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 ABSTRACT 

 The AcT (Action Transformer) model has shown promising results in action recognition 
tasks. However, achieving high accuracy in complex and dynamic action sequences 
remains a challenge. In this paper, we present an approach to improve the accuracy of 
the AcT model by increasing the model's training complexity, validated on the 
MPOSE2021 and MSR Action datasets. Our method enhances the AcT model by 
incorporating a multi-level feature fusion technique. We introduce additional 
convolutional and pooling layers to capture more detailed spatial and temporal 
information from the input data. This increases the model's ability to discriminate 
between subtle action variations and improves its accuracy in recognizing complex 
actions. We evaluate the effectiveness of our proposed approach through extensive 
experiments on the MPOSE2021 and MSR Action datasets. The results demonstrate that 
our enhanced AcT model achieves significantly improved accuracy compared to the 
baseline AcT model and outperforms existing state-of-the-art methods. Our method 
effectively captures the intricacies of complex actions and provides more accurate 
predictions.  
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1. Introduction 
 

Human Action Recognition (HAR) is a significant research area in the fields of computer vision and 
artificial intelligence. The task of HAR is to identify and classify human actions from input data such 
as images or videos. In recent years, numerous HAR methods have been proposed and developed. 
However, achieving high accuracy in action recognition remains a challenge [1]. An important factor 
in improving HAR accuracy is the input data [2]. Among the commonly used input data types in HAR, 
skeleton data has been proven to be highly effective and was first introduced in [3]. Skeleton data is 
an abstract representation of humans, where each skeleton joint represents a specific position on 
the body and the relationships between them. Utilizing skeleton data brings numerous significant 
benefits. 
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Firstly, skeleton data can reduce the dependence on external factors such as lighting, background, 
and surrounding environment. This is because skeleton data focuses solely on the positions and basic 
relationships of the human body, disregarding irrelevant factors. Therefore, utilizing skeleton data 
can improve the accuracy of HAR in conditions with low lighting, complex backgrounds, or 
unfavorable environments. Secondly, skeleton data helps reduce computational costs and storage 
requirements. Compared to full-image or video data, skeleton data is more compact and has lower 
dimensionality. This makes the processing and analysis of data more efficient, while also reducing 
the demands on computational resources and storage. 

The AcT (Action Transformer) model is a powerful approach for action recognition, built upon the 
foundation of the Vision Transformer architecture [4], and introduced by the authors in their study 
[5] on short-term action recognition using skeleton data. The Transformer architecture [6], which the 
AcT model is based on, is one of the most significant advancements in the field of deep learning for 
natural language processing (NLP) in recent years. The self-attention mechanism in the Transformer 
architecture, with multiple heads, has been proven effective for various tasks beyond NLP, such as 
image classification [4, 7, 8], image super-resolution [9, 10], and speech recognition [11]. However, 
to enhance the performance and generalization capabilities of the model, we introduce the AcTv2 
model, which is an improved version of the AcT model by incorporating additional important layers 
into the original AcT model. 

In our study, we conducted experiments on the AcTv2 model using two important datasets, 
namely MPOSE2021 and MSR Action3D. By utilizing the MPOSE2021 and MSR Action 3D datasets, we 
had the opportunity to evaluate the performance of the AcTv2 model in recognizing various actions. 
Through the experimental process, we collected data and evaluated the accuracy of the model on 
these datasets. 

The experimental results have demonstrated that the AcTv2 model, with its improvements, 
achieved significantly higher accuracy compared to the original model. This increase in accuracy 
highlights the effectiveness of the enhancements we applied to the AcT model. It indicates that the 
potential and capabilities of the AcT model have been enhanced through the use of new methods 
and datasets. 

In summary, our research contributes to two important aspects in the field of action recognition: 
 

i. Firstly, we proposed the AcTv2 model, an improved version of the AcT model, aiming to 
enhance the accuracy in recognizing actions on the MPOSE2021 dataset. Through 
experiments on the MPOSE2021 dataset, we demonstrated that the AcTv2 model achieved 
higher accuracy compared to the original AcT model. This improvement was evaluated by 
comparing the accuracy results of the two models on the MPOSE2021 dataset. The 
experimental results showed that the AcTv2 model helps recognize actions with better 
accuracy and enhances the ability to recognize complex action sequences in this dataset. 

ii. Secondly, we conducted experiments with the AcT model on the MSR Action 3D dataset to 
evaluate its effectiveness compared to other algorithms in the field of action recognition. 
The experimental results showed that the AcT model outperformed and achieved higher 
accuracy than the majority of algorithms previously published on the MSR Action 3D 
dataset. Based on these results, we applied the improved version, AcTv2, with higher 
accuracy, to perform action recognition on the MSR Action 3D dataset. The obtained 
results demonstrated a significant improvement in accuracy with AcTv2 compared to the 
AcT model. 
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Overall, our research makes significant contributions to the development and improvement of 
action recognition methods and holds potential for broad applications in fields related to artificial 
intelligence and computer vision. 
 
2. Related Work 

 
As presented in Section I, skeletal data has numerous advantages in terms of accuracy and real-

time execution when applied to human action recognition. Consequently, many studies have 
emerged proposing various feature extraction models for skeletal data, among which OpenPose [12] 
has garnered significant attention and undergone improvements by numerous researchers. For easy 
institutive, the skeleton data extracted from OpenPose is demonstrated as shown in Figure 1. 
OpenPose is a model that has been enhanced by the same group of authors from the PAFs (part 
affinity fields) model [13]. Both models have been implemented on the COCO dataset [14]. The input 
data for these models is a 2D static image containing multiple objects with different actions, from 
which the models can identify the objects and extract the skeletal data for each object. 
 

    
(a)                                   (b)     (c)     (d) 

    Fig. 1. Visual represent (a) Input image (b) Part confidence maps (c) Part affinity fields (d) Skeleton  
 data in the OpenPose model  

 
Given an input image of size w × h, the part confidence maps are a set S representing the joint 

locations of the body parts of the objects. the part affinity fields are a set of vectors used to represent 
the motion directions of the limbs of the body concerning the joint connections: 
 
𝑆 = (𝑆!, 𝑆", 𝑆#, … , 𝑆$) with j is the number of confidence maps, 𝑆$ 	𝜖	𝑅%	×	(      (1) 
 
𝐿 = (𝐿!, 𝐿", 𝐿#, … , 𝐿)) with c as the number of vectors, 𝐿) 	𝜖	𝑅%	×	(	×	"	  (2) 
 

Both OpenPose and PAFs go through multiple stages during their execution. Both models use two 
branches to predict the estimation sets S and L. However, while PAFs use a kernel of size 7x7, 
OpenPose utilizes a smaller kernel size of 3x3. Additionally, OpenPose can also detect the skeletal 
structure of the feet, hands, and even the face of the objects. The process of determining the sets S 
and L in OpenPose also involves different adjustments compared to the PAFs model. In the study by 
Yan [15], OpenPose was applied to extract 2D skeletal information from the RGB Kinetics-400 dataset 
[16], and a convolution graph was used to capture spatial and temporal information. 

PoseNet is a model specifically designed for real-time camera re-localization tasks [17]. It employs 
a regression neural network to learn a mapping from the input image captured by the camera to the 
position and orientation of the camera in 3D space. This enables the camera to accurately and rapidly 
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re-localize itself without relying on external sensors such as GPS or markers in the environment. 
PoseNet's architecture and training process allows it to perform efficient and accurate camera re-
localization solely based on visual input. The general flowchart of PoseNet [18] is demonstrated in 
Figure 2, illustrating how the model operates. 
 

 
Fig. 2. General flow of PoseNet 

 
In the study [5], the authors utilized both the OpenPose and PoseNet models to construct the 

MPOSE2021 dataset. This dataset was created by extracting the skeletal data from various 
subdatasets, including KTH, IXMAS, i3DPost, Weizmann, ISLD, ISLD-AS, UTKinect, and UTD-MHAD. 
The MPOSE2021 dataset, as depicted in Figure 3, comprises a total of 15,249 samples, each 
representing one of the 20 different action classes. By leveraging the capabilities of OpenPose and 
PoseNet, the authors were able to extract and annotate the skeletal data from these diverse 
subdatasets to create a comprehensive and representative dataset for action recognition research. 
 

 
Fig. 3. The number of data samples in MPOSE2021 is divided according to  
actions and sub-datasets 
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MSR Action 3D dataset is an important dataset in the field of 3D action recognition. Created by 
Liu [19] from Microsoft Research, this dataset provides information not only about 2D frame images 
but also about the 3D spatial information of the actions. MSR Action 3D consists of 567 videos 
containing 20 different action classes such as walking, jumping, punching, rope jumping, and many 
others. Each video in the dataset is labeled with its corresponding action. What sets this dataset apart 
is that it provides 3D spatial information using deeper sensors such as Kinect. The MSR Action 3D 
dataset has become a valuable resource for the research and development of 3D action recognition 
methods. Widely used in the research community, this dataset has contributed to improving the 
performance of 3D action recognition models and algorithms, making significant advancements in 
this field. 

The study [20] introduces DSwarm-Net, a framework that combines deep learning and swarm 
intelligence-based metaheuristic for Human Action Recognition (HAR) using 3D skeleton data. It 
extracts four types of features from the skeleton data and encodes them into images: Distance, 
Distance Velocity, Angle, and Angle Velocity. These encoded images are fed into a modified 
Convolutional Neural Network (CNN) model. The models are trained, and deep features are extracted 
from the pre-final layer. The obtained features are optimized using Ant Lion Optimizer to remove 
non-informative features and reduce dimensionality. DSwarm-Net achieves competitive results on 
UTD-MHAD, HDM05, and NTU RGB+D 60 datasets, outperforming existing models. 

Data augmentation is a widely used technique in image classification to improve performance 
when labelled data is limited. By enforcing the model's predictions to remain unchanged under 
diverse data transformations, it introduces desired invariant properties (e.g., lighting invariance) and 
enhances accuracy. Compared to image data, video data exhibits more complex appearance 
variations due to the additional temporal dimension. However, data augmentation methods for 
videos have not been fully explored. In this paper [21], different data augmentation strategies are 
investigated to capture various invariances in videos, including photometric, geometric, temporal, 
and actor/scene transformations. When integrated into existing semi-supervised learning 
frameworks, the authors demonstrate significant improvements in datasets such as Kinetics-
100/400, Mini-Something-v2, UCF-101, and HMDB-51 under low-label conditions. Furthermore, the 
effectiveness of the proposed data augmentation strategy is validated in fully supervised settings, 
highlighting its ability to enhance performance. 

Although skeleton-based action recognition has theoretical advantages in being less affected by 
environmental factors, in practice, capturing skeleton data depends on the actor's viewpoint and 
often suffers from errors in joint localization. To address this issue, the research [22] proposes an 
unsupervised learning method that learns action representations from multiple viewpoints. This 
approach focuses on maximizing the shared information among different viewpoints of the same 
action sequence to build a robust representation for human action recognition. Furthermore, the 
authors introduce a global-local contrastive loss to capture the multi-scale co-occurrence 
relationships in both spatial and temporal domains. The experimental results illustrate that the 
proposed approach effectively enhances the performance of unsupervised skeleton-based action 
recognition on demanding datasets, including PKUMMD, NTU RGB+D 60, and NTU RGB+D 120. These 
results significantly contribute to the advancement of the field of skeleton-based human action 
recognition. 

In recent years, the graph convolutional network (GCN) has shown great success in extracting 
features from spatial data, particularly in skeleton-based feature extraction. Nevertheless, the rigid 
graph structure imposed by the adjacency matrix frequently results in inadequate spatial modeling, 
subpar generalization, and an excessive number of parameters. In this paper [23], the authors 
propose a spatially adaptive residual graph convolutional network (SARGCN) for action recognition 
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based on skeleton features. The proposed method overcomes these issues by allowing flexible graph 
topology and introducing a learnable parameter matrix, resulting in improved feature extraction and 
generalization with fewer parameters. Inspired by ResNet, a residual connection is incorporated in 
the GCN for higher accuracy at lower computational costs. Extensive experiments on NTU RGB+D 60 
and NTU RGB+D 120 datasets validate the effectiveness of the proposed approach. 

In another related study [24] on GCN, a drawback of using skeleton data in human action 
recognition is the loss of important cues and related factors, resulting in ambiguous and misclassified 
actions. To address this issue, the authors proposed an FR Head (Feature Refinement Head) that 
incorporates spatial-temporal decoupling and contrastive feature refinement. This approach aims to 
obtain discriminative representations of skeletons and dynamically calibrate ambiguous samples in 
the feature space. The FR Head can be applied at different stages of GCNs to achieve multi-level 
refinement and stronger supervision. Extensive experiments conducted on NTU RGB+D, NTU RGB+D 
120, and NW-UCLA datasets demonstrated the competitive performance of the proposed models 
compared to state-of-the-art methods, particularly in discriminating ambiguous samples. 

Introducing novel advancements in skeleton-based action recognition, this paper [25] 
simultaneously addresses three limitations associated with conventional approaches: errors in 
skeleton detection and tracking, limited variety of targeted actions, and challenges in person-wise 
and frame-wise action recognition. The authors introduce a point cloud deep-learning paradigm and 
propose a unified framework with a novel deep neural network architecture called Structured 
Keypoint Pooling. This approach sparsely aggregates keypoint features based on the inherent 
structure of skeletons, considering the instances and frames to which each keypoint belongs. It 
achieves robustness against input errors and expands the range of targeted actions. Additionally, the 
authors propose a Pooling-Switching Trick inspired by Structured Keypoint Pooling, enabling weakly 
supervised person-wise and frame-wise action recognition using only video-level action labels. The 
proposed method demonstrates superior performance compared to state-of-the-art skeleton-based 
action recognition and spatio-temporal action localization methods. Experimental results validate the 
effectiveness of the proposed approach in addressing the identified limitations. 

Skeleton-based human action recognition has garnered significant attention due to its ability to 
provide compact and rich high-level representations. However, the challenge of effectively capturing 
global dependencies among joints during spatio-temporal feature extraction remains. In this paper 
[26], the Action Capsule method is proposed, which identifies action-related key joints by considering 
the latent correlation of joints in a skeleton sequence. During the inference stage, the end-to-end 
network focuses on these key joints, aggregating their spatio-temporal features to recognize the 
action. The incorporation of multiple stages of action capsules enhances the network's capability to 
classify similar actions. Comparative analysis with existing methods demonstrates the advantages of 
the capsule-based approach, particularly in handling missing skeleton data through iterative 
processing. The proposed network achieves superior performance on the N-UCLA dataset and 
competitive results on the NTURGBD dataset. Notably, the computational requirements of the 
authors’ approach are significantly reduced based on GFLOPs measurements. 
 
3. Action Transformer V2  
 

In this section, we describe the architecture of the AcTv2 model and provide a summary of some 
key points of the AcT model and the Transformer architecture. 
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3.1 Act Model and Transformer Architecture 
 

The AcT (Action Transformer) model takes as input a video sequence consisting of T frames with 
dimensions H x W x C, denoted as 𝑋*+, ∈ 	𝑅-×.×/×) . Before being fed into the AcT network, the 
video is pre-processed by a multi-person 2D pose estimation network (F2Dpose) to extract 2D poses. 
The result of this process is a matrix:  
 
𝑋"01234 = 𝐹"01234(𝑋*+,)             (3) 
 

The AcT model processes each pose sequence 𝑋"01234 individually. Initially, the poses in the 
sequence are projected into a higher-dimensional space (𝐷52647) using a linear projection (𝑊7! ∈
	𝑅1	×	0"#$%&). To generate a general representation for the entire sequence, a class token [CLS] is 
added at the beginning of the sequence, and a vector of size 𝐷52647 is learned. This class token helps 
aggregate information from all poses and generates a high-dimensional representation that 
distinguishes different action classes. Additionally, to provide positional information for the 
sequence, a positional embedding matrix 𝑋823	 ∈ 	𝑅(-:!)×0"#$%&  is added to all tokens to represent 
their positions in the sequence. 

The tokens, including [CLS], are fed into a standard Transformer encoder 𝐹<=>  with L layers and 
layer normalization. The result is a matrix 𝑋? ∈ 	𝑅(-:!)×0"#$%&  that represents the entire encoded 
sequence. Finally, only the [CLS] token 𝑥>73, is passed through a linear classifier head 𝑀𝐿𝑃.4@6  to 
make predictions for the action class. 

Meanwhile, the Transformer Encoder utilizes L layers with interleaved self-attention and feed-
forward blocks. These blocks are adjusted with Dropout, LayerNorm, and residual connections. The 
process of aggregating the Encoder blocks is summarized in Figure 4. Each feed-forward block is a 
multi-layer perceptron with two layers, employing a non-linear activation function. The first layer 
expands the dimension from 𝐷52647 to 𝐷578 and applies the activation function, while the second 
layer reduces the dimension back to 𝐷52647. 
 

 
Fig. 4. Transformer architecture in AcT model [5] 
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3.2 AcTv2 Model 
 

The AcT model has been enhanced and improved by introducing several new layers, such as 
BatchNormalization1, Dropout, Dense, and BatchNormalization2 before the final Dense output layer 
of the original model. The BatchNormalization1 layer is used to normalize the input values during the 
training process, improving the performance and stability of the model. The inclusion of a Dropout 
layer in the model aids in mitigating overfitting as it introduces randomness by dropping out a 
fraction of the units during training, thereby reducing the over-reliance on specific features. The 
Dropout layer operates based on the parameter p = 1 - rate to determine the probability of dropping 
out a unit, along with the parameter y = x * mask to adjust the output value using the mask = (random 
tensor < p)/p, which is a matrix with True/False values based on the probability p. 

The Dense layer, also known as a fully connected layer, allows the model to establish intricate 
linear connections between the input and output features, enabling it to learn complex patterns and 
relationships. It helps capture intricate relationships between input and output features. The 
BatchNormalization2 layer, placed before the output layer, is used to normalize the output values 
before feeding them into the output layer. This normalization step improves the stability and 
prediction capabilities of the model. Figure 5 illustrates the enhanced AcTv2 model based on the AcT 
architecture. In this depiction, the improvements are showcased through the addition of new layers 
positioned after the MLP Head block. 
 

 
Fig. 5. AcTv2 model architecture with additional layers 

 
Together, these layers contribute to an improved AcT model with better performance and 

generalization abilities compared to the original AcT model. The specific improvements are as 
follows. First, we added a BatchNormalization1 layer to normalize the output of the preceding Dense 
layer of the AcT model. This BatchNormalization1 layer helps adjust and normalize the output values, 
ensuring that the output values are stable and consistent throughout the model. Next, we applied a 
Dropout layer to randomly deactivate a portion of the output units during the training process. This 
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helps to mitigate overfitting and increase the model's generalization ability. The Dropout layer 
prevents the model from relying too heavily on specific features and ensures that the model can learn 
more generalized features. 

Then, we added a Dense layer to establish fully connected connections between the layers in the 
model. This Dense layer allows the model to learn complex features and generate non-linear 
responses, capturing intricate relationships within the input data. Lastly, we added a final 
BatchNormalization2 layer to normalize the output of the preceding Dense layer before making the 
final predictions. This ensures that the final prediction results are stable and highly accurate. 

Overall, the improvement of the AcT model by incorporating BatchNormalization1, dropout, 
dense, and batchnormalization2 layers into the original model has significantly enhanced the model's 
learning capability and generalization ability. These layers have helped the model accurately and 
reliably recognize complex actions. 
 
4. Action Transformer V2 with MPOSE2021 and MSR Action 3D Datasets 
 

This section presents the experimental results in two scenarios: the experiment of the AcTv2 
model on the MPOSE2021 dataset to evaluate the effectiveness of the AcTv2 model, and the 
experiment of the AcT and AcTv2 models on the MSR Action 3D dataset to evaluate the effectiveness 
of the two models compared to other solutions. 
 
4.1 Experiment Settings 
 

In addition to retaining some key parameters of the original AcT model, due to the different 
nature of the two datasets, different configuration parameters were used in the two experimental 
scenarios, which are presented as shown in Table 1. 
 

Table 1 
Hyperparameters are used for experiment processing 
Training 
 MPOSE2021 – ACTv2 MSR Action 3D - AcT MSR Action 3D – AcTV2 
Training epochs   7000 7000 
Batch size 512 512 512 
Optimizer AdamW AdamW AdamW 
Warmup epochs 40% 30% 30% 
Step epochs 80% 70% 70% 
Regularization 
Weight decays 1e-4 1e-4 1e-4 
Label smoothing 0.1 0.1 0.1 
Dropout-AcT 0.3 0.3 0.3 
Dropout-AcTv2 0.5 0.5 0.5 
Randomflip 50% 50% 50% 
Random noise 0.03 0.03 0.03 

 
We used the TensorFlow framework to train the proposed model on a computer with an Intel i5-

13600K CPU and an Nvidia 3090 GPU. Following the mentioned testing strategy, the total training 
time for the cases was approximately 10 hours. We adhered to the optimization settings and 
hyperparameters as described in most cases, with adjustments made to the learning rate, number of 
epochs, and batch size to optimize the training on our dataset and achieve better training results. 
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4.2 Action Recognition in MPOSE 
 

We conducted thorough experiments on the MPOSE2021 dataset, comparing the AcTv2 model 
with the AcT model as well as several baseline models and popular HAR architectures presented in 
[5]. To ensure the accuracy and reliability of the results, we trained 10 different models on different 
validation splits, keeping a consistent 10% ratio from the training set with a similar class distribution. 
The experiments were performed on three train/test data splits taken from the MPOSE2021 dataset 
(Table 2). 
 
Table 2 
Benchmark of AcT model and AcTv2 model for short time HAR on MPOSE 2021      

 AcT AcTv2 
Accuracy Balance 

accuracy 
Highest 
accuracy 

Accuracy Balance 
accuracy 

Highest 
accuracy 

Split data1 90.9% 87.1% 91.5% 90.7% 86.7% 92.1% 
Split data2 90.9% 84.5% 91.4% 90.9% 84.9% 91.5% 
Split data3 90.5% 87.9% 91.6% 90% 87.7% 90.4% 

 
The experimental results show that the AcTv2 model, when trained on the data1 and data2 splits 

of the MPOSE2021 dataset, can achieve higher accuracy compared to the AcT model. However, this 
trend does not hold for the data3 split of the dataset.  
 
4.3 Action Recognition in MSR Action 3D 
 

The experiment on the MSR Action 3D dataset involved data preprocessing, model training, and 
evaluation. Firstly, the data was preprocessed to prepare it in a suitable format for the models. The 
dataset was split into a training set and a test set, with a 20% ratio for validation data and 80% for 
training data. Next, the AcT and AcTv2 models were trained on the training data. The training process 
was carried out with 7000 epochs, and appropriate optimization parameters were set. After the 
training process, the performance of both models was evaluated on the test set by measuring the 
accuracy of their predictions. 

The evaluation results show that the AcTv2 model has a higher accuracy than the AcT model. Both 
models outperform previous solutions on the MSR Action 3D dataset in terms of accuracy. This 
indicates that the AcTv2 model is a significant improvement and has better learning capabilities in 
action recognition from 3D data. 

The experimental results in Table 3 show that the Balance Accuracy metric is significantly better 
for both the AcT and AcTv2 models. This indicates the stability and effectiveness of the action 
recognition solution provided by both models when applied to the MSR Action 3D dataset. 
Furthermore, the AcTv2 model achieves higher accuracy compared to the AcT model, once again 
confirming the effectiveness of the proposed improvement in this paper. 
 

Table 3 
  The experimental results on the MSR action 3D dataset  

 AcT AcTv2 

 Accuracy Balance 
accuracy 

Highest 
accuracy 

Accuracy Balance 
accuracy 

Highest 
accuracy 

Split data1 88.8% 91.3% 94.2% 89.5% 91.2% 95.7% 
Split data2 89.8% 91.2% 94.8% 90% 92.2% 96.5% 
Split data3 90.1% 91.4% 94.8% 89.3% 90.1% 95.7% 
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Based on the findings presented in Table 4, it is evident that the enhanced AcTv2 model achieves 
remarkable performance gains in action recognition when evaluated on the MSR Action 3D (AS1) 
dataset. These results highlight the significant advancements made by the proposed model 
compared to previous research efforts. The superior effectiveness of the AcTv2 model underscores 
its potential for improving action recognition accuracy and establishing new benchmarks in the field. 
 

Table 4 
Accuracy comparison on MSR-Action3D (AS1 sub dataset)  

No. Method Accuracy 

1 Action graph, 2010 [19] 72.9 % 
2 Histogram, 2012 [27] 87.98 %  
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Eigen joints, 2012 [28] 
Conv3DJ, 2013 [29] 
Joint position (JP), 2014 [30] 
Relative JP (RJP), 2014 [30] 
Joint angle (JA), 2014 [30] 
Absolute SE (3), 2-14 [30] 
LARP, 2014 [30] 
Spline curve, 2015 [31] 
Multi-fused, 2017 [32] 
CovP3DJ, 2018 [33] 
ConvMIJ, 2018 [33] 
Lie algebra with VTDF, 2020 [34] 
Proposed (AcTv2) 

74.5 % 
88.04 % 
93.36 % 
95.77 % 
84.51 % 
90.3 % 
94.72 % 
83.08 % 
90.8 % 
93.48 % 
93.48 % 
94.66 % 
96.5 % 

 
The Table 5 indicates that the AcTv2 model exhibits longer training times than the AcT model on 

both the Mpose2021 and MSR-Action3D datasets. Specifically, on the Mpose2021 dataset, the 
training time for the AcTv2 model increased from 8345 seconds to 10023 seconds, while on the MSR-
Action3D dataset, the training time increased from 2347 seconds to 13897 seconds. The increase in 
training time for the AcTv2 model can be attributed to the incorporation of additional layers and 
features that enhance its performance. While the AcTv2 model demonstrates superior effectiveness 
in action recognition, it also requires more time to train due to its increased complexity and capacity 
for capturing more intricate patterns and representations. 
 

Table 5 
The training time on OpenPose2021 and MSR-Action 3D 
 OpenPose MSR-action 3D 
 AcT AcTv2 AcT AcTv2 

Time (s) 8345 10023 2347 13897 
 

 
The evaluation of training times in the Table 5 also highlights an interesting observation. When 

the dataset size is relatively small, fine-tuning the parameters to achieve optimal accuracy for the 
AcTv2 model significantly increases the training time compared to its application on larger datasets. 
This behaviour is expected as smaller datasets may require more iterations and parameter 
adjustments to effectively learn from limited samples. 

In light of this observation, researchers dealing with smaller datasets face challenges in terms of 
longer training times and the need for careful parameter tuning. On the other hand, when dealing 
with larger datasets, the potential increase in training time can be a reasonable trade-off for gaining 
improved efficiency and performance. The AcTv2 model demonstrates its superiority by achieving 
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better action recognition results on the evaluated datasets, validating its significance in the field. 
However, it is crucial for researchers to carefully weigh the trade-off between training time and 
performance gain based on their specific application requirements and constraints. 
 
5. Conclusion 
 

In this study, we introduced the AcTv2 model as an improvement over the AcT model and 
evaluated its performance on two distinct datasets: MPOSE2021 and MSR Action 3D. The 
experimental findings demonstrate the superiority of the AcTv2 model over its predecessor in terms 
of accuracy and performance. 

Specifically, on the MPOSE2021 dataset, the AcTv2 model achieved higher accuracy compared to 
the AcT model. This indicates that AcTv2 exhibits enhanced action recognition capabilities and 
delivers reliable results on this dataset. Furthermore, on the MSR Action 3D dataset, the AcTv2 model 
outperformed not only the AcT model but also 14 other previously published solutions, achieving 
higher accuracy. The architectural advancements in the AcTv2 model have significantly bolstered its 
capacity to recognize actions within this 3D dataset, and it stands as one of the top-performing 
methods. The AcTv2 model is an improvement over the original AcT model by incorporating 
additional layers and more complex mechanisms to enhance action recognition capabilities. 
Specifically, AcTv2 utilizes more layers in feature extraction and data processing, thereby 
strengthening the model's ability to represent information effectively. This leads to higher 
performance and accuracy in action recognition compared to the AcT model. 

However, this enhancement also comes with a trade-off, as the algorithmic complexity of the 
AcTv2 model has increased. The addition of multiple layers and complex mechanisms results in longer 
training times and demands more computational resources. Consequently, deploying the AcTv2 
model on resource-constrained systems may pose challenges and reduce its practical feasibility and 
efficiency in real-world environments. Thus, when utilizing the AcTv2 model, careful consideration 
should be given to the computational resource requirements and training time. Balancing the 
algorithmic complexity and action recognition performance is crucial. For smaller datasets, the 
increased complexity may lead to overfitting, causing a decline in performance on new data. To 
mitigate this, parameter tuning and optimization of the AcTv2 model are necessary to ensure optimal 
performance on specific datasets. 

In conclusion, the transition from the AcT model to the AcTv2 model represents a substantial leap 
in action recognition performance on both the MPOSE2021 and MSR Action 3D datasets. Despite the 
increased computational cost associated with its training, the enhanced performance of AcTv2 
justifies its adoption in scenarios that demand precise and efficient action recognition. The AcTv2 
model holds promise for innovation in various domains, including education and traffic safety. 
Integrating AcTv2 into attendance management not only brings innovation to education but also 
opens opportunities for research and technological solutions in monitoring within educational 
environments [35]. Another potential application of AcTv2 is integration into the field of traffic safety, 
especially in detecting motorcycle accidents. Research [36] utilized motion sensors on mobile phones 
to detect accidents and alert emergency services. Implementing AcTv2 could offer more approaches 
to enhance incident detection and prompt response in emergencies, contributing to improving the 
safety of motorcycle riders on the road. 
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