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 ABSTRACT 

 

 

 

This study explores the leakage current behaviour in multi-quantum well (MQW) 
devices using dielectric analysis. MQWs integrated with distributed Bragg reflector 
(DBR) show promise in enhancing optoelectronic device performance. Impedance 
spectroscopy and dark current-voltage measurements were conducted on 10 MQWs 
and 20 MQWs. The results indicate that 20 MQWs exhibit lower dielectric loss and 
leakage current compared to 10 MQWs. Understanding and minimizing resistive and 
polarization losses can improve the power efficiency and signal quality of 
optoelectronic devices. These findings demonstrate the importance of dielectric 
analysis for optimizing MQW-based optoelectronic devices. 
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1. Introduction 
 

The integration of multi-quantum wells (MQWs) into a p-i-n diode configuration has emerged as 
a highly promising semiconductor device for diverse optoelectronic applications. The p-i-n structure, 
composed of p-type, intrinsic, and n-type semiconductor layers, synergistically combines with MQWs 
to augment the optical and electronic characteristics of the laser diodes [1,2],  light-emitting diodes 
[3,4] and p-i-n infrared photodetector device [5-7]. 

To further optimize device performance, the incorporation of dilute nitride into the multi-
quantum well (MQW) structure has been employed [8-10]. This enables precise tuning of the 
material's bandgap, facilitating the emission or detection of light at specific wavelengths [11-13]. 
Additionally, the integration of the MQW structure serves to enhance the optical properties of the 
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device [14,15]. The utilization of distributed Bragg reflector (DBR) in MQW structures has proven 
advantageous in optimizing light-matter interactions, resulting in enhanced performance and 
efficiency of various optoelectronic devices based on quantum wells including lasers, photodetectors, 
and modulators [16,17]. DBR are composed of alternating layers of materials with different refractive 
indices that establish an optical cavity within the diode structure, enabling multiple reflections of 
light within the active region resulting in improved absorption or emission of photons. This is 
exemplified in the work of 1Liu et al., [18] where a DBR was integrated with a strained GaAs/GaAsP 
superlattice photocathode, resulting in a record-level quantum efficiency. DBR was also found to 
provide substantial improvements in LED device performance whereas, in tuneable lasers, DBR was 
reported to enhance the output power, allowing for the attainment of a single-mode continuous 
wave output [19,20]. Additionally, DBR plays a crucial role in refining the colour purity of monolithic 
full-colour micro-LEDs by reflecting non-absorbed blue light towards the MQWs and increasing the 
probability of excitation and enhancing the colour output [21]. 

MQWs p-i-n diodes integrated with DBR exhibit unique nonlinear characteristics, requiring the 
utilization of complex mathematical models and nonlinear equivalent circuits for precise prediction 
and comprehension of their behaviour to effectively design and optimize the performance for a wide 
range of applications. Failure analysis is a widely utilized practice to evaluate the electrical 
performance of diodes and semiconductor devices. Various techniques are commonly employed 
within failure analysis, including the reverse bias method, I-V measurement [22], leakage current 
versus temperature method [23,24], time-dependent leakage current analysis [25], wafer-level 
testing [26], and high voltage testing. These methods collectively provide comprehensive insight into 
leakage current behaviour, ensuring optimal performance and suitability of p-i-n diodes for various 
applications.  

This study initiates the investigation of Multiple Quantum Wells (MQWs) AC response to elucidate 
the leakage current behaviour in MQWs devices based using dielectric analysis. One must consider 
the non-linear I-V characteristics to determine dark leakage current. Understanding the non-linear 
nature of leakage current in non-linear devices is crucial for device characterization, design 
optimization, and ensuring proper functioning in various operating conditions. This study is the first 
for comparing the non-linear impedance AC response of 10 and 20 Multi-quantum Wells (MQWs) of 
p-i-n Diode with distributed Bragg reflector (DBR). The analysis of impedance spectra under different 
AC conditions provides valuable insights into the dielectric properties that play a significant role in 
reducing leakage current generation in optoelectronic devices. 

 
2. Methodology  
2.1 MQWs Device Preparation 

 
The sample was developed on highly n-doped, (100)-oriented GaAs using the VG V80 Molecular 

Beam Epitaxy (MBE) system [16]. The dilute nitride samples were fabricated in a class J-10000 
cleanroom facility at the University of Essex to ensure their purity. The preparation for electrical 
examination involved several procedures including cleaving, optical lithography, wet etching, and 
vacuum deposition. This research addressed two different samples, 10 MQWs and 20 MQWs 
respectively. The schematic representation of the utilized sample is depicted in Figure 1. 
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Fig. 1. Schematic diagram of MQWs p-i-n 
diode with DBR 

 
2.2 Electrical Impedance Spectroscopy Measurement 

 
Under dark conditions, electrical impedance spectroscopy (EIS) analysis was performed to 

investigate the electrical properties of 10 MQWs and 20 MQWs p-i-n diodes with DBR. Dielectric loss 
analysis was conducted using various AC voltage application at zero DC bias. Impedance 
measurements were carried out using the Solartron 1260 Frequency Response Analyzers (FRA) and 
SMaRT impedance measurement software. The EIS measurements were fixed at a frequency range 
of 1 MHz and 1 Hz with FRA DC coupling. This range offers a balance between time and frequency 
resolution while exploring quantum effects, such as confined charge carriers in quantum wells. For 
the EIS measurement, the AC voltage was tested from 0.1 V and 1 V for 10 MQWs and 20 MQWs, 
respectively. By employing small AC signals, the sensitivity of impedance measurements is 
significantly enhanced, making it possible to detect even minor changes in impedance which is 
particularly crucial when studying relaxation processes. The open-circuit voltage was obtained from 
the dark I-V measurement. All measurements were performed in the Faraday shield Lakeshore Model 
CPX Cryogenic Probe Station under vacuum conditions. To confirm the integrity of the obtained EIS 
data, the Nyquist plot obtained from the impedance analysis was fitted with Kramers-Kronig (K-K) 
analysis. 

The loss tangent plots for the samples were determined using the ratio of the imaginary dielectric 
permittivity to the real dielectric permittivity, as described by Hasnan et al., [27] in the Eq. (1), Eq. (2) 
and Eq. (3) as follows: 
 

              (1) 

 

         (2) 

 
where d is electrode distance, ω is angular frequency, A is electrode surface area, Zr is real impedance 
and Zi is imaginary impedance. 
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The relationship of dielectric loss with leakage current is directly proportional based on the 
governing Eq. (3) below where ε0 is vacuum permittivity, ω is dielectric frequency relaxation in radian, 
E is electric field strength, and ε˝total is total imaginary parts of the complex permittivity respectively. 
Based on the governing equation, the total dark current density. The dielectric loss trend that 
obtained from impedance analysis will be correlated with the leakage current from the I-V 
characteristic. 

 
            (3) 

 
2.3 Current Density-Voltage (I–V) Measurement 

 
For the dark current-voltage (I-V) measurement of the sample, this study employed a 

combination of the Lakeshore Model CPX Cryogenic Probe Station and the Keysight Agilent B1500A 
semiconductor device parameter analyser (SPA). The voltage sweep ranged from 0.5 to -2 V. The 
selected voltage range encompasses both forward and reverse bias conditions commonly applied to 
p-i-n diode, enabling the investigation on its behaviour across various bias levels. These 
measurements were conducted at room temperature. 

 
3. Results  
3.1 Impedance Spectroscopy Analysis  

 
 To characterize and analyse the dielectric loss in MQW devices, techniques such as electrical 

impedance spectroscopy (EIS) are commonly employed [28,29]. EIS measures the impedance 
response of the device at different frequencies, allowing the determination of parameters such as 
resistance, and dielectric loss [30]. In EIS Nyquist plots, the appearance of a semicircle shape is 
commonly observed which arises due to the presence of capacitive and/or inductive components in 
the impedance of the system. The semicircle shape in the Nyquist plot indicates a frequency-
dependent behaviour in the system. At high frequencies, the impedance is dominated by resistive 
components, leading to a nearly flat portion of the semicircle close to the real axis. As the frequency 
decreases, capacitive and inductive components start to play a more significant role, causing the 
impedance to deviate from the real axis, forming the semicircle arc. 

Figure 2 and Figure 3 shows the Nyquist plot of 10 MQWs while Figure 4 and Figure 5 shows the 
Nyquist plot of 20 MQWs, both exhibiting semicircle shapes characteristic. These Nyquist plot 
displaying the complex impedance of the p-i-n diode. The x-axis represents the real part of the 
impedance (Z’), which corresponds to the resistance, while the y-axis represents the imaginary part 
of the impedance (Z”), corresponding to the reactance. The plot provides valuable information about 
the electrical behaviour of the system at different frequencies. The trend of the semicircle for 10 
MQWs shows same shape characteristics for all AC applied with changes of semicircles size as shown 
in Figure 2 and Figure 3.  
 

"
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Fig. 2. Nyquist plot for 10 MQWs DBR at 0V DC bias at 0.1 V 
to 0.5 V AC applied 

 

 
Fig. 3. Nyquist plot for 10 MQWs DBR at 0 V DC bias at 0.6 V to 
1.0 V AC applied 

 
In Nyquist plots, the appearance of small and large semicircles represents distinct electrical 

phenomena within the material. A small semicircle, characterized by a small radius, signifies a 
relatively fast relaxation process and few traps. Conversely, a large semicircle with a larger radius 
indicates a slow relaxation process and the presence of a significant number of traps. Analysing the 
size and characteristics of these semicircles provides valuable insights into charge carrier dynamics, 
conductivity, and interface effects of the p-i-n diode devices. 20 MQWs shows unique characteristic 
where after 0.1 V the semicircle shape is changing to distinct of two overlapping semicircles as shown 
in Figure 4 and Figure 5. This trend is significantly different than that semicircle trends of device 10 
MQWs. Device with 20 MQWs is suggested to have distinct charge trap-tunnelling mechanisms to 
suppress leakage current compared to the 10 MQWs devices. The total size of the radius of semicircle 
for 20 MQWs also largely different than 10 MQWs by one order magnitude higher. Hence, device 
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that having more quantum wells shows higher total device resistance and expected to produce lower 
leakage current respectively than 10 MQWs. 
 

 
Fig. 4. Nyquist plot for 20QWs DBR at 0V DC bias at 0.1 V to 
0.5 V AC applied 

 

 
Fig. 5. Nyquist plot for 20QWs DBR at 0V DC bias at 0.6 V to 
1.0 V AC applied 

 
3.2 Dielectric Loss Tangent Analysis 

 
Minimizing leakage current is crucial for achieving low-power operation and reducing power 

consumption in optoelectronic devices [31]. The specific design and optimization of MQWs, p-i-n 
diode structures, and DBR layers will impact the resulting leakage current characteristics. The 
dielectric loss in multi-quantum well (MQW) devices is an important electrical property that affects 
their leakage current performances govern in Eq. (2) above. Dielectric loss refers to the dissipation 
of electrical energy as heat due to the interaction between the electric field and the dielectric 
material within the MQW structure [32]. In an MQW device, multiple thin layers of different 
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semiconductor materials are stacked together as shown in Figure 1. These layers form a quantum 
well structure with well-defined energy levels. When an electric field is applied across the device, the 
carriers (electrons and holes) within the quantum wells are affected, leading to changes in their 
energy states and mobility [33,34].  

Dielectric loss in MQW devices primarily arises from two sources: resistive losses and polarization 
losses [35,36]. Resistive losses occur due to the resistance of the materials used in the device 
structure [37]. This resistance leads to the conversion of electrical energy into heat, resulting in 
power dissipation. The magnitude of resistive losses depends on the conductivity of the materials 
employed. From the trend of dielectric loss in function frequency at various of AC voltage as shown 
in Figure 6 and Figure 7, the 10 and 20 MQWs shows distinct trend of dielectric loss relaxation. Both 
shows decrease of dielectric loss in function of frequency with an increase of AC voltage.  
 

 
Fig. 6. Dielectric loss tangent for 10 MQWs DBR 
at 0 V DC bias at 0.1 to 1.0 V AC 

 

 
Fig. 7. Dielectric loss tangent for 20 MQWs DBR 
at 0 V DC bias at 0.1 to 1.0 V AC 

 
To visualise the dielectric loss trend comparison of 10 MQWs and 20 MQWs clearly, the dielectric 

loss versus AC bias at 100 kHz from Figure 6 and Figure 7 is extracted and is replotted as shown in 
Figure 8. The figure shows very significant different of dielectric loss trend along the AC bias where 
the 20 MQWs is significantly lower than 10 MQWs. Polarization losses, on the other hand, are 
associated with the alignment of electric dipoles within the dielectric layers of the MQW device. 
When an electric field is applied, the dipoles undergo reorientation, and energy is dissipated as a 
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result. The magnitude of polarization losses is influenced by factors such as the dielectric constant of 
the materials, the frequency of the applied electric field, and the temperature. 

Hence, the high resistance of semicircle total radius that observed from Nyquist plot in Figure 2, 
Figure 3, Figure 4, and Figure 5, indicating good correlation with the dielectric loss trend where high 
resistance of total device has suppressed the dielectric loss significantly by increasing the total of 
MQWs layer. Thus, from the dielectric observation, the leakage current of 20 MQWs is expected to 
produce lower dark leakage current than 10 MQWs and will be proven from the I-V characteristic in 
next section.  

 

 
Fig. 8. Dielectric loss tangent for 10 MQWs and 20 
MQWs DBR at 0V DC bias at 0.1 to 1.0 V AC 

 
3.3 Dark Current-Voltage (I-V) Analysis for 10 MQWs and 20 MQWs 

 
Figure 9 shows dark I-V characteristics for 10 and 20 MQWs. The trend shows good correlation 

with dielectric loss trend in Figure 8. The leakage current of the 20 MQWs is significantly lower than 
10 MQWs by one order magnitude higher where the leakage current values for 10 MQWs and 20 
MQWs are 1.57 x10-8 Acm-2 and -2.7x 10-9 Acm-2 respectively. Understanding the dielectric loss in 
MQW devices in previous section shows crucial understanding for optimizing MQWs structure 
through dielectric loss performance. Minimizing resistive losses and dielectric losses thus is suggested 
to improve power efficiency, while reducing polarization losses that can enhance the optoelectronic 
device's response and signal quality. 
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Fig. 9. Dark current-voltage measurements for 10 
MQWs and 20 MQWs samples measured at T = 300 K 

 
4. Conclusions 

 
In conclusion, this study investigated the dielectric loss and leakage current behaviour of multi-

quantum well (MQW) devices integrated with distributed Bragg reflector (DBR). The impedance 
spectroscopy analysis revealed distinct characteristics in the Nyquist plots of 10 MQWs and 20 
MQWs, indicating differences in device resistance and charge trap-tunnelling mechanisms. Dielectric 
loss analysis demonstrated that 20 MQWs exhibited lower dielectric loss compared to 10 MQWs. The 
dark current-voltage (I-V) measurements further confirmed the superior performance of 20 MQWs 
with significantly lower leakage current. These findings highlight the significance of dielectric analysis 
in optimizing MQW-based optoelectronic devices for improved power efficiency and signal quality. 
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