawong, Pakpoom Hoyingcharoen,
Surachate Chumpol, and Masami Ikura. "Memory optimization for accelerating hough transform on fpga using
high level synthesis." In 2019 IEEE International Circuits and Systems Symposium (ICSyS), p. 1-4. IEEE, 2019.
https://doi.org/10.1109/ICSyS47076.2019.8982398

[21] El Hajjouji, Ismaïl, Salah Mars, Zakariae Asrih, and Aimad El Mourabit. "A novel FPGA implementation of Hough
Transform for straight lane detection." Engineering Science and Technology, an International Journal 23, no. 2
(2020): 274-280. https://doi.org/10.1016/j.jestch.2019.05.008

[22] Orlando, Chuquimia, Pinna Andrea, Marsala Christophel, Dray Xavier, and Bertrand Granado. "FPGA-based real
time embedded Hough transform architecture for circles detection." In 2018 Conference on Design and
Architectures for Signal and Image Processing (DASIP), p. 31-36. IEEE, 2018.
https://doi.org/10.1109/DASIP.2018.8597174

[23] He, Wenhao, and Kui Yuan. "An improved Hough Transform and its realization on FPGA." In 2011 9th World
Congress on Intelligent Control and Automation, p. 13-17. IEEE, 2011.
https://doi.org/10.1109/WCICA.2011.5970530

[24] Khai, Lam Duc, and Trinh Viet Hoang. "A road self-guided hardware-based demo system." In 2021 15th
International Conference on Advanced Computing and Applications (ACOMP), p. 156-161. IEEE, 2021.
https://doi.org/10.1109/ACOMP53746.2021.00028

[25] Dong, Ziwei, Tingting Hu, Ryuji Fuchikami, and Takeshi Ikenaga. "Encoding-free incrementing Hough transform for
high frame rate and ultra-low delay straight-line detection." In 2021 17th International Conference on Machine
Vision and Applications (MVA), p. 1-4. IEEE, 2021. https://doi.org/10.23919/MVA51890.2021.9511359

[26] Lu, Xiaofeng, Li Song, Sumin Shen, Kang He, Songyu Yu, and Nam Ling. "Parallel Hough Transform-based straight
line detection and its FPGA implementation in embedded vision." Sensors 13, no. 7 (2013): 9223-9247.
https://doi.org/10.3390/s130709223

https://doi.org/10.1007/978-981-19-1142-2_45
https://doi.org/10.1007/978-981-19-1142-2_45
https://doi.org/10.1109/IHMSC55436.2022.00020
https://doi.org/10.1109/ICSC56524.2022.10009637
http://dx.doi.org/10.46647/ijetms.2022.v06i04.002
https://doi.org/10.1109/IASP.2010.5476151
https://doi.org/10.3390/jimaging5050053
https://doi.org/10.37934/araset.29.3.105114
https://doi.org/10.23919/ConTEL52528.2021.9495970
https://doi.org/10.1109/ICSyS47076.2019.8982398
https://doi.org/10.1016/j.jestch.2019.05.008
https://doi.org/10.1109/DASIP.2018.8597174
https://doi.org/10.1109/WCICA.2011.5970530
https://doi.org/10.1109/ACOMP53746.2021.00028
https://doi.org/10.23919/MVA51890.2021.9511359
https://doi.org/10.3390/s130709223

