
 
Journal of Advanced Research in Applied Sciences and Engineering Technology 35, Issue 2 (2024) 144-157 

 

144 
 

 

Journal of Advanced Research in Applied 
Sciences and Engineering Technology 

 

Journal homepage: 
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index 

ISSN: 2462-1943 

 

Improving Plant Disease Detection Using Super-Resolution Generative 
Adversarial Networks and Enhanced Dataset Diversity 

 
P. Pakutharivu1,*, D. Sasirekha1, V. Devaraj2, Rahul Sanmugam Gopi3 
  
1 Department of Computer Science, Anna Adarsh College for Women, Chennai-600040, Tamil Nadu, India  
2 Department of Electrical and Electronics Engineering, Panimalar Engineering college, Poonamallee, Chennai-600123, Tamil 

Nadu, India 
3 Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and 

Technology, Chennai 600062, Tamil Nadu, India  
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 3 July 2023 
Received in revised form 13 October 2023 
Accepted 2 November 2023 
Available online 31 December 2023 

The detection of plant diseases is critical for maintaining crop health and maximizing 
agricultural yields. This research proposes a comprehensive approach to improve plant 
disease detection by addressing challenges related to unbalanced datasets and 
leveraging generative adversarial networks (GANs). This research focuses on enhancing 
the accuracy and generalization capabilities of disease recognition models. To address 
dataset bias, a larger and more diverse dataset is collected, comprising unhealthy plant 
leaves from various plants, regions, and disease types. The expanded dataset enables 
comprehensive training and validation, ensuring a representative depiction of leaf 
variations and diseases. Domain-specific knowledge and expert guidance are 
incorporated to capture realistic and characteristic attributes of diseased leaves. To 
overcome overfitting, the regularization technique is applied during training. These 
techniques promote the learning of generalized representations and mitigate the 
generation of unrealistic or repetitive images. The proposed approach is extensively 
evaluated using Plant Village dataset encompassing various plant species, and disease 
types. The results demonstrate improved accuracy, robustness, and generalization 
capabilities in plant disease detection. It establishes a foundation for reliable and 
effective detection methods, contributing to the sustainable management of plant 
diseases and improved agricultural outcomes. 
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1. Introduction 
 

Detecting plant diseases is essential for ensuring crop health and maximizing agricultural yields, 
which is crucial for sustainable food production. Detecting and preventing untreated plant diseases 
at the earliest possible stage is the top priority as it can cause significant damage to crops [1]. Farmers 
can take immediate and targeted control measures, preventing the disease from spreading and 
causing an epidemic that could devastate entire crops and farmlands. Early detection also minimizes 
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the economic losses associated with crop diseases, which could lead to substantial losses for farmers 
and the agriculture industry [2]. Farmers can reduce financial losses by taking appropriate action, 
resulting in lower yields or crop failure. Plant disease detection provides valuable information to 
farmers about the health of their crops. Understanding the diseases present and their severity can 
help farmers adjust their crop management practices accordingly. Effective disease detection 
promotes sustainable agricultural practices [3], reducing the reliance on broad-spectrum pesticides, 
which may harm beneficial organisms and cause environmental issues. 

Ensuring crop health through disease detection is vital to meet the demand for food and enhance 
food security, particularly in regions where agriculture is a significant contributor to the economy 
and livelihoods. Early detection and intervention can also prevent unnecessary use of water, 
fertilizers, and pesticides, conserving resources and reducing the environmental impact of agriculture 
[4]. Promptly detecting and managing diseases is also crucial for complying with international 
quarantine measures and safeguarding agricultural exports. Regular disease monitoring and 
surveillance help researchers and policymakers understand the prevalence and distribution of 
various plant diseases, which is essential for developing effective disease management strategies and 
improving crop breeding programs. 

When developing a plant disease detection system using generative adversarial networks (GANs) 
[5]. To ensure accurate and reliable results, there are several challenges that must be addressed. One 
of these challenges is the issue of imbalanced datasets, where the number of samples for each class 
(disease or healthy) may be significantly uneven. This can lead to biased model training, making it 
more difficult for the model to accurately detect the minority class. Additionally, obtaining sufficient 
data for rare plant diseases can be a challenge, which can lead to overfitting and impact the accuracy 
and reliability of the GAN-based model [6].  

Mode collapse is another common issue with GANs, where limited sample variations are 
produced by the generator, which can hinder the ability of the model to learn the full range of disease 
patterns and generalize to unseen data. Ensuring the quality of generated samples is critical, as the 
effectiveness of GANs is heavily dependent on the realistic nature of the generated samples. Finally, 
it can be challenging to interpret how the model is making its decisions due to the black-box nature 
of GANs, which can impact the development of explainable AI-based models. To address these 
challenges, various techniques can be employed, including data augmentation strategies, transfer 
learning, regularization techniques, rigorous evaluation and validation, ensemble approaches, and 
hardware acceleration. 

The objectives of this research are to  
• Use Super-Resolution Generative Adversarial Networks (SRGANs) to improve the quality of 

plant disease images. 
• Modify the network architecture by adding Residual-in-Residual Dense Blocks (RRDBs) and 

removing Batch Normalization (BN) layers. 
• Implement a generator based on the Enhanced Upscaling module for Super-Resolution (EUSR) 

model with a multiscale approach for three different scales for high-resolution image 
generation. 

• Use adversarial training to minimize the generator loss and maximize the discriminator loss. 
• Evaluate the performance of the trained SRGAN using metrics such as Structural Similarity 

Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and human perceptual assessments, and 
apply post-processing techniques for further improvement. 

The researchers aim to address the challenges associated with limited data, imbalanced datasets, 
and low-resolution images in plant disease detection. By leveraging the capabilities of SRGANs, they 
intend to improve the quality of images, increase dataset diversity, and ultimately enhance the 
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performance of disease detection models. The following topics explore conventional methods used 
to identify plant diseases and the difficulties that come with limited data and imbalanced datasets. 
The SRGAN architecture and model are designed to overcome these challenges by improving image 
quality and dataset diversity. Additionally, the process of collecting and pre-processing datasets, 
technical details of SRGANs, and techniques to enhance dataset diversity are explained. Finally, the 
experimental setup and results are analysed, and potential areas for improvement are suggested. 

SRGAN technology revolutionizes agriculture by conserving resources and making farming 
practices more sustainable. It enables precise detection of plant diseases, reducing the overall use of 
resources like water, pesticides, and fertilizers. Early disease detection and management lead to 
healthier and more resilient crops, reducing the need for resource-intensive interventions. SRGAN 
technology optimizes resource allocation, leading to cost savings for farmers and a reduced 
environmental footprint. In addition to reducing environmental impact, it promotes responsible and 
sustainable agricultural practices to comply with regulatory requirements. It helps farmers adapt to 
shifting weather patterns and mitigate the impact of climate-related challenges on agriculture. 
SRGAN technology enhances resource conservation, aligning with the principles of precision 
agriculture and sustainability. It promotes efficient and environmentally friendly farming practices. 

 
2. Literature Review 

 
Plant disease detection has been traditionally carried out through visual inspection by trained 

agronomists or plant pathologists. Support Vector Machines (SVM), Random Forests, and other such 
Machine learning techniques, have been used to classify plant samples based on texture, color, and 
shape features [7]. Hyperspectral and multispectral imaging techniques have been applied to identify 
unique spectral signatures associated with diseases. Convolutional Neural Networks (CNNs) have 
revolutionized plant disease detection by automatically learning relevant features from raw images 
without manual feature extraction [8]. Transfer learning, ensembling multiple models, and GANs 
have been used to fine-tune and augment plant disease datasets [9]. One-shot and few-shot learning 
techniques have been explored to address the limited labeled data for rare diseases. Internet of 
Things (IoT) and remote sensing technologies have enabled continuous monitoring of crops using 
drones, satellites, and ground-based sensors [10]. Mobile applications have been developed to 
provide user-friendly tools for plant disease detection, utilizing smartphone cameras and deep 
learning models running on the cloud or locally on the device. As deep learning models continue to 
grow in adoption, researchers are focused on making the models more interpretable. 

Working with unbalanced datasets can present several challenges. Biased model training can 
occur when one class is significantly overrepresented compared to others, leading to a classifier that 
prioritizes the dominant class during training and performs poorly on the minority class [11]. Models 
trained on unbalanced datasets may also struggle to generalize to new data, especially for the 
minority class, due to the lack of representative samples. Traditional accuracy metrics may not 
accurately evaluate the performance of models trained on unbalanced data, as high accuracy can be 
misleading if the model performs poorly on the minority class. Imbalanced datasets may be a result 
of biased data collection practices, which can lead to oversampling or under sampling of certain 
classes [12]. Additionally, certain models may be highly sensitive to class distribution, resulting in 
significant fluctuations in accuracy and predictive capabilities. Models trained on unbalanced data 
may also frequently misclassify the minority class, leading to misdiagnoses. In the case of very 
imbalanced datasets, models may learn trivial patterns that result in a suboptimal model. 

Existing approaches to handle class imbalance, such as class re-sampling, performance metrics, 
cost sensitivity, ensemble techniques, data augmentation, transfer learning, loss functions, and 
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model complexity, all have limitations [13]. While re-sampling can improve balance, it may not fully 
address the problem and can introduce noise. Traditional evaluation metrics can be misleading, and 
cost-sensitive learning can be challenging to implement effectively. Ensembling multiple models can 
increase computational complexity, and data augmentation techniques may not be effective for 
imbalanced datasets. Transfer learning may carry biases from the source dataset, and designing 
appropriate loss functions can be challenging [14]. Complex models may overfit the majority class, 
while simpler models may not capture the complexities present in the data. 

GANs use two neural networks, the generator and discriminator, to synthesize data that 
resembles real data. GANs can be used to balance class distribution and augment datasets. They have 
applications in generating synthetic data for image data augmentation, class imbalance, medical 
image segmentation, audio and speech processing, text generation and translation, and privacy-
preserving data sharing [15]. GAN-generated samples can improve model generalization by providing 
more diverse and representative data, reducing overfitting. However, GANs have challenges such as 
mode collapse, lack of diversity in generated samples, and quality control of synthetic data. 
Researchers continue to work on improving GAN architectures and training methodologies to 
generate high-quality synthetic data for various applications. Data imbalance and rarity are common 
challenges in plant disease detection using GANs. Techniques such as oversampling, under-sampling, 
synthetic data generation, data augmentation, transfer learning, active data collection, ensemble 
approaches, appropriate evaluation metrics, model regularization, and continuous monitoring can 
help address these issues. Researchers and practitioners often use a combination of these 
approaches to improve model performance in real-world scenarios. 

Previous research on plant disease detection has demonstrated the effectiveness of various 
techniques, including deep learning advancements, transfer learning, ensemble techniques, data 
augmentation, and remote sensing and IoT integration. Deep learning, particularly CNNs, has been 
leveraged to learn relevant features from images, resulting in higher accuracy and more robust 
models [16]. Transfer learning has been used to fine-tune pre-trained models from large-scale image 
datasets, leading to enhanced model performance with limited data. Ensemble methods have been 
explored to improve the overall performance of multiple models. Data augmentation techniques 
have been used to create diverse samples and increase the size of datasets, which leads to improved 
model generalization [17]. Advancements in remote sensing and IoT technologies have allowed for 
continuous monitoring of crops and valuable real-time data for disease detection and management. 

However, certain weaknesses exist in previous research. Many studies have not adequately 
addressed the challenges posed by imbalanced datasets, which can lead to biased model training and 
reduced performance in the minority class. Additionally, rare diseases may have insufficient data 
available for effective model training, which hinders the development of accurate disease detection 
systems [18]. The diversity of the plant disease datasets used in some previous research might be 
limited, leading to potential biases and reduced model generalization to diverse field conditions. 
Deep learning models, including CNNs, are often considered black-box models with limited 
interpretability, which can hinder trust and acceptance of the models in real-world applications. 
Certain deep learning models, especially those with large architectures, require substantial 
computational resources and may not be practical in resource-constrained environments. 

The proposed work aims to address the research gap related to imbalanced datasets in plant 
disease detection by leveraging the capabilities of Super-Resolution Generative Adversarial Networks 
(SRGANs) to generate high-quality synthetic data and enhance dataset diversity. This approach aims 
to overcome the limitations of working with imbalanced datasets, augment the dataset for rare 
diseases, enhance dataset diversity, improve model interpretability, and optimize the use of 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 35, Issue 2 (2024) 144-157 

148 
 

computational resources. The proposed work seeks to develop a more accurate, robust, and 
interpretable disease detection system with potential implications for agriculture and food security. 

 
3. Proposed Work 

 
The proposed model focuses on enhancing the perceptual quality of plant disease images by using 

SRGANs. The modified network architecture emphasizes the use of RRDBs with upscaling within the 
generator for deeper and more complex structures, as shown in figure 1. Additionally, the removal 
of Batch Normalization (BN) layers enhances stability during training and generalization. To overcome 
overfitting, the regularization technique is applied during training. Adam optimizer is used for 
stochastic gradient descent (SGD), combining the benefits of AdaGrad and RMSprop techniques. In 
the proposed model, the generator is based on the EUSR model, using a multiscale approach for three 
different scales (×4, ×6, and ×8). The residual scaling parameter is set as a. The convolution layer 
takes out r2C feature maps with an H × W dimension. H, W, and C represent the LR image's height, 
width, and number of channels, respectively, and r is the desired scaling factor. Once the convolution 
layer has completed its task, the periodic shuffling operator reorganizes the feature maps to produce 
the ultimate HR image that measures rH × rW × C. To demonstrate the significance of the upscaling 
part, the performance change is evaluated based on the number of parameters in the feature 
extraction and upscaling components. 

For the discriminator, the same network as in SRGAN is used but with the least square function 
instead of the adversarial loss. This architecture has several advantages, including producing more 
diverse samples by utilizing multiple generators and stabilizing the learning process. Consistency is 
ensured between the generator output layer and the discriminator's input layer by avoiding the 
application of batch normalization to the input layer of the discriminator. When using synthetic 
datasets, there are several concerns and potential biases that need to be addressed. These include 
the lack of real-world variability that synthetic datasets may not be able to capture, overfitting to the 
synthetic data, data distribution mismatch, and bias in data generation. This is addressed by 
augmenting the synthetic dataset with real-world data whenever possible, collecting images from 
diverse data sources, being mindful of the data generation process and ensuring it is designed to 
minimize bias, evaluating the model's performance on real data and continuously updating and 
improving the synthetic dataset and data generation process as more real-world data becomes 
available. Synthetic data is generated with accuracy, trustworthiness, and fairness. It avoids biases 
and protects the data privacy. It complies with ethical standards of consent, data ownership, and 
legal regulations. The generation process is transparent, accountable, and culturally sensitive. 
Continuous monitoring and evaluation of its impact is critical. 

 
 

 
Fig. 1. Left: Residual block. Right: RRDB with upscaling 
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The objective function of the model minimizes the generator loss while maximizing the 
discriminator loss, leading to better performance and accurate classification of real and fake samples. 
This optimization results in a more robust and stable model capable of generating high-resolution 
images for plant disease detection. The generator (G) network is designed to take low-resolution (LR) 
images as input and produce high-resolution (HR) versions of them, as represented in equation 1.  
 

G: LR → HR             (1) 
 

Multiple layers of up sampling blocks are used to gradually increase the spatial resolution of the 
input. An activation function follows each up sampling block to improve training stability. The 
generator's architecture may vary depending on the specific implementation and desired level of 
super-resolution.  

The discriminator (D) network is designed to take high-resolution images (both real and 
generated) as input and distinguish between them. It is a binary classifier that predicts whether an 
input image is real or generated (fake). The discriminator is composed of multiple layers of 
convolutional blocks, followed by activation functions and batch normalization. The SRGAN is trained 
in an adversarial manner, where the generator and discriminator play a minimax game to improve 
their capabilities iteratively. During training, the generator aims to generate high-resolution images 
that can successfully deceive the discriminator into classifying them as real. Simultaneously, the 
discriminator is trained for distinguishing between real and generated high-resolution images in an 
accurate manner. The generator and discriminator are updated alternatively in each training 
iteration, optimizing their respective loss functions. The discriminator function is represented 
mathematically as follows: 

D: HR → [0, 1] 
D(xHR) ∈ [0, 1]           (2) 
Adversarial Loss guides the generator to produce high-quality and realistic high-resolution 

images. It is calculated based on the discriminator's prediction of the generated samples. Content 
Loss (Perceptual Loss) ensures that the generated images preserve important details and structures 
from the low-resolution inputs. It is typically computed using features extracted from a pre-trained 
deep neural network and comparing them between the high-resolution ground truth and generated 
images. Total Loss is the sum of adversarial loss and content loss, with weights assigned to balance 
their contributions to the overall loss function. 
 

Ladv = -log(D(G(xLR)))            (3) 
 

The SRGAN implementation uses the upscaling factor x8. This denotes how much the generator 
increases the resolution of the low-resolution input to obtain the high-resolution output. After 
generating high-resolution images, the outputs are post-processed for denoising and color correction 
to further improve the visual quality. The performance of the trained SRGAN is evaluated using 
appropriate metrics, such as PSNR, SSIM, or perceptual quality assessments through human 
evaluations. With this, high-resolution images are generated from low-resolution inputs, making 
them useful for enhancing image quality in plant disease detection. 

When deploying the SRGAN model in resource-constrained environments, smaller and less 
complex models are considered, low-power devices are used, the model is optimized through 
quantization and pruning, and software libraries are optimized for energy efficiency.  Inference on 
the device is performed along with data compression, low-power modes are implemented, dynamic 
resource allocation is performed, and tasks are offloaded to cloud servers when needed. The model 
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is optimized for real-time decision-making, sustainable power sources are considered, and 
performance and resource usage are monitored to ensure optimal energy and resource efficiency. 

 
4. Results and Discussion 

 
The network hyperparameters generated for the synthetic data are presented in Table 1. The 

network hyperparameters for generating synthetic data are presented in Table 1. The system is 
composed of three generator models. Each model has an input layer with 256 features from an 
isotropic multivariate Gaussian distribution 𝜇 (0, I). The generators have two fully connected hidden 
layers with 128 Rectified Linear Units (ReLU) for feature extraction. The final FC layer has two neurons 
and a Tanh activation function that generates the synthetic data. Meanwhile, the discriminator has 
a fully connected hidden layer with 128 neurons and a Leaky ReLU activation function (slope = 0.02). 
The discriminator does not have a final activation function as it is utilized for least square functions. 
The system is optimized using the Adam optimizer with a learning rate of 0.0002 and momentum of 
0.5.  

 
Table 1 
Network hyperparameters 
For Generator 
Input Noise Z ∼ 𝜇 (0, I) with 256 features 
Fully Connected (FC) Layer 1 128 neurons with ReLU activation function. 
FC Layer 2 128 neurons with ReLU activation function. 
FC Layer 3 2 neurons with Tanh activation function to output the synthetic data. 
For Discriminator 
Input The discriminator takes real or generated data with 2 features. 
FC Layer 1 128 neurons with Leaky ReLU activation function (slope = 0.02). 
FC Layer 2 The discriminator has no final activation function, as it is used for least 

square functions. 
Other Network Settings 
Number of Generators 3 
Number of Iterations 25000 
Learning Rate Adam optimizer 𝛽 = 0.125 
Optimizer Adam optimizer 𝛽1 = 0.5 and 𝛽2 = 0.999 
 
To train large and complex SRGAN model, GeForce RTX 30-series GPU plate_number_1 is used. A 

multi-core processor with at least 8 cores, 32GB or more of RAM, and fast SSD storage of 1TB or more 
is used for data preprocessing and model training. The latest version of deep learning framework 
PyTorch, and CUDA and cuDNN libraries are used for GPU acceleration. Several days to weeks are 
allocated for training, adjusting the batch size based on GPU memory, and customizing the model 
architecture based on the requirements. Efficient data pipelines are used. Google Cloud is used as a 
cloud-based solution, and on-premises servers with GPUs for deployment are also used. It is crucial 
to strike a balance between computational power and available resources. SRGAN models are 
generally more computationally intensive than traditional image upscaling methods due to their 
deep neural network architectures. When comparing computational efficiency, factors such as model 
architecture, hardware, model complexity, parallelization, quantization, batch processing, 
comparative benchmarks, real-time vs. offline processing, and hardware acceleration are considered. 
To optimize the computational efficiency and speed of SRGAN, hardware choices, model 
configuration, and deployment strategies, are carefully considered to make sure the choice of 
method aligns with the application's requirements. 
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To enhance the dataset's diversity and the model's performance, a 2D mixture of 8 Gaussian 
distributions with a covariance of 0.002I is utilized. This creates low-density regions and separates 
modes. The generators share parameters, except for the input layer, while the discriminator shares 
parameters, except for the output layer. Synthetic data is generated using the generators, providing 
a varied and extensive data space for training the SRGAN. 

 
Table 2 
Sample images and histograms 

Sample Grape – Black rot Blueberry - Healthy Apple – Black rot Corn – Grey spots 
Image 

    
Histogram 

    
 
For models in agricultural applications, it's crucial to consider generalization beyond initial 

training conditions. To ensure this, diverse data sources and validation/testing datasets reflecting 
variability are used, and field tests in different regions are performed. Applying data augmentation 
techniques and involving regional experts is also done. Continuous monitoring and fine-tuning 
improve adaptability to new environmental conditions. 

The dataset used for training the SRGAN contained 54,303 images of healthy and unhealthy 
leaves classified into 38 categories based on species and disease. It is important to note that this 
dataset was collected in laboratory settings and may not reflect real-world scenarios. To overcome 
this limitation, a new dataset was created by collecting images from Google Images and Ecosia. The 
aim was to capture more real-life variations in plant leaves. The training process involved using 
synthetic data and paired high-resolution (HR) and low-resolution (LR) images. The LR images were 
generated from HR images using the MATLAB bicubic kernel function, resized and normalized. Table 
2 provides the sample images from the selected sources along with their histograms. The model was 
trained using a mini-batch size of 16 and HR patches of spatial size 128 × 128. By training a deeper 
network with larger patch sizes, the model could capture more semantic information due to the 
enlarged receptive field. Performance validation can also be done using 
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset and 
https://paperswithcode.com/dataset/plantdoc. Validation datasets are used to tune 
hyperparameters and assess how well the model generalizes to new, unseen data. These datasets 
should ideally reflect real-world conditions and variations that the model is expected to encounter.  
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(a) 

 
(b) 

Fig. 2. PSNR vs. number of parameters for (a)Plant Village dataset and (b) real-world dataset 
 
The proposed model’s performance was evaluated through a sequence of experiments and 

compared with well-known methods such as WGAN [19], VDSR [20], BEGAN [21], MemNet [22], EDSR 
[23], and StackGAN [24]. The experiments were carried out with synthetic data and real-world 
datasets. The goal of the synthetic data experiments was to demonstrate the impact of multiple 
generators on the model's learning behavior and assess its stability and effectiveness in a bigger and 
broader data space. One, two, and three generators were used for 25,000 epochs and ´8 scale. The 
results are shown in Figure 2. The findings indicate that the model with a single generator behaves 
similar to the regular GAN. Table 3 provides the comparison of the PSNR value in dB and SSIM values 
obtained during the quantitative evaluation of various techniques for multiple scales for the Plant 
Village dataset. It is observed that the proposed SRGAN model outperforms the existing models.  
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Table 3 
Comparison of PSNR and SSIM values obtained during quantitative evaluation 

Scale WGAN VDSR BEGAN MemNet EDSR StackGAN Proposed 
SRGAN 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
´2 32.63 0.914 36.24 0.954 35.75 0.967 37.27 0.935 36.25 0.952 37.45 0.937 39.51 0.975 
´4 28.57 0.856 30.26 0.856 31.57 0.855 32.60 0.867 32.95 0.856 33.02 0.835 33.57 0.895 
´8 23.58 0.697 24.56 0.702 24.82 0.723 25.02 0.742 25.97 0.752 26.42 0.763 27.56 0.797 

 
Human perceptual assessments and post-processing techniques can be applied for further 

improvement. Figure 5 provides the qualitative evaluation of the sample image using various image 
processing techniques. An infected plant and its corresponding classification results are observed. 
The detection accuracy, precision, recall, and F1 score values are estimated and compared. The 
proposed model outperforms the existing models in all parameters with an accuracy of 99.8%, 
precision of 95%, recall of 92.53%, and F1 score of 92.63. Effective disease detection systems require 
a balance between model performance and computational resources. This involves trade-offs such 
as model complexity vs. inference speed, image resolution vs. computational load, real-time vs. batch 
processing, model pruning vs. accuracy, quantization vs. precision, parallelism vs. hardware 
resources, model selection vs. task specificity, and image preprocessing. Balancing these trade-offs 
requires careful consideration of accuracy, real-time constraints, available hardware, and the 
importance of conserving computational resources. It is achieved by iterative optimization and fine-
tuning for the intended application. 

 

 
Fig. 3. Qualitative evaluation of sample image 

 
The proposed model is trained by optimizing a loss function that involves the comparison 

between the real data distribution and the generated data distribution. The choice of distance 
parameters depends on the specific GAN variant and the training objective. We use various distance 
measures such as Kullback-Leibler Divergence (KLD) [25], Total Variation Distance (TVD) [26], 
Maximum Mean Discrepancy (MMD) [27], and Bhattacharyya Distance (BD) [28] to compare the 
effectiveness of the proposed model with different variations of GAN such as D2GAN [29], Unrolled-
GAN [30], Cross-GAN [31], DCGAN [32] and proposed SRGAN as shown in figure 4. The curves in the 
model were almost reduced to zero, indicating reliable stability with little fluctuation when compared 
to others. The model was trained with the highest upsampling scales of 4x, 6x, and 8x between LR 
and HR images. For fair training, the samples were equally split for every upsampling scale. 
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(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 4. Parameter comparison for various GAN types 
 
Assessing the model's performance on unseen or out-of-sample data is crucial to determine its 

ability to generalize. In the proposed model, after training on a specific dataset, evaluation of the 
model performance is carried out on separate validation and test datasets. To evaluate a model's 
performance on different plant species and diseases not included in the training dataset, new data is 
collected and annotated using transfer learning techniques [33]. Further, the model is tested on real-
world data, applied with cross-validation and benchmarking, and consulted with domain experts. It's 
important to rigorously evaluate the model's performance on these new and diverse data sources to 
ensure that it can generalize effectively to various plant diseases and species in real-world 
applications. This testing is a critical step before deploying the model for practical use in agriculture. 

Climate change and weather conditions can have a significant impact on plant diseases. 
Considerations include the effects of climate change on disease dynamics, disease forecasting based 
on weather data, disease prevalence in varying weather conditions, data integration to enhance 
disease detection models, adaptability of detection models to different environments, and research 
collaboration. Considering the broader environmental context enhances the accuracy and relevance 
of disease detection models. To keep the plant disease detection model effective, new data is 
gathered and accurately annotated, the model is periodically re-trained, hyperparameters are fine-
tuned, model performance is continuously evaluated, concept drift monitoring is implemented, a 
versioning system is maintained, model performance is validated, data augmentation is applied, 
collaboration is carried out with domain experts, an alert system is implemented, user feedback is 
obtained, ethical and legal concerns are addressed, compliance with regulations is ensured, external 
resources are tracked and continuous performance monitoring is ensured. This helps to maintain and 
update the model as new plant diseases emerge or as the dataset grows over time. 

 
5. Conclusion and Future Scope 

 
The combination of SRGANs and synthetic data generation is a promising approach for enhancing 

plant disease detection. The proposed model demonstrates superior performance over existing 
methods, both quantitatively and qualitatively. An accuracy of 99.8%, precision of 95%, recall of 
92.53%, and F1 score of 92.63 is achieved, which is higher than the existing state-of-the-art models. 
By addressing the challenges of unbalanced datasets and limited data diversity, the proposed 
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approach provides a valuable contribution to the field of plant disease detection and opens avenues 
for further research and application in real-world agricultural settings. Expanding the dataset and 
increasing data diversity can improve its effectiveness further. Refining the generative model and 
utilizing transfer learning can enhance its performance. Future research can be directed toward 
applications such as enhanced disease detection, precision agriculture, decision support systems, 
crop health monitoring, and global food security. 
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