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 ABSTRACT 

 
In recent years, optimization using a surrogate model or metamodel received great 
scholarly attention in solving computer simulation problems. Surrogate models are fast 
approximation, high-fidelity models and better accuracy in the prediction of the model. 
The infill sampling strategy is the one-way method to refine the surrogate model and 
improve the accuracy of the model. This paper proposed a multiple adaptive sampling 
strategy using two (2) surrogate models, Radial Basis Function and Kriging. The 
proposed method of the multi-surrogate model predicts two sample points with a 
combination of DBSCAN clustering as the initial processing of training points. This 
approach helps to improve the performance of the algorithm in terms of accuracy by 
calculating root mean square error (RMSE). The contribution of an algorithm proposed 
2 sample points prediction at one iteration instead of previous research only predicting 
one sample for each iteration. The algorithm was tested and demonstrated using low 
dimension test function benchmark from previous work. 
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1. Introduction 
 

Computational modelling plays a pivotal role in scientific and technological domains as it involves 
simulating complex real-world problems that demand computationally intensive algorithms. 
Surrogate models, which are simplified functional approximations of intricate models, present a 
valuable approach to facilitating engineering analysis of complex systems by substantially reducing 
computational costs. Addressing challenges in computational simulation, integrating a surrogate 
model utilizing the Design of Experiment (DOE) and Response Surface Method (RSM) has proven to 
be a powerful and efficient tool. This surrogate model involves the creation of a compact analytical 
model that effectively approximates the intricate analysis, providing a practical and resource-
efficient solution. This model can serve as a “surrogate” or close substitute for the high-precision 
analysis while ensuring accuracy. Surrogate modelling techniques like Kriging, radial basis function 
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(RBF), polynomial response surface (PRS), support vector regression (SVR) and multivariate adaptive 
spline (MARS) are commonly used [1,2]. Surrogate modelling, also known as metamodeling, is 
effectively used to obtain a function f(x) that approximates the function f. The optimization process 
to identify the best feasible value f(x), in a predetermined period is frequently defined by the number 
of available queries to the black box. The advantage of using a metamodel is reducing the 
computational cost necessary to approximate the numerical model output [3]. In another field of 
research, the surrogate model is used to develop a framework for detecting SQL Injection using 
machine learning and classification methods such as Random Forest Classifier, Gradient Boosting 
Classifier, SVM and ANN [4]. Recently, multiple surrogates have been widely used to replace the 
expensive computational model in design and real-world optimization problems.  

Despite the aggressive development of algorithms using surrogate models for prediction sample 
points, previous researchers also propose a new method combining several surrogate models to 
enhance the performance and for robustness to model assumption. Wang et al., [5] propose a 
parallel infill sampling criterion for EGO. Instead of adding a single sample point in each updating 
cycle as the original EGO does, the EGO with the proposed method can obtain an arbitrary number 
of new sample points per cycle, which will be evaluated in parallel. The results show that the 
optimization efficiency is significantly improved compared to the serial EGO and the effectiveness is 
promoted in contrast to the existing parallel infill criteria. Another research paper for multiple infill 
sampling method proposed by Chao et al., [6] for low-fidelity model and the multi-infill strategy are 
utilized in this approach. Low-fidelity data is employed to provide a good global trend for model 
prediction and multiple sample points chosen by different infill criteria in each updating cycle are 
used to enhance the exploitation and exploration ability of the optimization approach. Take the 
advantages of low- fidelity model and the multi-infill strategy and no initial sample for the high-
fidelity model is needed. The result shows that more than 60% of the computational cost is saved 
compared with ordinary Kriging using the same infill strategy. Multiple infill sampling aims to improve 
accuracy and computational time instead of predicting one sample at each iteration.  

A new strategy for infill sampling called the multi-point infill sampling strategy has been 
introduced by Aburashed  et al., [4]. This strategy locates new promising points near optimal points 
to speed up the optimization process, where a hybrid and adaptive promising sampling (HAPS) 
method and a multi-start sequential quadratic programming (MSSQP) method are used alternately. 
The proposed method, the multi-surrogates and multi-points infill strategy-based global optimization 
(MSMPIGO), has been tested on eighteen unconstrained optimization problems, six nonlinear 
constrained engineering problems and one air foil design optimization problem. Strong evidence of 
a multi-point strategy is also supported by Song et al., [7], which proposes a Kriging-based global 
optimization using a multi-point infill sampling criterion. This method uses an infill sampling criterion 
which obtains multiple new design points to update the Kriging model by solving the constructed 
multi-objective optimization problem in each iteration. A simulation-based optimization based on 
the 445 bus lines in Beijing City is employed to test the performance of the proposed algorithm. 
However, the method in this paper is the lack of more practical applications. In the future, the author 
will focus more on black-box optimization combined with time-consuming simulations of real-world 
traffic problems and continuously improve the algorithm in practical applications. A new strategy for 
infill sampling called the multi-point infill sampling strategy has been introduced by Aburashed et al., 
[4]. This strategy locates new promising points near optimal points to speed up the optimization 
process, where a hybrid and adaptive promising sampling (HAPS) method and a multi-start sequential 
quadratic programming (MSSQP) method are used alternately. The proposed method, the multi-
surrogates and multi-points infill strategy-based global optimization (MSMPIGO), has been tested on 
eighteen unconstrained optimization problems, six nonlinear constrained engineering problems and 
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one air foil design optimization problem. In 2018, Song et al., [7] proposed multiple-update-infill 
sampling for Kriging using a minimum energy design to improve the global quality of the surrogate 
model. The method was evaluated with other multiple-update-infill sampling methods in terms of 
convergence, accuracy, sampling efficiency and computational cost. During the development of the 
algorithm, it is vital to remember that multiple infill sampling with multi-surrogate also has some 
drawbacks, such as increased computational time and the risk of overfitting.  

There is consensus among scientists about the drawbacks and strengths of each surrogate model. 
The algorithm development is based on optimization problems and there’s no free lunch theorem 
for algorithm solving the problems or case studies. RBF for infill sampling can result in a smooth, 
continuous function approximating the modelled underlying function. This function can be used to 
make predictions at points where samples have not been taken and can help to identify regions of 
the parameter space where the optimization should be focused. On the other hand, infill sampling 
using Kriging can provide more information about the underlying function, including a measure of 
the uncertainty in the model. Combining Kriging and Radial Basis Functions for a hybrid approach can 
improve the algorithm’s performance and accuracy. Hwang et al., [8] conducted research using 
surrogate-assisted global and local searches with assisted hybrid evolutionary optimization 
performed in sequence at each generation to balance the exploration and exploitation is efficient for 
solving the low- and medium-dimensional expensive optimization problems compared to the other 
six state-of-the-art surrogate-assisted evolutionary algorithms. Yu et al., [10] suggested a brand-new 
model management strategy based on multi-RBF parallel modelling technology in this paper. The 
proposed approach aims to adaptively select a high-fidelity surrogate from a pre-specified set of RBF 
modelling techniques during the optimization process. At each evolutionary interaction, the most 
promising RBF surrogate was employed to help the neighbourhood field optimizer (NFO) perform 
fitness evaluation and the proposed algorithm is named aRBF-NFO. A hybrid model for the surrogate 
model is not only proposed for SM only but also in combination with the metaheuristic method 
showing good performance and overcoming the drawback of the method.  

Multiple infill sampling is one of the popular and well-developed techniques to handle the issue 
of computational time and accuracy of the metamodel. However, other techniques can also be 
implemented similarly to multiple infill strategies, namely the batch infill technique. Habib et al., [11] 
have developed a new method for sampling multiple locations during each iteration. They have 
proposed a multi-objective (MO) formulation to maximize the expected improvement and the 
distance from previously evaluated solutions. Another research paper by the same author also 
presents a multi-objective formulation to deal with such classes of problems, wherein instead of a 
single solution, a batch of solutions is identified for concurrent evaluation. The strategies use 
different objectives depending on the archive of the evaluated solutions [12]. Researchers in 
computational statistics used the R package software to develop criteria for batch-sequential 
inversion, which allows advanced users to distribute function evaluations across clusters or clouds of 
machines in parallel. This software package uses the KrigInv present tutorial to make it easy for 
people unfamiliar with kriging to use the box and clarify the strengths and weaknesses of these 
metamodel-based inversion methods [13]. According to studies discussed by Habib et al., [11] in this 
section, batch infill sampling was implemented for multi-objective optimization problems. However, 
in previous research papers, other authors used the term multiple infill sampling when solving multi-
objective problems.  

Xing et al., [14] demonstrate Kriging with parallel computing to improve computer efficiency and 
solve global solutions. His work proposes a global optimization strategy based on the Kriging 
surrogate model and parallel computing depending on the multipeak characteristics of the expected 
improvement (EI) function. Compared with the conventional EI criterion and the parallel constant 
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Liar criterion, the proposed PEI-R method considerably improves the optimization efficiency and 
solution accuracy. At the same time, Chen et al., [15] compares the common efficient parallel infill 
sampling criterion. In addition, the pseudo-expected improvement (EI) criterion is introduced to 
minimize the predicted (MP) criterion and the probability of improvement (PI) criterion, which helps 
to improve the problem of the MP criterion that is easy to fall into local optimum. An adaptive 
distance function is proposed, which is used to avoid the concentration problem of update points 
and improves the global search ability of the infill sampling criterion. Another work by Yang et al., 
[16] proposes five alternatives of Probability of Improvement (PoI) with multiple points in a batch (q-
PoI) for multi-objective Bayesian global optimization (MOBGO), taking the covariance among 
multiple points into account. Efficient global optimization (EGO) is another name for kriging 
metamodel with Expected Improvement infill strategy. Based on recent studies in this section, 
multiple infill sampling, batch infill methods or parallel infill sampling methods are recent approaches 
for surrogate model updating points to solve optimization problems. In a comprehensive literature 
review of the surrogate model, Hafka et al., [17] focused on in this review is how different algorithms 
balance exploration and exploitation. This author agreed that methods that provide easy 
parallelization, like multiple parallel runs or methods that rely on a population of designs for diversity, 
deserve more attention based on his review. Based on the strength and widespread research on 
surrogate models with various infill sampling techniques, this paper proposes a method with a multi-
surrogate model with multiple infill techniques combined with DBSCAN (Density-based spatial 
clustering of applications with noise) as a clustering method at the pre-processing stage. The 
algorithm’s performance is measured and determined by evaluating the root mean square error 
(RMSE) value for the previous benchmark mathematical test function.  

 
2. Methodology of Multiple Adaptive Sampling Multi-Surrogate Model 

 
The main objective of infill sampling criteria (ISC) is to extract information from surrogate models 

to identify potentially interesting areas for model refinement (and possibly feasibility), striking a 
balance between model exploitation and exploration. Consequently, the goal of an infill search 
criterion is to extract the maximum amount of information from the fewest number of samples by 
striking a balance between sample size and the amount of data to be extracted between: 

 
i. Exploiting regions of the design space where the surrogate model indicates there might 

be a minimizer. 
ii. Exploring under-sampled areas with high estimated surrogates’ error. 
iii. Searching for feasible regions, i.e., Regions where all constraints are satisfied. 

 
Conventional one-shot sampling uses the design of experiment (DoE) method. The DoE method 

effectively optimizes the number of experiments and parameter experiments. However, DoE was 
typically used in computer experiments to generate the initial sampling point.  

Metamodeling is a computational optimization technique which involves four (4) stages:  
 

i. sampling technique 
ii. approximation function  
iii. obtaining a new sample  
iv. refining the metamodel.  
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Lin et al., [18] summarize each metamodel’s use and fitting alternatives. For low-dimensional 
problems, the Response Surface Method (RSM) is well-established, user-friendly and suitable. On the 
other hand, the Neural Network metamodel excels in addressing serious nonlinear problems 
requiring substantial samples, making it an excellent choice for deterministic applications. The Kriging 
metamodel stands out as a flexible and highly effective option for low-dimensional scenarios. In the 
subsequent section, we will delve into the proposed method of infill sampling, employing two 
surrogate models to enhance the optimization process further. 

 
2.1 DBSAN Classifier  

 
DBSCAN is an algorithm for density-based clustering initially designed to discover clusters, C, of 

arbitrary shapes in spatial data[19]. The algorithm takes two input parameters:  
 

i. the radius of a hypersphere drawn around each point, known as a neighbourhood,  
ii. MinPts, the minimum number of points in the neighbourhood, must be defined as a part 

of a cluster, including the current point. 
 
The DBSCAN algorithm detects clusters with a minimum data density specified by the user for 

initial outlier filtering. The k-means algorithm divides these clusters into k groups with uniform 
distribution. The group centroids are then utilized for data reduction by replacing each group with 
the actual data point closest to the identified centroid [20]. This paper uses DBSCAN to cluster 
training data twofold:  

 
i. global search, which is the entire region far from the optimal point  

ii. local search, which is the sample located near the optimal point. After clustering the 
samples, kriging metamodel performs the local search while RBF metamodel performs 
global search of training data.  

 
2.2 RBF with Maximin Distance for Global Search Infill Sample  
2.2.1 Radial basis function  

 
The Radial Basis Function Neural Network (RBFNN) stands out as a robust algorithm in Artificial 

Neural Networks (ANN). It comprises three feed-forward, fully connected layers, employing RBFNN 
as the exclusive nonlinearity in the hidden layer neurons. Unlike the hidden layer, the output layer of 
RBFNN lacks nonlinearity and utilizes solely weighted connections. Furthermore, the connections 
from the input to the hidden layer remain unweighted. RBFNN boasts superior approximation 
capabilities, featuring a simpler network architecture and a faster learning algorithm [21]. Figure 1 
shows the architecture of RBFNN which consists of input, hidden layer and output.  
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Fig. 1. RBF architecture 

 
The RBFNN model is then expressed as a linear combination of the basis function across all the 

training points m as given by the equation. In Eq. (1), wi are the generic weights of the basis function. 
The weight is evaluated by training points xi and corresponding function values f(xi). The matrix of 
the basis function values at the training points is described in Eq. (2). 

 

𝑓(𝑥) = ∑ 𝑤𝑖∅
𝑁
𝑖=1 (𝑥)              (1) 

 
Denotes that wi is weight while hi(x) is a set of K arbitrary nonlinear functions known as radial 

basis function and ‖. ‖denotes a norm of Euclidean distance.  
 

∅ = [

∅11 ∅12  … ∅1𝑁

∅11 ∅22  ⋯ ∅2𝑁

⋮  ⋮      ⋱ ⋮
∅𝑘1 ∅𝑘2 …   ∅𝑁𝑁

]             (2) 

 
A typical radial basis function is the Gaussian expressed by the equation below:  
 

∅𝑖 (𝑥) = 𝑒
(−

(𝑥−𝑐 )

𝛽2 )
                  (3) 

 
where X is the input, C is the centre and β is the spread parameter. Table 1 list of equation activation 
function that can be implemented for RBFNN. The activation function can influence the output 
prediction of the algorithm.  

All the input data are represented by the input matrix X and the output data are represented by 
the output vector y as below: 

 

𝑋 =

[
 
 
 

𝑥1
1 𝑥2

1  … 𝑥𝑁
1

𝑥1
2 𝑥2

2  ⋯ 𝑥𝑁
2

⋮   ⋮      ⋱ ⋮
𝑥1

𝑀  𝑥2
𝑀 …    𝑥𝑁

𝑀]
 
 
 
             (4)  

 

x1 

xn 

Y1 

Ym 

∅(‖𝑥 − 𝑐1‖) 

∅(‖𝑥 − 𝑐2‖) 

∅(‖𝑥 − 𝑐𝑛‖) 

Input 

Hidden layer 

Output 

…
 

…
 

…
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 62, Issue 3 (2026) 102-117 

108 
 

The optimum value in the second layer weight can be found using the least square formula below: 
 

𝑤̂ = [

𝑤1

𝑤2

⋮
𝑤𝑁

] = (∅𝑇 ∅)−1∅𝑇 [

𝑌1

𝑌2

⋮
𝑌𝑁

]           (5) 

 
Table 1 
Activation function for radial basis function 
Equation Activation Function 

𝜑(𝑟, 𝜎) = 𝑒
−𝑟2

𝜎2  
Gaussian 

𝜑(𝑟) = 𝑟3 Cubic 
𝜑(𝑟) = 𝑟2log (𝑟) Thin Plate spline 

𝜑(𝑟) =
1

𝑟 + 1
 

Cauchy 

𝜑(𝑟, 𝛽) = √𝑟2 +  𝛽
2

 Multiquadratic 

𝜑(𝑟, 𝛽) =
1

√𝑟2 +  𝛽2
 

Inverse multi-
quadratic 

𝜑(𝑟) = 𝑟 Linear 

 
The approximation proposed using polynomial regression and RBF neural network to build a 

rocket aerodynamic discipline surrogate model are both valid, while the surrogate model adopting 
the RBF neural network gets better results and profits from its adaptability for more types of data 
[22]. RBF consists of two (2) important parameters that determine the output function 
approximation. Selection of the suitable parameter of centre and spread gives a good predicted 
output value. The spread value in this problem is fixed as constant and selected arbitrarily based on 
the minimum error criteria. K-means clustering to find centres for basis function in a fashion that 
reflects the distribution of input vectors over the input space [18]. Some literature that focuses on 
the density of each point provided insight for our work to progress in using distance-based weight 
for selecting better centres for RBFN training. In this paper, Fuzzy c-mean (FCM) is a clustering 
method used to determine the optimal centre, while the spread parameter of the RBF model is 
calculated by using the nearest neighbour based on percentage distance from the centre.  

 
2.2.2 Maximin distance approach 

 
The maximin distance criterion was proposed by Johnson in 1990 for computer experiments. 

Given the existing sample set Xp, the maximin distance approach is to select a new sample Xc to 
maximize the minimum distance between any two-sample point in the sample set XA= Xc, 𝑋𝐴 = 𝑋𝑐 ∪
 𝑋𝑃. The equation for this method is as below:  

 

max𝑋𝑐 [ min
1≤𝑖≥𝑚,1≤𝑗≥1+𝑚

(𝑑(𝑋𝐶𝑖, 𝑋𝐴𝑗))]          (6) 

 
Max–min distance designs tend to cover the design space as much as possible because no two 

points should be too close to each other. The distance min x∈C d(x, C\x) can be interpreted to indicate 
the degree of covering by the candidate design C. On the other hand, min-max distance designs tend 
to spread out in the design space as uniformly as possible because we can interpret that points 
outside of C pull out C as much as possible. These distance-based criteria yield a uniform design and 
fill the design space as much as possible. 
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2.3 Kriging with Expected Improvement Optimized by Grey Wolf Algorithm for Local Search  
2.3.1 Kriging metamodel  

 
For design point 𝑋 = [𝑥1 , … , 𝑥𝑚  ]

𝑁, where 𝑋 ∈  𝑅𝑚𝑥𝑛 and response 𝑌 = [𝑌1 , … , 𝑌𝑚  ]
𝑁 with 𝑌 ∈

 𝑅𝑚𝑥𝑛, the kriging model is the combination of the trend term and the deviation term: 
 

𝑦̂ (𝑥) = 𝑓(𝑥) + 𝑍(𝑥)             (7) 
 

where 𝑦̂ (𝑥) is the objective estimation of the Kriging model, f(x) is the known function of x, which is 
similar to the response surface polynomial model, provides a global optimization model in design 
space z(x) is a random process, the covariance can be expressed as formula below:  

 

𝑐𝑜𝑣[𝑍(𝑥)𝑖 , 𝑍(𝑥)𝑗 ] = 𝜎𝑅[𝑅(𝑥𝑖 , 𝑥𝑗]            (8) 

 
R is the correlation matrix and R(Xi and Xj ) is the correlation function of any two-sample points Xi 

and Xj. There are various correlation functions, such as the exponential, Gaussian and spline functions 
for kriging metamodel.  

In summary, using Kriging metamodels, support vector machines and the expected improvement 
criterion can enhance the efficiency and accuracy of metamodel-based design optimization 
algorithms. These techniques have been applied in various fields, including topology optimization, 
aerodynamic shape optimization and robust design optimization. 
 
2.3.2 Expected improvement  

 
The EI criterion is developed by assuming that the uncertainty in the predicted value, 𝑦̂(𝑥) at a 

position x, can be described as a normally distributed random variable Y(x). The Kriging interpolator 
𝑦̂(𝑥), is assumed to be the mean of this random variable while the variance is considered to be given 
by the Kriging mean square error, 𝑆2(𝑥). The improvement of the unsampled point beyond the 
current best-observed value, 𝑦𝑚𝑖𝑛, is also a random value, which can be expressed as:  
 
𝐼(𝑥) = 𝑚𝑎𝑥(𝑦𝑚𝑖𝑛 − 𝑌(𝑥), 0)            (9) 

 
The mathematical expectation of I(x) can be obtained as follows:  
 

𝐸[𝐼(𝑥)] = (𝑦𝑚𝑖𝑛 − 𝑦̂(𝑥))∅ (
𝑦𝑚𝑖𝑛−𝑦̂(𝑥) 

𝑠
) + 𝑠𝜑 ((

𝑦𝑚𝑖𝑛−𝑦̂(𝑥) 

𝑠
))                 (10) 

 
where φ function composites standard normal cumulative distribution, ϕ is the probability density 
of the standard normal distribution function. Additionally, s is the standard deviation of the 
generated agent model. Zhang et al., [23] propose a multipeak parallel adaptive infilling (MPEI) 
strategy based on expected improvement (EI), which can be divided into two stages: the construction 
of candidate peak areas and the selection of appropriate candidates at the candidate peak areas. A 
researcher also suggests implementing mPSO to search for the optimal points that maximize the EI 
criterion, leading to more efficient and effective optimization. 

Infill sampling using the expected improvement criterion with PSO is a powerful approach for 
global optimization. The EI criterion, in combination with Kriging metamodels, allows for efficient 
exploration of the search space and identification of promising points for evaluation. PSO further 
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enhances the optimization process by efficiently searching for the optimal points that maximize the 
EI criterion. 

 
2.3.4 Greywolf algorithm 

 
Grey Wolf Optimization (GWO) was introduced by Mirjalili et al., [24] and drew inspiration from 

Particle Swarm Optimization, a well-known metaheuristic method. Previous researchers like Zhang 
et al., [23] utilized Particle Swarm Optimization to optimize the method of expected improvement. 
To enhance the performance of the Expected Improvement (EI), this paper adopts the GWO method 
for optimization. The GWO algorithm replicates the leadership hierarchy and hunting behaviour of 
grey wolves in nature. Specifically, four types of grey wolves, namely alpha, beta, delta and omega, 
are employed to simulate the leadership hierarchy. Moreover, the three main hunting steps, which 
involve searching for prey, encircling prey and attacking prey, are implemented as part of the GWO 
process.  

The GWO algorithm is as follows:  
 
Step1: Randomly initialize the Grey wolf population of N particles Xi ( i=1, 2, …, n) 
Step2: Calculate the fitness value of each individual 
      sort grey wolf population based on fitness values 
      alpha_wolf = wolf with the least fitness value 
      beta_wolf = wolf with second least fitness value 
      gamma_wolf = wolf with third least fitness value 
Step 3: For Iter in range(max_iter): # loop max_iter times  
      calculate the value of a 
        a = 2*(1 - Iter/max_iter) 
      For i in range(N): # for each wolf 
        a. Compute the value of A1, A2, A3 and C1, C2, C3 
           A1 = a*(2*r1 -1), A2 = a*(2*r2 -1), A3 = a*(2*r3 -1) 
           C1 = 2*r1, C2 = 2*r2, C3 = 2*r3 
           
        b. Computer X1, X2, X3  
            X1 = alpha_wolf.position -  
               A1*abs(C1*alpha_wolf_position - ith_wolf.position) 
            X2 = beta_wolf.position -  
               A2*abs(C2*beta_wolf_position - ith_wolf.position) 
            X3 = gamma_wolf.position -  
               A3*abs(C3*gamma_wolf_position - ith_wolf.position) 
           
        c. Compute new solution and its fitness 
            Xnew = (X1 + X2 + X3) / 3  
            fnew = fitness( Xnew)  
             
        d. Update the ith_wolf greedily 
           if( fnew < ith_wolf.fitness) 
             ith_wolf.position = Xnew 
             ith_wolf.fitness = fnew   
       End-for 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 62, Issue 3 (2026) 102-117 

111 
 

                  compute new alpha, beta and gamma 
          sort grey wolf population based on fitness values 
          alpha_wolf = wolf with the least fitness value 
          beta_wolf = wolf with second least fitness value 
          gamma_wolf = wolf with third least fitness value    
     End-for 
Step 4: Return the best wolf in the population 
 

2.4 Proposed Method Flow Chart  
 
The significance of surrogate modelling in optimization problems and its potential to enhance 

algorithm accuracy is well-documented in a growing body of literature. This section presents the 
proposed method, outlining how the algorithm predicts input samples and improves the model. 
Figure 2 shows flow chart for proposed algorithms multi-surrogate with multiple infill sampling. The 
proposed algorithm is designed to predict two sample points at each iteration, in contrast to the 
majority of current research work, which predicts only one sample at each iteration to refine the 
surrogate model. 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Flow chart proposed algorithm multi-surrogate multiple infill sampling 

 

Radial Basis Function Kriging 

Global search sample point  Local search sample point  

Obtain multiple sample 
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In the initial stage, the algorithm utilizes RBF and Kriging as function approximation techniques 
to predict the optimal sample points of the test function. The subsequent stage employs a clustering 
algorithm to partition the data into two segments: global search and local search. RBF performs the 
global search, exploring points across the entire region, while Kriging focuses on the local search, 
fine-tuning points near the optimal solution. The algorithm carefully selects one sample point for 
each local and global search, adhering to the designed methodology. Consequently, each iteration 
yields two sample points, contributing to the refinement of the model through addition to the 
training data. The global and local search concept aligns with the algorithm’s requirement to 
systematically explore and exploit the experimental region, fostering an efficient and effective 
optimization process. Table 2 shows the pseudocode of the proposed method multi-surrogate with 
multiple infill sampling method.  
 

Table 2 
Pseudocode of Multi-surrogate Multiple infill sampling  
Initial stage:   

Generate sample   

Latin Hypercube Sampling for train data  

Full factorial for test data   

Do:   

DBSN for clustering train data   

Sample near the optimal point – local sample   

Sample far from the optimal point – global sample   

End   

For i: local sample   

Kriging metamodel  Eq. (7) and Eq. (8) 

Predict infill sample using EI optimize with GWO  Eq. (9) and Eq. (10) optimize with GWO  

End   

For ii: global sample   

RBF metamodel  Eq. (1) - Eq. (5)  

Parameter spread and centre using fuzzy cmean  

Predict infill sample using maximin distance  Eq. (6) 

End   

Infill 2 samples in each iteration   

Compute RMSE  Eq. (11) 

Repeat the algorithm until achieve the stopping criterion          

 
3. Results  

 
The experimental evidence on the proposed method of multi-surrogate with multiple infill 

sampling focuses on the low-dimensional test function and the algorithm demonstrate using 
Modified Easom Function. The actual function of Modified Easom is depicted in Figure 3.  
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Fig. 3. True function of modified easom 

 
Additionally, Figure 4 displays the initial sample points (in black) and the infill sample points (in 

red) after 100 sample points were added.  
 

 
Fig. 4. Contour plot true function after 100 
samples added 

 
Figure 5 shows distance between training and test point for algorithm choose the best point as 

new sample point. The entire computer experiment was completed within approximately 65.16 
seconds, involving 50 iterations and the addition of 100 sample points. 
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Fig. 5. Train and test sample points 

 
The distribution of training and testing points was investigated using the DBSCAN algorithm, 

effectively clustering the training samples into global and local sets, as depicted in Figure 6. Notably, 
local sample points are near the optimal point, while global sample points are positioned far from 
the optimal points. The global sample relies on the RBF metamodel with maximin distance to predict 
new sample points. In contrast, the local sample employs the Kriging metamodel, optimized using 
the Grey Wolf Optimization (GWO) algorithm with the Expected Improvement approach.  
 

 
Fig. 6. DBSCAN algorithm clustering the sample 
point at early stage 

 
The experiment continued for 50 iterations, predicting 100 new infill sample points. The Root 

Mean Square Error (RMSE) results are illustrated in Figure 7, providing valuable insights into the 
performance and accuracy. of the multi-surrogate approach with multiple infill sampling.  
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Fig. 7. RMSE validation error after 100 sample points added 

 
Multi-surrogate Multiple infill sampling (MSMIS) was compared with several methods from 

previous case studies to test and compare algorithm performance. The previous case studies to 
compare the RMSE performance is SCG (ensemble of surrogate using sign-based cross-validation 
error with global correction) [25], kriging sequential sampling, RBF sequential sampling and MSMIS. 
This experiment run to predicts 50 samples point to refine the model and evaluate the accuracy 
performance. Comparison of result RMSE between previous method and proposed method evaluate 
using root mean square error (RMSE). Based on numerical comparison of RMSE from previous work 
extract from other researcher in Table 3, shows that proposed method MSMIS improve the value of 
RMSE better than one sample for each iteration. This proposed of algorithm is purposely to improve 
prediction of multiple point at one time. For validation and testing development of algorithm, four 
(4) benchmarks test function with low dimension was used. Based on the comparison of RMSE, Table 
3 shows that the proposed method, MSMIS improves the value of RMSE.  

 
Table 3 
Comparison of the performance of each model using RMSE  
Test Function  SCG Kriging RBF MSMIS 

Goldstein & Price  96495.1 98121.9 100356.9 8988.2 
Camelback  1.51710 1.6473 6.3551 1.310 
Extended Rosenbrock 2.25e+5 4.46e+e5 2.30e+5 1.99e+5 
Branin – Hoo  0.3838 0.3659 9.4963 0.280 

 
3.1 Measuring Accuracy of Metamodel  

 
Two standard performance metrics are used to evaluate the overall performance of the 

surrogates:  
 

i. Root Mean Squared Error (RMSE), which provides a global error measure across the entire 
design domain 

ii. Maximum Absolute Error (MAE), which represents local deviations.  
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To compare the performance of various methods across functions, we normalize the RMSE and 
MAE measures based on the actual function values [26,27]. A set of data of the size known as nt and 
a set of predictions at those locations and calculate the RMSE:  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑡
∑ (𝑓(𝑥𝑘) − 𝑓(𝑥𝑘))

2
𝑛𝑡
𝑘=1                      (11) 

 

where 𝑓(𝑥𝑘) represents the exact function value for the test point 𝑥𝑘, 𝑓(𝑥𝑘)is the corresponding 
estimated function value and nt is the number of test points chosen for evaluating the error measure. 
Generally, the RMSE metric should be as small as possible.  

 
4. Conclusions 

 
This work introduces an innovative approach, the multi-surrogates and multi-points infill global 

optimization method, designed to tackle computational time for black-box optimization problems 
effectively. A multi-point infill strategy is proposed to address the issue of sparsely sampled regions, 
which iteratively adds multiple approximate optimal points and promising points. The pre-processing 
stage involves implementing the DBSCAN algorithm to partition the training data before function 
approximation and predict new sample points. The algorithm is thoroughly tested using four (4) 
popular mathematical test functions, drawing on insights from previous related studies. Remarkably, 
the proposed method significantly enhances the accuracy of the surrogate model, as evidenced by 
experimental results. The algorithm should be tested against real-world optimization problems for 
future endeavours, showcasing its potential to contribute to practical applications. 
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