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determining the criteria weights or account for imprecise and indeterminate data. To
overcome this limitation, this paper introduces an improved aggregation operator, the
rough neutrosophic Shapley weighted Einstein averaging aggregation operator. The
rough neutrosophic sets offer a method for effectively managing the fuzziness and
uncertainty that commonly occur in real-world scenarios and the Shapley fuzzy
measure helps us understand the importance or value of different elements in each
scenario. This operator combines the Shapley fuzzy measure with Einstein operators
under rough neutrosophic sets, which are an effective tool for handling incomplete,
indeterminate, and inconsistent information. The proposed operator satisfies essential

Keywords: algebraic properties such as idempotency, boundedness, and monotonicity. This paper
Einstein aggregation operator; Multi- also presents a decision-making methodology based on the proposed operator, with
criteria decision-making; Rough attribute values derived from the rough neutrosophic set. Finally, the applicability of

neutrosophic set; Shapley fuzzy measure  the suggested aggregation operator is illustrated with a numerical example.

1. Introduction

Real-life decision-making problems often entail dealing with uncertain or imprecise information,
leading to ambiguity and complexity. One of the most effective tools for dealing with impreciseness
and uncertainties in decision-making is the fuzzy set, which was first introduced by Zadeh [1]. Fuzzy
set theory, intuitionistic fuzzy set theory, and rough set theory are examples of approaches that deal
with imprecise information and knowledge. However, these approaches only address some of the
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uncertainties in practical situations like indeterminacy situations in real life. Smarandache [2]
initiated the notion of neutrosophic sets as a comprehensive approach to tackle uncertainty,
inconsistency, incompleteness, and indeterminacy. A neutrosophic set is composed of three
fundamental membership functions: the truth-membership function (7), the indeterminacy-
membership function (/), and the falsity-membership function (F), making it a valuable tool for
managing complex and ambiguous situations.

A notable alternative to traditional set theory is rough set theory, which was first proposed by
Pawlak [3]. This approach has shown great efficacy in dealing with imprecise data, making it
particularly useful for applications in fields like machine learning and data mining. Rough set theory
is a branch of classical set theory that analyzes objects using lower and upper approximation spaces.
It relies on both constructive and algebraic approaches to study the properties and behaviors of these
spaces [4], making it a valuable tool for researchers and practitioners in a wide range of fields. The
research on rough sets and fuzzy sets has been widely explored. A triangular conorm Sand a norm T
were used by Wu et al., [5] to construct and axiomatize (S, T) fuzzy rough sets. Rough sets and
neutrosophic sets can both handle the uncertainty and omit the insufficient information. The term
"rough neutrosophic sets" (RNS) is a new hybrid intelligent structure that was introduced by Broumi
and his colleagues in 2014 [6]. This structure, created by combining neutrosophic and rough sets,
appears to be highly intriguing and applicable to real-world problems. Numerous previous studies
have been found on rough neutrosphic sets. For example, Alias et al., [7] developed the medical
diagnosis proposition for the roughness Cosine similarity measure within a rough neutrosophic set
context. Donbosco and Ganesan [8] defined a rough neutrosophic set and used it in a multi-criteria
decision-making problem.

Aggregation operators have become increasingly crucial in any group decision-making problems.
Aggregation operators, which typically take the form of mathematical functions, are widely used
techniques that are used to combine all the individuals of data that are input into a single set. The
ability to aggregate (fuse) multiple input values into a single output value is a vital technique in many
fields, including but not limited to engineering, economics, sociology, and physics. The arithmetic
mean and geometric mean are commonly employed as fundamental aggregation operators for data
aggregation in a crisp environment. In real-world decision problems, complex relationships between
criteria can exist. Algebraic operational rules are typically used to model aggregation operators like
intersection and union. As a result, it is critical for an aggregation operator to capture those
complicated interrelationships in order to generate more accurate aggregating results. Researchers
started employing unions and intersections with t-operators due to their ability to offer a unique
optimal solution. It is common knowledge that aggregating operators use different-norm (TN) and
t-conorm (TCN) for example Algebraic operations [9], Einstein operations [10], Hamacher operations
[11], and other such methods, which are extremely helpful in achieving the intersection and unions
of fuzzy evaluations. Among these operations, Einstein AOs are more general and flexible in
calculation, and they can avoid some irrational operations [12].

Besides Einstein AOs, the Shapley Fuzzy Measure (SFM) has been used to determine the criteria
and decision makers’ (DM) weight. It has been widely known to tackle the general interaction among
input arguments. This interaction is necessary to reflect the significant weight of each input argument
instead of the existing weightage techniques [13]. Insufficient weight information and distinct input
arguments, which are frequently missing in aggregation operators, can be handled by SFM. Awang
et al., [14] proposed SFM under a hesitant bipolar-valued neutrosophic set environment for an
investment decision whereas Heronian mean operators were developed by Hashim et al., [15] while
taking into account Shapley fuzzy measure in an interval neutrosophic vague environment. Hua and
Jing [16] developed two interval-valued Pythagorean fuzzy aggregation operators based on Choquet
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integral operator and Shapley fuzzy measure, respectively. They claimed that the proposed Shapley
fuzzy measure based on an interval-valued Pythagorean fuzzy set can handle the decision with
complementary, repetitive, and independent characteristics.

There is little study of previous research on Einstein operator with SFM under a rough
neutrosophic set. In this study, the Einstein operator and SFM are combined using a rough
neutrosophic set to effectively present the interaction of criteria weights and to handle the
uncertainty and incompleteness of information. To achieve this objective, the remainder of the
article is structured as follows. In Sect. 2, we provide some preliminary definitions of rough
neutrosophic sets, Einstein operator, and SFM. In Section 3, we develop the rough neutrosophic
Shapley-weighted Einstein (RNSWE) operator and discuss its advantageous properties. Then
formulate a decision-making approach using the RNSWE operator for the MCDM problem, where the
weight of criteria is derived from the SFM. In order to validate the suggested aggregation operator,
a numerical example of the decision-making problem is presented in Section 4. Ultimately, the study
is concluded in Section 5.

2. Preliminaries

This section presents the essential RNSWE aggregation operator development definitions.
Definition 1 introduces the definition of the rough neutrosophic sets.

Definition 1 [6] Let Z represent a non-null set and P represent an equivalence relation on Z. Let R
be a neutrosophic set in Z with the truthness degree Ty, indeterminacy degree I and falseness
degree Fy. The lower and upper approximations of R in the (Z, P) represented by N(R) and N(R)
respectively referred to as:

N(R) = {< X,TMR)(x),IMR)(x),FMR)(x) >Z€ [x]p X E z} "

(X)II_ (X)IF

N(R) = {< x,T N(R) N(R)

NR) (x)>:Ze[x]p,xe2;
Definition 2 shows the definition of Einstein product and Einstein sum proposed by Wang and Liu
[17].
Definition 2 [17] The t-norm and t-conorm have a significant role in constructing operation rules
and aggregation operators. Special cases of the Archimedean t-norm and t-conorm, the Einstein
product and Einstein sum are defined as:

+
G@Eﬁzlialfﬁ )

_ a-p
C1+(1-a)-(1-p)

a® f (3)
where Einstein sum G—)E and the Einstein product ®Eare the t-conorm and t-norm, respectively.

The Shapley Fuzzy Measure proposed by Sugeno et al., [18] is provided as Definition 3 below:
Definition 3 [18] LetQ={1,2,...n} be a set of criteria and P(Q) be the power set of Q. Then, a fuzzy

measure on Q is a set function 4: P(Q) —[0,1]which satisfies.
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(1) Boundary conditions: (@) =0and u(4)=1
(2) Monotonicity: if A,BeP(Q), and AcBthen uAc uB

Sugeno proposed a specific type of A fuzzy measure, which is based onP(Q), for the sake of
simplicity.

H(AUB) = p(A)+ p(B) — Au(A) - Au(B) (4)
where AnB=¢forallA,BeP(P)and A >-1.

Sugeno highlighted 2=0,4>0 and A>0 corresponding to additive measure respectively
referring to synergic interactions that are positive and negative. This means that A —fuzzy
measurements can be written as:

%( [T +Au ,({S;}))-1),ifA#0
S:A (5)
S:HifA=0
si%Aﬂﬂ({ iMif

,Uﬂ(A)=

A value can be computed as follows:

(IT @+Au ,({S;}))=A+1 (6)
SieA

The A — fuzzy measure is based on the underlying notion of the SFM. According to Definition 5,
the computation of the SFM can be calculated as follows:

(@-|w|-1)w|!
Q!

a),(;urQ) = Z

QQN,‘

(W wi)—puW)),VieQ (7)

where u is a fuzzy measure on Q,

Q| and |W|represent the cardinality of the set Q and W

respectively. Generally, a)l.(,u,Q) represent the weight vectors on set Q as a)l.(y,Q)>1 and

o, (1,Q)=1.

Definition 4 introduces the score and accuracy formula in RNS environments.
Definition 4 Let N(P):<N(P),N(P)> :<(I,[,Ij),(7_',i,l?)> represent a RNS. The score and accuracy

formula are defined as follows:

- ey <o) (®)
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3. Proposed Rough Neutrosophic Shapley Weighted Einstein Operator

This section shows the proposed rough neutrosophic Shapley weighted Einstein (RNSWE)
aggregation operator and outline several properties that align with this proposed operator. The
RNSWE is created by combining the SFM and the Einstein aggregation operator concept within the
rough neutrosophic set environment. Before the RNSWE is presented in detail, we will first provide
an interpretation of the Einstein operations within the rough neutrosophic set, which takes into
consideration the interaction between membership, indeterminacy, and non-membership functions.
Afterward, we proceed to define some neutrosophic set Einstein averaging AO. Additionally,
Theorem 1 illustrates the Einstein norm operations within the rough neutrosophic set.

Theorem 1 Let N(Rl):<(TN(R1)'IN(R) N(R )J( N(R,)’ N( ) N( 1)J>

N(Rz):<(TN(R2)'IMR2)’FN(R2)j ( N(R ) N(R ) N( )J> be rough neutrosophic set and A4 >0be

any real number. Between then, the Einstein norm operation has been characterised as

iR *NR,) [N(R ][’N(RZ)J [N(R ][FN ]
1 T T {2 [ | (1 [ -y
N(R)) ®N(R,)=
TN(R1)+TN(R2) [N(R ][IN(RZ)] [N(R IF ]
| g | g2 [y {2y [y
[ ][T (RJ 'ir) " 'NiRy) "ir) R,
[1 N(R )j[l N(R )] [[’N(Rl)J{’MRZ)D “[[F N(Rl)J(F N(RZ)D
N(R1)®N(R2)=
[ }[T ] iRy iR, iRy iRy
[ e )][ e )] [[IN(Rl)]{I’V(Rz)B 1+[[FN(R1)][FN(R2)]]
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AN(R) =

lHN(Rl) —[1—/N(R )

A

T
V) [ N(Rl)J
N(R)* = 1

Z[TN(Rl)j

A

1’ A A A A
[2—TN(R1)] +[TN(R1)J [1+/N(Rl) +1—/N(R1)] [1+FN(R +1—FN(R

|
[ |
[“’N(Rl) * 1"N(R1)J
| |

1+IN(R1) N(R,)

Definition 5 introduces the concept of the rough neutrosophic Einstein (RNE) operator. This
definition is essential to understand the proposed definition of the Rough neutrosophic Shapley
Weighted Einstein (RNSWE) operator presented in Definition 6. Therefore, Definition 5 serves as a
foundation for Definition 6, and it is crucial to grasp its meaning before proceeding to the next
definition.

Definition 6 Let N(Ri):(N(Ri),N(Ri)) in (Z, P) (s=1,2,...,n) be a set of neutrosophic numbers. Then,

have the following definition for the rough neutrosophic Einstein (RNE) operators:
n n _
RNE =(NR, (R, .. .,N(R,,)){scglu(Rs),chlN(Rs)] )

Theorem 2 Let N(Ri):(N(Ri),N(Ri))(s=1, 2,..., n) be a set of rough neutrosophic numbers. The
aggregated value RNE (N(Rl),N(RZ),...,N(Rn)) is also a rough neutrosophic number.

RNE =(N(R;),N(R,)...,N(R,)) = (Sc—ialu(Rs),élN(Rs)] (10)

=(N(R))®N(R,)®...®N(R,)

Definition 6 Let N(Ri):(N(Ri),N(Ri)) in(Z, P) (i=1, 2,...,n) be a set of rough neutrosophic numbers.
Thus, the rough neutrosophic Shapley weighted Einstein (RNSWE) operators is defined as follows:

RNSWE =(N(R;),N(R,)...,N(Rp)) = [55291@5 N(RS),S€Z>1@5 /T/(Rs)j (11)
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where w = (w4, Wy, ...,

w,)T is weight vector of R, relative to some other fuzzy measure (the Shapley

fuzzy measure) especially w; on (M(Rs),N(RS)) € [0,1] and Y., ws; = 1. Since each ambiguous
measure is additive, the value aggregated by RNSWE operator is still rough neutrosophic, calculated

by the following formula:
RNSWE(N(Rl),N(RZ)...,N(Rn))

O
Hs—1[“TN(R )] M| == Tyiay)

n “s
2H5=1[’MR5)]

[ s ] zngzl[FN(Rs)] (12)
s n s’ s n g’ n O s |
ns—1[1+TN(RS)] +ns=1(1_TN(RS)] ”2:1[2"MR5)] +ns=1(lN(Rs)] ns:l[Z_FMRS)] + ng:l[FN(Rs)]
- O O O O
Nty | (T 12 | |
s s’ s s’ s O
L L L T L S L R R
Proof: This theorem will be demonstrated by mathematical inductionwhenn =1, 0w =1,
RNSWE =(N(R, ))
1 1 1 1
gy | T\t ey 2[’N(R1)] Z[F N(Rl)]
1 1’ 1 1’ 1 1/
_ _ _ (13)
vy | 1 veRy) [2 ’N(Rl)J +[’N(R1)] ) [2 f N<R2>] +[F N(Rl)]
- 1 1 1 1
1+ —1-T— 2| - 2| F—
N( 1) N(R,) [N(Rl)] [ N(Rl)]
1 1’ 1 1’ 1 1
1+ 1- 2—1— I— 2—
TRy | Ry [ N(Rl)] +[N(R1)] ) [ N )J [ NR )]
Thus, theorem holds forn = 1. Now we have n = 2
al el a9 )
[1+TN(R1)] _[I_TN(Rl)J Z[IN(Rl)J [N(R ]
@ @’ ) @’ ’
I T R e e T R T (i )
@ (N(Ry))= @y @y @y @y
[1+TN(R1)] _[I_TN(Rl)] Z[IN(Rl)] [ N(R )]
9 @’ a9 = )
[HTN(Rl)] +[1_TN(R1)] [Z_IN(Rl)J ' IN(Rl)] )[ N(R ] J{F }

(15)

Then, the operational summation relations above is proved as below
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RNSWE(N(R,),N(R,)) =@ N(R,) ® w,N(R,)

“

“ “ @ “
I g
Q. () Q. Q. w, |
T R N T Rl R TR
- “ “ il 9
[1+TN(R1)L 1_TN(R1)L Z[I’ZERl)] _ Z{F"g’?l)} _
1 1 1 1 1 1
[1+TN(R1)] e TN(R1) [2 N(Rl)J +{IN(R1)J )[Z_FN(Rl)] +[FN(R1)J
[1+TN(R )sz —[1—TN(R )sz 2[/N(R )sz Z[FN(R ) "2
) 2) 2 , ) '
g ] ) 2] g
2 2 2 L) 2 )
[1+TN mz—[l—r ]602 2[/ T)z Z[F E
(®,) M) N(R,) | N(R,)
[1+T w2+[1—T sz [ —I— ]“’2 +[I ]“’2) {Z—F ]“’2+ F— sz
N(R,) N(R,) N(R,) N(R,) N(R,) N(R,)
{1+TN(R1)]CU1 _[l_TN(Rﬂ]w1 [1+TN(R2)]w2 _[1 TN(RZ)]w2 ‘[HTN(RI)]{: _[1 TN(Rl)]wl} [1+TN(R2) %_[I_TN(RZ)LZ
= . = = | |
[1+TMR1)JCU1 [1 rMRl)]wl (1 Ti(RZ)}mZ_F[l_TN(RZ)]mZ [HTN(Rl)] +[l TN(Rl)] [1 TN(RZ)}w;[l TN(RZ)JQZ
- 5 “p “p
1 [1+TMR1)J 17[1 TN(R]_)J ! [1 TMRZ)J&)Z —(1—TN(R2)J£U2 1{ [“TN(RI)L _[1_TN(R1)L [1+TN(R2)LZ [ITN(RZ)LZ
@ [@ 1 1
[1+TMR1)] 1+[1 TN(Rl)] ! [1 Ti(Rz)]wz+{1—rMR2)]w2 [1 TN(Rl)J +[17TN(R1)] (HTN(RZ)] +[1_TN(R2)]
{ Z{IMRl)]m } Z[IMRZ)]WZ Z[INRl)] 1 { z[l[:z)JwZ .
. [@ 9 el
) ) o]y ] [t )y
(

N
“p
T

11 2 | A >
[zflle) +[’N(R1)] [Z_IN(Rz)] +[IN(R2)J

1 “2 1 “2
2| F 2| F
[ MRI)J . [ "’(Rz’] Z{F N(Rl)] Z[F N(RZ)]
N ol
- + +
N(Rl) N(Rl) N(R,) N(Rz) [Z_FN(Rl)J +[FN(R1)J [Z—FN(RZ)J +[FN(RZ)
Z[F ]wl Z[F E “1 “
14 1- MRy 1 M) Z[FN(R )J Z[F NR,)
O Y T PN o I il e S 1 %
TINRy) N(Ry) N(R)) N(Ry) -
' ' ’ ’ [2 ey [N(Rl)J [2 FN(Rz)J +[FN‘R2)J
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n a)s n CL)S n a)s n 605
ns=1[1+TMR5)} _ns:l[l_TN(RS)] 2“5=1[’N(R5)} 2n5=1[FN(RS)]

n C()S Cl)s ’ n CUS n 0)5 4 n a)s n Cl)s 4
Hs:1[1+TN(R )] +Hs—1[1_TN(RS)] Hs=1[2_IN(RS)] +Hs=1(IN(RS)] Hs=1{2_F N(RS)] +Hs=1[F MRS)J

- g g Wg g

“?:1(1”N<RSJ ’”?:1{1’TN<RS>J “?:12[’%5)] 2“?:1[%5)}

n wS n mS ’ n a)s n ws ' n a]s n ws
“5=1{“TN<RS>] +“5=1[1‘TN<R5)] Hs=1[2—mes)] +“s=1[’N(Rs>] “S=1[2‘FN(RS)) +“s=1[FN(Rs>]

The proof ends.
Idempotency:

If N(Rg)=N(P)(s=1,2,...,n) then,
RNE(N(Rl),N(RZ),...,N(Rn)) =N(P), a RNSWE(N(Rl),N(RZ),...,N(Rn)) =N(P)

Proof
For, N(Rs)=N(P)

n —
RNE(N(Rl),N(RZ),...,N(Rn)) = (sci)lMP)'N(P)j
= (N(P), N(P)) = N(P)

RNSWE(N(Ry),N(R,),....N(Ry)) = (Sél wgN(P), él w; /T/(P)j
n — n
- (N(P)S(El w5, N(P) & a)s)
= (N(P), N(P) = N(P) since, S wg=1
s=1

Boundedness:

Proof
Let N(Rj)(j:1,2,...,n)be a collection of RNS numbers and let

NR) = (m}nIN(Rj)'mj'C.‘XlN(Rj) ,mjax EN(Rj) j,(mjin 7_'N(Rj),m?x iN(Rj),mjax I?N(Rj) j

+ . . = . . =
and N(R) —(mjax7_'N(Rj),mjm[N(Rj),mjgnle(Rj)j,(mjaxTN(Rj),mjmlN(Rj),mjgnFN(Rj)j
Then,

N(R)™ RNE(N(Rl),N(Rz),...,N(Rn)) cN({R)T
and

N(R)™ RNSWE(N(Rl),N(R ,...,N(R,,)) = NR)T

5)
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Monotonicity:

If N(Rg) CN(R; )(s=1,2,...,n)then,
RNE(N(R,),N(R,),....N(Rp)) < RNE(N(RI LN, ),...,N(R:,)),

and RNSWE(N(Rl),N(RZ),...,N(Rn)) gRNE(N(RI ),N(R;),...,N(R;)).

Proof
since N(Rg) < N(Rq )(s = 1,2,...,n), RNE(N(R)),N(Ry),....N(Rn) ) RNE(N(RI ),N(R;),...,N(R;)),

%k * %k
and RNSWE(N(Rl),N(RZ),...,N(R,,)) gRNE(N(Rl),N(RZ),...,N(Rn)).
It proves the monotonicity of the functions RNE(N(Rl),N(RZ),...,N(Rn)) and
RNSWE(N(Rl),N(RZ),...,N(Rn)).

4. Numerical Example

This section presents a numerical example to demonstrate the practicality of the methods
proposed in [19]. Suppose a corporation intends to invest a certain amount of money in the best
investment fund. They have four alternatives for deciding where to invest the money. Car company
p,, food company p,, computer company p,, and arms company p, are all possible choices. The

three attributes are the risk analysis e,, growth analysis e,, and environmental impact analysis e,

must be considered when making decisions. The company will use the RNS number assessments
provided by the three attributes to select one of the four possible alternatives for their investment.

e, €, €,
p,(((0.2,0.3,0.4),(0.4,0.3,0.4)) ((0.4,03,0.4),(0.6,0.1,0.4)) ((0.2,0.4,0.4),(0.4,0.4,0.4))
p,| ((0.3,0.4,05),(0.4,0.3,0.2)) ((0.5,03,06),(0.7,0.1,0.4)) ((0.3,0.3,0.4),(0.4,0.3,0.3))
p;| ((0.4,0.3,0.6),(0.5,0.2,03)) ((0.5,0.3,0.4),(0.6,0.3,0.3)) ((0.2,0.3,0.5),(0.4,0.1,0.3))
p,( ((0.3,0.5,05),(0.4,0.3,0.1)) ((0.4,0.5,0.5),(0.5,0.3,0.3)) ((0.2,0.3,0.4),(0.4,0.5,0.4))

Step 1: Determine the criteria weight by SFM.
ule,)=0.45 , u(e,)=0.65 , ule,)=0.55
Then, the A — value is calculated by applying Eq. (6), shown as below:

A+1=(1+0.451)(1+0.651)(1+0.551)
A =-0.8554

61



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 43, Issue 2 (2025) 52-64

Subsequently, the fuzzy measure of attribute is obtained using Eq. (6) and computed in the
following manner:

1

,u(el,ez)=m((1—0.8554(0.45))(1 0.8554(0.65)) 1) =0.8497
1

,u(el,ea)zm((1—0.8554(0.45))(1 0.8554(0.55))~1) = 0.7882
1

,u(ez,e3)=m((1—0.8554(0.65))(1 0.8554(0.55))~1) =0.8941

1
,u(el,ez,e_,,)=m((1—0.8554(0.45))(1 0.8554(0.65))(1-0.8554(0.55) ) - 1)=1

After that, the SFM can be obtained from Eq. (7) as follows

(ﬂ'(eyez)‘”(ez))*%(”'(91'63)‘“(93)) %(” (ey,€5,e3)~ t1(ey 5

11-0.8041)
3

3-0-1)!lo!
@)= C=C IO e

3!
1
=5(045-0)+

3-1-1)1!
u)+ B2

1

1 (0.7882-0.55)+

(0.8497-0.65)+

=0.26

o 1,0)= 32010

e (VT G 13_11)!1!(“'(5’1'ez)‘”(el)) W(me e3)~ u(e3))+ G- 23 )'ZI(” (eg,e5,63)~41(ey 3))

:%(0.6570)4—%(0.849770.45)+g(0.894170.55)+%(170.7882)

—0.41

3-0-1 —1-1)! 3-1-1)1! 3-2-1)2!
o3(1,Q)= ( 3 o (1leg)—ule)) + 2 3 ) (rleg e3)—p(eg )+ + 3 ) (1e(ey e5)= pe(ey )+ %(/‘ (eg,€5,€3)~1e(ey €, ))
:%(0.55—0)+%(0.7882—0.45)+%(0.8941—0,65)+%(1—0.8497)

=0.33

Step 2: Calculate the comprehensive evaluation value p :{1,2,...n} using the RNSWE operator

, =(0.2852,0.3305,0.4000,0.4885,0.2152,0.4000)
, =(0.3866,0.3238,0.5030,0.5410,0.1941,0.3058)
, =(0.3819,0.3000,0.4805,0.5130,0.1900,0.3000)
, =(0.3420,0.5317,0.4653,0.4424,0.3575,0.2526)

Step 3: Calculate the score formula in a RNS environment in Eq. (8), the bigger the score, the
better the alternative.

Y(N(P,))=0.5713
Y(N(P,)) = 0.6001
Y(N(P,)) = 0.6041
Y(N(P,))=0.5295

Step 4: Ranking of alternatives p, = {1 2,.. } in descending order and choose the best one(s).

The obtain ranking order is p, > p, > p, > p,. Thus, the best alternative is p,.

Step 5: End
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4. Conclusion

In conclusion, this paper presents a novel rough neutrosophic Shapley weighted Einstein (RNSWE)
operator that overcomes the limitations of other aggregation operations. The proposed operator
utilizes the Einstein operational rules to aggregate the SFM under rough neutrosophic set, which
yields desirable properties that are mathematically proven. By using SFM, the proposed operator
accurately acquires the criteria weights while considering their mutual interactions. Moreover, the
proposed RNSWE operator is applicable in situations where indeterminacy elements exist before
making optimal decisions. The numerical analysis conducted in this study demonstrates the
effectiveness of the proposed operator, with the best alternative identified. The RNSWE operator
can also be applied in various fields, such as engineering, environment, or social science, to solve
other MCDM problems. Overall, this paper contributes a valuable addition to the MCDM literature
and provides a promising direction for future research.

In future research, the proposed aggregation operator may be possible to consider the
applications of the proposed method in other fields such as in analysis for evaluation of potential
renewable energy resources in Malaysia by Zul Ilham et al., [20] and overview of the green building
index by Chin Yee Ha et al., [21].
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