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 ABSTRACT 

 

 

 

Machine learning and deep learning play successful and influential roles in image 
detection and classification in many medical imaging diagnosis areas. Diabetes is 
becoming a significant health concern, and diabetic eye diseases (DEDs) will be the 
leading cause of vision loss worldwide. This paper presents a review on the state-of-
the-art studies concerned with the detection, classification, segmentation, and grading 
of diabetic eye diseases, including the common four eye diseases: diabetic retinopathy 
(DR), diabetic macular edema (DME), glaucoma, and cataracts. We classify the model 
techniques into three main categories: classification-based, localization-based, and 
generative adversarial network (GAN) models. We investigate the current and 
commonly used datasets available for fundus images of diabetic eye diseases. We also 
review research that employed different GAN techniques to improve the fundus image 
dataset or increase the size of the images in the datasets. Finally, we illustrate the 
performance measures used in the previous studies for evaluating various models of 
diabetic eye diseases. 
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1. Introduction 
 

Deep learning (DL) is applied in various fields to find novel solutions to pressing problems, and is 
showing tremendously successful results in classification tasks. The medical sector is suitable for the 
application of artificial intelligence (AI) tools and techniques. AI is one of the most powerfully 
transformative technologies in the 21th century. This transformation occurred through the use of 
powerful machine learning (ML) tools and techniques such as deep convolutional networks, 
generative adversarial networks (GANs), deep reinforcement learning (DRL), convolutional neural 
networks (CNNs), and artificial neural networks (ANNs). Recently, DL has been succeeding in 
traditional AI in critical tasks such as recognizing speech, characterizing images, and generating 
natural and readable sentences. DL has been shown to be a successful and influential method in 
many medical imaging diagnosis areas in image detection and classification. DL can be used for 
detecting and classifying eye diseases, including diabetic eye disease by employing fundus images to 

 
* Corresponding author. 
E-mail address: d.hussein@qu.edu.sa 
 
https://doi.org/10.37934/araset.56.2.246274 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 56, Issue 2 (2026) 246-274 

247 
 

analyse and diagnose eye diseases. Diabetic eye disease contains a group of eye diseases, including 
diabetic retinopathy (DR), diabetic macular edema (DME), glaucoma, and cataract. Diabetic eye 
disease can cause severe vision decline and blindness in patients aged 20 to 74 years. The advanced 
detection of diabetic eye disease is para-mount in preventing vision loss. Researches confirmed that 
90% of patients with diabetes can avoid diabetic eye disease through early detection [1].  

This paper reviews the most recent research published to enhance the DL detection models for 
diabetic eye diseases. In DL models, researchers have to collect both healthy and diabetic eye disease 
fundus images. Then, some image preprocessing techniques are applied to reduce noise in the 
images. The pre-processed images are input to the DL architecture to extract features and 
automatically learn the analysis rules. The feature weights are optimized recursively to guarantee the 
most reliable detection results. The unseen set of images are tested on optimized weights. The DL 
model requires a large number of datasets, and an insufficient dataset restricts the performance of 
the model. Multiple review studies have used artificial intelligence and machine learning techniques 
to detect and diagnose diabetic retinopathy and ophthalmology. Authors in previous work [2] 
published a review focusing on eye conditions such as diabetic retinopathy, glaucoma, and age-
related macular diseases. They selected papers published between 2016 and 2018 and reviewed 
them in their study, summarizing those that used fundus and optical coherence tomography images, 
and TL methods. Their research did not include current (2019--2021) publications that incorporated 
TL methods into their approach, and they omitted the identification of eye cataract disease from 
their study scope. 

Similarly, authors in [3] provided a review of current articles using AI in ophthalmology, but their 
focus did not cover comprehensive AI methodologies. The authors in [4] reviewed the computer-
aided diagnosis of glaucoma (Gl) using fundus images. They addressed computer-aided methods 
focused on optical disc segmentation. A variety of studies that used deep learning and machine 
learning methods for Gl detection were not discussed in their review. It is therefore important to 
review studies that considered existing approaches to DED diagnostics. The work in [5] revised 
computer-aided DR detection studies, which are largely DR-lesion-based. 

Authors in [6] published a review on the automatic detection of diabetic eye disease through 
deep learning using fundus images. They provided a comprehensive overview of the state of the art 
on diabetic eye disease (DED) detection methods using papers published between 2014 and 2020. 
They did not include the recent machine learning DED detection methods that apply the GAN 
technique and its subtypes like CycleGAN, CGAN, and DCGAN. In recent studies, a combination of 
neural networks and the adversarial idea has been used in medical image processing, obtaining good 
results with medical images. Some review studies focused on diabetic retinopathy (DR) detection in 
retinal fundus photographs through deep learning techniques [7,8]. The authors in [9,10] presented 
surveys on developments in the automatic detection of diabetic retinopathy using deep learning 
methods. However, others focused on glaucoma disease [11], in which the detection of glaucoma 
using retinal fundus images was comprehensive reviewed. Other authors conducted a systematic 
review of the applications of deep learning in the detection of glaucoma. Recently, [12] reviewed the 
applications of deep learning in fundus images and in glaucoma with optical coherence tomography. 

Therefore, to address the limitations of the above-mentioned studies, this article presents a 
review of the state-of-the-art advances in the detection, classification, segmentation, and grading of 
diabetic eye diseases, including the common four eye diseases: diabetic retinopathy (DR), diabetic 
macular edema (DME), glaucoma, and cataract. We classify the model techniques into three main 
categories: classification-based, localization-based, and generative adversarial network (GAN) 
models. The three first categories, including transfer learning, deep learning, machine learning, and 
GAN techniques, are reviewed using papers published until the beginning of 2021. We review the 
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state of the art from those perspectives: DL models for diabetic eye disease detection, datasets 
available for diabetic eye disease, and performance measures for diabetic eye disease detection 
evaluation. Although surface disorders, vascular occlusions, and neuropathy are among diabetic eye 
diseases (DED), in this study we focus on diabetic retinopathy (DR), diabetic macular edema (DME), 
glaucoma, and cataracts diabetic eye diseases.  

 
2. Background  

 
Diabetes is a major public health concern around the globe. Approximately 422 million adults 

have diabetes worldwide, and the number is projected to reach 629 million by 2045 [13]. As these 
trends continue, diabetes-related complications, such as diabetic retinopathy, glaucoma, diabetic 
macular edema, and cataract, will be the leading cause of vision loss around the globe. These diabetic 
eye diseases result from chronically high blood glucose levels that damage retinal capillaries. In the 
United States, diabetic retinopathy is a leading cause of blindness among patients aged between 20 
and 64 years. Although uncontrolled type 1 and 2 diabetes and the associated microvascular 
complications may significantly affect one’s vision, recent technologies have facilitated routine eye 
examinations and the management of vision-threatening diabetic retinal diseases. Digital 
photography, optical coherence tomography examination, and widefield imaging are promising for 
screening and detecting diabetic eye diseases [14].  

The use of artificial intelligence has also proved useful in detecting serious eye diseases among 
people with diabetes [15]. Thus, because of the debilitating impact of DEDs, the gold standard in 
ophthalmology for diabetic patients should be to leverage modern technology to prevent vision loss. 
DR is the leading cause of vision loss among diabetic patients. This condition is marked by progressive 
damage to the retinal microvasculature. In 2015, about 2.6 million people across the globe were 
visually impaired or blind because of diabetic retinopathy [13]. In 2016, the World Health 
Organization (WHO) reported that about 146 million adults had DR [16]. This condition is mainly 
characterized by retinal ischemia, intraregional haemorrhages, and microvascular abnormalities [17]. 
Other symptoms include yellow fluid accumulation, which can cause retinal tear if left untreated.  

Glaucoma is the progressive damage to the optic nerve, which causes initial loss of vision in the 
periphery. Glaucoma can develop into severe vision impairment if it progresses [16]. This eye 
condition affects about 80 million people across the globe [18]. The WHO estimated that about 76 
million people across the globe would have glaucoma by the end of 2020. Because glaucoma 
damages the optic nerve, common symptoms include a hollowed-out optic nerve and retinal nerve 
fibre ganglion cell loss [17]. A lack of timely treatment can lead to permanent vision loss. DME is the 
thickening of the retina due to accumulated intraretinal fluid. The condition affects the central vision 
and causes a decline in vision, characterized by blurring and blindness. It is mainly triggered by the 
inability of the fluid to permeate the retinal vasculature [19]. The WHO estimated that half of the 15 
million people with DME are undiagnosed and 50\% of the 8 million people affected do not have eye 
care. The WHO reported that the prevalence of DME will rise as the number of diabetic patients 
continue to increase [19]. These trends mean that only excellent metabolic control can reduce the 
incidence of DME.  

A cataract occurs as a result of the opacification in the lens. The WHO defines this eye condition 
as a visual acuity of less than 3/60 in the better eye [20]. Cataracts affect approximately 18 million 
people around the globe every year, and about 90\% of the reported cases occur in developing 
nations. This disorder damages the optic refractive power, thereby reducing the amount of light that 
penetrates the retina. The main symptoms associated with this condition include blurring, glaring, 
and change in the colour spectrum [17]. It is one of the common causes of visual impairment in 
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diabetic patients. The next section describes the recent and various DL model techniques used to 
detect diabetic eye diseases through fundus images, which we divide into three main categories: 
classification-based, localization-based, and GAN models. 

The DL model concerns training minimal data and datasets with a class imbalance between 
different diseases. If the training set is small, it may not provide satisfying results in terms of accuracy. 
There are two possible solutions:  

 
i. using a range of enhancement methods, including rotating, shifting, cropping, and color 

setting (classical data augmentation) 
ii. applying GAN to increase the dataset's size, increase the class balance between classes, 

and enhance the fundus image quality.  
 

GAN has demonstrated robust generation abilities in the image generation of different types of 
medical images so that the distribution of the samples is smoother while the fundus data are 
expanding.  

 
3. Methods for Detecting Diabetic Eye Diseases Through Deep Learning and GAN Techniques  
3.1 Diabetic Eye Diseases Classification Methods using Deep Learning 

 
This section reviews the state-of-the-art models by categorizing them into three subsections 

depending on their techniques, starting with a section on modelling based on transfer learning 
techniques, followed by a section on DL and ML hybrid models, and ending with a tailored DL classifier 
model. The TL principle focuses on reusing the features learned from DL models' primary task and 
adapting to the secondary task. The idea is to minimize the complexity of computing when training a 
(resource intensive) neural network architecture. With TL, instead of random generation, the 
parameters are initialized from previous learning. The first layers intuitively learn to extract basic 
features such as edges, textures, etc. The top layers, such as blood vessels and exudates, are more 
specific to the task. In cases where the data are insufficient to train a neural network from scratch 
(high volume of data required), TL can be successfully employed. The TL approach has been 
commonly adopted in diabetic eye disease detection [21-25] 

Pan et al., compared three CNNs models, DenseNet, ResNet50, and VGG16 [21], on four types of 
lesions of DR, including non-perfusion regions (NP), leakages, microaneurysms, and laser scars. They 
created datasets of 4067 fundus fluorescein angiography images from 435 eyes (218 left eyes and 
217 right eyes). DR lesion detection and the process were found to be efficient in terms of computing. 
Experimental findings showed that DenseNet is an effective model to identify and differentiate 
retinal lesions automatically in multi-label classified FFA images. However, the process does not 
accurately identify microaneurysms because they are easily misclassified in the pervasive presence 
of fluorescein. Samanta et al., introduced transfer-learning-based CNN architecture for colour fundus 
photography, which performs relatively well in identifying DR from hard exudates, blood vessels, and 
texture on a much smaller dataset [22]. The dataset was trained using their model on four classes 
(No DR, Mild DR, Moderate DR, and Proliferative DR) and reached a Cohen's kappa score on the 
validation set of 0.8836, with 0.9809 on the training set. Their model uses several architectures such 
as Inceptionv1, Inceptionv2, Inceptionv3, Xception, VGG16, ResNet-50, DenseNet, and AlexNet. 
Zhang et al., presented a DeepDR framework for DR detection [23]. DeepDR actively detects the 
existence and severity of DR from fundus images by ensemble learning and transfer learning, using 
several transfer and ensemble learning methods including ResNet50, InceptionV3, DenseNets, 
Xception, and InceptionResNetV2. Additionally, [23] introduced a new dataset for DR images called 
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macula-centred retinal fundus images (13,767 images of 1872 patients). The proposed network 
achieved 97.5% sensitivity, with a specificity of 97.7%. However, their model needs to be assessed 
with a more complex and larger dataset. 

The CNN model and the Lookahead optimizer were used for image classification of cataract 
disease in [24] to enhance accuracy and shorten the processing time. The fundus image datasets 
were derived from the Kaggle dataset, consisting of normal images of the fundus and images of the 
cataract fundus. The model effectively identified the label of images through CNN AlexNet 
architecture with the Lookahead optimizer on a stochastic gradient descent with Adam. As a result, 
the accuracy of Adam was increased by about 20\% and the optimizer Stochastic gradient descent 
was improved by about 2.5%. Sarki et al., introduced a DL architecture with a pre-trained CNN 
merged with image processing techniques for the early detection of diabetic eye diseases (DR, DME, 
and glaucoma) [26]. They recognized specific work limitations in the early classification of diabetic 
eye disease. Later, the same authors developed an automated classification system examining mild 
multi-class diabetic eye disease [25]. Their model was applied to datasets from various sources: 
Messidor, Messidor-2, DRISHTI-GS, and Retina. The research was conducted applying the VGG16 and 
InceptionV3, and different performance enhancement methods were used, i.e., fine tuning, 
optimization, and contrast enhancement. The highest accuracy of 88.3% was achieved on the VGG16 
model for multi-class classification, and 85.95% for mild multi-class classification. 

Many transfers learning implementations, including GoogLeNet, AlexNet, and VGG16, for object 
recognition are mostly available in DL to retrain a new image, such as a medical image set. However, 
these architectures are less suitable for medical images in terms of classification efficacy. For 
example, Pan et al., [21] used VGG16 for DR diagnosis employing eye fundus images and attained 
nearly 79.6% specificity because these TL frameworks were created for objectives such as animals, 
flowers, etc. So, TL techniques may be inappropriate for real-time medical images.  Some authors 
combined DL with ML classifiers for diabetic eye diseases detection [27-29], such as random forest 
(RF), support vector machine (SVM), naïve Bayes, and decision tree. Grassmann et al., [27] designed 
a DL algorithm prediction method for the severity of age-related macular degeneration from colour 
fundus photography based on a huge dataset (120,656 manually graded colour fundus images). In 
their study, multiple CNNs were trained independently, and based on the results of the single CNNs, 
the RF algorithm was trained to build a model ensemble. The model correctly classified 94.3% of 
healthy fundus photographs.  

Malik et al., developed a framework with a multiple ML algorithm including decision tree, RF, 
naïve Bayes, and artificial neural network algorithms [28]. The authors found that tree-based 
methods performed better than the artificial neural network. The dataset used in their research 
analysis consisted of real-time data to which data mining techniques and classification algorithms 
were applied. Although the RF algorithm seemed to perform better than the artificial neural network, 
it had a marginally longer execution time than the decision tree algorithm. Several studies have 
combined DL with ML via SVM, as SVM is a fast and dependable algorithm for classification and 
performs well with a limited amount of data. Theera-Umpon et al., [29] developed a model to detect 
hard exudates with a limited dataset named DIARETDB1 containing 89 fundus images. They used 
supervised learning techniques including SVM, hierarchical adaptive neurofuzzy inference system 
(hierarchical ANFIS), multilayer perceptron (MLP) network, and CNNs. When the MLP network was 
extended, the proposed approach attained an AUC of 0.998. The AUCs were above 0.95 for all four 
classifiers. They found that CNN performed well but is not the most suitable classifier for hard 
exudate. The mixture of image processing methods and suitable classifiers in hard exudate can 
perform accurately.  
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Researchers have been developing new network architectures as an alternative to TL [30-33], 
creating their DL frameworks to automatically detect diabetic eye diseases. Researchers used their 
own built DL models with the indicated classifier, the number of layers, a model used, and findings 
obtained. Two models were proposed in [30], the first of which predicts the DR, whereas the second 
classifies the five DR phases. Zeng et al., framework’s uses a Siamese-like CNN structure trained with 
TL using the concept of a weight-sharing layer based on Inception V3. The introduced model uses 
binocular fundus images as inputs and learns their correlation to support prediction and diagnosis. 
They conducted their experiment on the Kaggle DR competition provided by Eye PACS, which 
contains 35,126 images (28,104 for the training set and 7024 for the testing set). The framework 
achieved a kappa score of 0.829. Unfortunately, the model requires paired fundus images, so it may 
not perform well for those datasets where paired fundus images are not available. 

In [31], the authors used a DL approach to forecast the expected DR class and assign scores to 
distinct pixels to exhibit their relevance in each input sample. They then employed the assigned score 
to make the final classification decision. They used the Eye PACS dataset hosted on Kaggle, which 
they split into 75,650 images for training their model and 3000 images for validation. The introduced 
DL system attained a sensitivity and specificity of more than 90\%. However, the evaluation 
performance of the learning procedure can be enhanced using suitable measures. According to [32], 
they developed a new hypertensive retinopathy (DenseHyper) system comprising different 
multilayer architectures with various trained and dense feature layers integrated within a CNN 
algorithm to detect hypertensive retinography (HR). To increase the classification accuracy of 
DenseHyper, they combined it with a learning-based dense feature transform approach. Four 
datasets with an aggregate of 4270 images and varying techniques were used to achieve the same 
goal. They achieved significant results: an accuracy of 95\% and an AUC of 0.96. However, the dataset 
used was too small to generate a highly accurate DL algorithm.  

Teresa et al., produced a DL model for a DR-grading computer-aided diagnosis system called DR-
GRADUATE [33]. Their model was designed to help decision-making using medically interpretable 
attention maps and an approximation of the uncertainty of the prediction, leaving the 
ophthalmologist to estimate how much that result should be trusted. The model achieved a 
quadratic-weighted Cohen’s kappa between 0.71 and 0.84 in five different datasets. Furthermore, 
low-quality images are commonly associated with higher uncertainties, indicating that images not 
suitable for analysis lead to less accurate predictions. 

Recently, a deep fusion-based model has been effectively discovered in detecting many diseases 
as in [34]. The model is effective in infectious lung diseases, including the detection of COVID-19. The 
procedure based on image fusion has provided significant benefits for clinical diagnosis. With respect 
to [35], the authors clarify that the fusion of optical imaging, radionuclide imaging, computed 
tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) has 
guided comprehensive learning in pathology studies. [36] proposed a haemorrhage detection system 
based on a 3D CNN deep learning framework and feature fusion for evaluating retinal abnormality in 
DR patients, which achieves better performance in quantitative analysis with great accuracy (0.9771 
for the average accuracy). To extract features to form a feature vector, they apply a pre-trained 
modified CNN model. Convolutional sparse image decomposition fused the feature vector and best 
features selected by multi-logic regression-controlled entropy variance methods.  They’re proposed 
model was assessed on 1509 images from 7 different available datasets (HRF, DRIVE, STARE, 
MESSIDOR, DIARETDB0, and DIARETDB1). similarly, another model was designed to classify DR in [37] 
multi-scale feature fusion extraction with adaptive weighting under MobileNetV3 architecture. The 
proposed model is efficient for fusing different convolutional layers and can significantly fuse the 
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feature maps of various depths. They achieved results of 77.26% kappa statistic and 97% AUC on the 
Kaggle dataset, containing 3662 images. 

Tables 1, 2 and 3 list each primary study of classification-based models: transfer learning, deep 
learning with machine learning, and tailored models’ information regarding the datasets; the DL or 
ML methods used; and the performance measure used with their values. Notably, most of the 
methods used the area under the curve (AUC), accuracy (ACC), sensitivity (Sen), and specificity (Spc) 
as performance measures to evaluate their models with the highest values of 99.8%, 97.5%, 99.8%, 
and 99.5% being attained, respectively. A few of the studies used the F1-score, Cohen’s kappa (K), 
and Matthew's correlation coefficient (MCC), with maximum values of 74%, 0.9809, and 0.583 being 
reported, respectively.  

The authors of [21] compared three CNNs models: DenseNet, ResNet50, and VGG16, and applied 
them to four types of DR lesions, including non-perfusion regions (NP), leakages, microaneurysms, 
and laser scars. A study [29] reported that the multi-layer perceptron (MLP) and SVM methods 
achieved classification accuracies of 99.8% and 99.7%, respectively; these performance values are 
better than the hierarchical ANFIS and the CNNs, which achieved values of 98.8% and 95.1%, 
respectively. The results suggested that CNN may not be the best choice when the objects of interest 
do not have well-defined edges. Similarly, in [33], DR-GRADUATE was trained on the Kaggle DR 
detection training set and evaluated on multiple datasets. In DR grading, a quadratic-weighted 
Cohen’s kappa (K) between 0.71 and 0.84 was achieved for the five different datasets. 

 
Table 1  
Comparison of DL diabetes-based eye diseases classification methods for TL models 

Study Dataset Method Class Performance 
 
[21] 

 
Kaggle 

 
DenseNet 

Non-Perfusion region: AUC=87.03% 
Sen=79.7% 
Spc=82.7% 
AUC=94.35% 

Microaneurysms: Sen=98.0% 
Spc=77.3% 
AUC=96.47% 

Leakages: Sen=84.0% 
Spc=96.5% 
AUC=96.53% 

Laser scars: Sen=80.2% 
Spc=99.5% 
AUC=81.40% 

ResNet50 Non-Perfusion region: Sen=59.0% 
Spc=87.9% 
AUC=90.97% 

Microaneurysms: Sen=97.6% 
Spc=22.7% 
AUC=95.85% 

Leakages: Sen=70.4% 
Spc=98.8% 
AUC=91.15% 

Laser scars: Sen=69.7% 
Spc=95.4% 
AUC=71.25% 

VGG16 Non-Perfusion region: Sen=61.3% 
Spc=79.6% 
AUC=55.69% 
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Microaneurysms: Sen=99.8% 
Spc=14.6% 
AUC=91.77% 

Leakages: Sen=69.5% 
Spc=99.2% 
AUC=91.15% 

Laser scars: Sen=57.4% 
Spc=98.8% 

[22] Kaggle Inceptionv1, Inceptionv2, Inceptionv3, 
Xception, 
VGG16, ResNet-50, DenseNet, AlexNet 

Max. on data validation: ACC=84.1% 
F1-score=64% 
K=0.8836 
ACC=84.5% 

Max. on data training: F1-score=74% 
K=0.9809 

[23] Macula-centred Transfer learning, 
ensemble learning 

Identification model: AUC=97.7% 
Sen=97.5% 
Spc=97.7% 
AUC=97.8% 

Grading model: Sen=98.1% 
Spc=98.9% 

[24] Retina AlexNet with SGD and lookahead optimizer Classification: ACC=86.88% 
Validation: ACC=97.5% 

AlexNet with Adam and lookahead optimizer Classification: ACC=97.5% 
Validation: ACC=97.5% 

[25] Messidor, 
Meddidor-2, 
DRISHTI-GS, 
Retina 

VGG16 with Adam optimizer Mild multi-classes: ACC=85.94% 
Multi-classes:  ACC=88.3% 

 
Table 2 
Comparison of DL diabetes-based eye diseases classification methods for DL 
combined with ML 
Study Dataset Method Class Performance 
[29] DIARETDB1 MLP 

 
AUC=99.8% 

SVM 
 

AUC=99.7% 
Hierarchical ANFIS None AUC=98.8% 
CNN 

 
AUC=95.1% 

[27]  AREDS CNN Early/late signs: ACC=84.2% 
Healthy fundus: ACC=94.3% 

[28] Kaggle Random Forest and Decision Tree None ACC=93.5% 
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Table 3 
Comparison of DL diabetes-based eye diseases classification methods for tailored DL models 

Study Dataset Method Performance 
[30] Kaggle CNN AUC=95.1% 

Sen=82.2% 
Spc=70.7% 
K=0.829 

[31] EyePACS Pixel-wise score ACC=85.7% 
Sen=90.6% 
Spc=85.7% 
F1-score=71.0% 
Mcc=0.583 

[32] DR-HAGIS, DRIVE, 
DiaRetDB0, DiaRetDB1, DR1&DR2, Imam-HR 

Dense features transform, deep 
residual learning 

ACC=95% 
AUC=96% 
Sen=93% 
Spc=95% 

[33] Kaggle, Messidor-2,IDRID, DMR, SCREEN-DR Gaussian-sampling K=0.84 
[36] HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, 

DIARETDB1 
3D CNN and feature fusion Sen=97.54% 

Spc=97.89% 
AUC=98.22% 

[37] Kaggle APTOS MobileNetV3 backbone network 
based on a multi-scale feature 
fusion 

K=77.26% 
AUC=97% 

[38] Kaggle Fused using feature fusion 
VGG-VD-4096 + Inception-V3  

AUC= 96.4% 

[5] Messidor, Messidor-2, DRISHTI-GS, Retina datasets CNN, 
RMSprop optimizer 

Sen=100% 
Spc=100% 
ACC=81.33% 

 
3.2 Diabetic Eye Diseases Localization Methods using Deep Learning 

 
Recently, many of the DL models have been based on localization for diabetic eye diseases. This 

section reviews the state-of-the-art models by categorizing them into two groups based on their 
techniques. The first subsection describes the DL segmentation-based models, and the second 
subsection focuses on research employing RCNN for localization. Deep learning algorithms have 
quickly developed in recent years, and the performance of the DL-based segmentation approach has 
exceeded that of the conventional segmentation method. CNN can learn without prior awareness 
and additional pre-processing, which is commonly used in image classification and image recognition. 
Sreng et al., conducted a comparative study of optic disc segmentation, employing five deep CNNs 
as the encoder in the DeepLabv3+ architecture [38]. They compared eleven pre-trained CNNs as the 
glaucoma classifier using transfer learning techniques and compared the eleven pre-trained CNNs as 
the feature extractors using an SVM classifier. DeepLabv3+ and MobileNet were found to be best for 
segmentation, whereas the ensemble of approaches performed better than conventional 
approaches for RIM-ONE, ORIGA, DRISHTI-GS1, and ACRIMA datasets with accuracies of 97.37%, 
90.00%, 86.84%, and 99.53%, and AUCs of 100%, 92.06%, 91.67%, and 99.98%, respectively. They 
attempted to achieve the automatic initial screening of glaucoma based on the quantitative analysis 
of fundus images to support ophthalmologists. However, the datasets used here included only high-
resolution images, but low-quality images and images with effects and noises occur in real-world 
screening environments. 

Lu and Chen used the GrabCut method to generate the pseudo ground truths [39], and they 
trained the network based on a modified U-net model with the generated pseudo ground truth. The 
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modified U-Net model provided improvements by minimizing the original U-shape structure by 
adding a two-dimensional convolutional layer. By conducting their experiments on RIM-ONE and 
DRISHTI-GS, the model segmented the optic disc without the training ground truth marked by 
medical experts. However, although the technique requires less training, it demonstrates weaker 
segmentation accuracy than recent approaches because of missed ground truths. 

Guo et al., presented a method for automated glaucoma screening that merges clinically 
measured features and image-based features [40], which improved the UNet neural network and 
achieved segmentation of the OD and OC based on the region of interest, increasing the field of view 
feature model and selecting the best feature combination. They trained a gradient boosting decision 
tree classifier for glaucoma screening. The algorithm achieved excellent glaucoma screening 
performance with a sensitivity of 0.894, an accuracy of 0.843, and an AUC of 0.901 on the ORIGA 
dataset. The feature extraction process of the algorithm is slow because it extracts multiple receptive 
fields' features. 

Different DL diabetes-based eye disease methods have been constructed in various studies, which 
employed RCNN for localization and segmentation [18,41,42]. Glaucoma signs were identified from 
retinal images [41] using a two-stage structure, the first of which detects and locates the optic disc 
produced through the RCNN, and the second employs deep CNN to categorize the disc into normal 
or glaucomatous. The authors formed a rule-based semi-automatic ground truth generation method 
that provides necessary annotations for training RCNN-based models for automated disc localization. 
The localization and classification of AUC glaucoma of 0.874 were obtained for ORIGA dataset 
classification. This classification of glaucoma on the ORIGA dataset showed that reporting only the 
AUC for class-imbalanced datasets without pre-defined training and testing divides does not 
accurately reflect the classifier's performance, demonstrating the need for additional performance 
measures to substantiate the findings. As their model applies a two-stage framework to find and 
classify glaucoma, the method is computationally complex. The efficiency is influenced by increasing 
the network's hierarchy, which results in the loss of the discriminative collection of features. 

Yuming et al., [42] introduced the object detection-based algorithm to detect glaucoma. End-to-
end RCNN was proposed for optic disc and optic cup segmentation, named JointRCNN. They 
conducted experiments on the ORIGA and the Singapore Chinese Eye Study (SCES) datasets. ORIGA 
contains 650 retinal fundus images from 482 healthy eyes and 168 glaucoma patients. SCES consists 
of 1676 images of which only 46 images are from glaucoma patients. Both datasets employed in the 
experiment had an imbalance between classes. The method achieved excellent optic disc and optic 
cup segmentation with an AUC of 0.901. Even though the method is robust to glaucoma detection, it 
is computationally complex, as it manipulates two RCNNs to compute the bounding boxes of the 
optic cup and optic disc. In [41,42], outstanding performance, as measured by the accuracy, was 
achieved; however, both of these methods are computationally complex. 

Table 4 describes the following for each primary study concerning localization-based models: 
segmentation and RCNN model information regarding the datasets, the DL or ML methods used, and 
the performance measure used with their values. Note that most of the studies used the AUC, ACC, 
Sen, and Spc as performance measures to evaluate their models; few studies used the dice 
Coefficient (DC) and intersection over union (IoU). The authors of [38] used an ensemble of methods 
that performed better than the conventional methods for glaucoma classification. 
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Table 4 
Summary of localization-based methods and their corresponding measures in the studies included in this 
review 

Model Study Dataset Method Class Performance 
Segmentation [38] RIM-ONE, ORIGA, 

DRISHTI-GS1, 
ACRIMA, REFUGE 

DeepLabv3, 
ensemble method 

RIM-ONE: AUC=100% 
ACC=97.37% 

ACRIMA, REFUGE ORIGA: AUC=92.06% 
ACC=90.0% 

DRISHTI-GS1: AUC=91.67% 
ACC=86.84% 

ACRIMA: AUC=99.98% 
ACC=99.53% 

REFUGE: AUC=95.10% 
ACC=95.59% 

[39]  RIM-ONE, DRISHTI-
GS 

U-Net Fully-
supervised1: 

AUC=99.56% 
Sen=89.17% 
Spc=99.89% 
IoU=86.37% 

Semi-
supervised: 

AUC=99.62% 
Sen=91.49% 
Spc=99.88% 
IoU=88.25% 

Fully-
supervised2: 

AUC=99.72% 
Sen=92.87% 
Spc=91.87% 
IoU=91.87% 

[40] ORIGA UNet++ 
 

AUC=91.2% 
ACC=83.7% 
Sen=90.4% 
Spc=77.2% 

[43] DRISHTI-GS UNet CNN  DC=94.15% 
RCNN [41] ORIGA, DIARETDB1 

OCT&CF1, HRF, 
Messidor, DRIONS-
DB, DRIVE 

RCNN + Deep CNN Random 
Training: 
Cross validation: 

AUC=86.8% 
AUC=87.4% 

[42] ORIGA, SCES RCNN with attention ORIGA: 
SCES: 

AUC=85.4% 
AUC=90.1% 

[50] ORIGA, DIARETDB, 
DR-HAGIS, HRF, 
Messidor 

Fast RCNN with fuzzy k-
means 

MESSIDOR: AUC=95.8% 
Sen=96% 
Spc=95.8% 

ORIGA: AUC=94.3% 
Sen=94.1% 
Spc=94.5% 

HRF AUC=95.2% 
Sen=95% 
Spc=96% 

DR-HAGIS AUC=89% 
Sen=94.5% 
Spc=94.1% 
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3.3 Diabetic Eye Disease Classification and Localization Methods using the GAN Technique 
 
The generative adversarial network (GAN), proposed by Goodfellow et al., [44], forms an 

adversarial network of a generation model and a discrimination model. The two networks are 
optimized until both sides reach a dynamic balance in the training process. By counter-training, the 
algorithm can quickly learn the distribution of data to create a new sample that conforms to the 
characteristics of the true sample probability. GAN is generative modelling---a data augmentation 
technique that creates artificial instances from a dataset to retain similar features to the original set.  

Neural networks have been combined with the adversarial idea in medical image processing, and 
accurate results have been obtained. GANs have proved to be a useful framework for generating 
anatomically consistent retinal fundus images in synthetic databases. Progress has been rapidly 
achieved in synthesizing medical images based on the basic concept of adversarial learning. Bellemo 
et al., [45] explored the possible benefits and drawbacks that need to be resolved before GANs can 
broadly be applied with retinal imaging. Several GAN architecture extensions have been applied to 
different neural networks for both the generator and discriminator models. Researchers have 
employed different GAN techniques to improve the fundus images datasets [46-55]. 

The researchers in [46-48] applied cycle-consistent GAN (CycleGAN), which is an extension of the 
GAN for image-to-image translation without paired image data. Yoo et al., found that CycleGAN can 
improve the retinal image quality and improve the deep learning classifier for disease screening [46]. 
You et al., presented a retinal image enhancement method, a convolutional block attention module 
called Cycle-CBAM, which is a simple and efficient attention module to re-weight the high-level 
features extracted by the CNN [47]. Their method generates visually better images with less noise 
and particular textural details. It provides superior performance to CycleGAN both in the peak signal-
to-noise ratio (PSNR) and structural index similarity (SSIM), which are two tools used for image quality 
assessment. Cycle-CBAM achieves the migration from low-quality to high-quality fundus pictures. 
However, CycleGAN's computational cost for training a deep learning network for high resolution is 
high. CGAN is a type of GAN that uses a generator model to conditionally generate images. Kamran 
et al., used CGAN to transpose fundus images to fluorescein angiography images, since fluorescein 
angiography images are necessary in the differential diagnosis of retinal diseases without the 
requirement for the procedure, which has potential side effects [49]. They constructed a GAN model 
that consists of a novel residual block capable of producing high-quality fluorescein angiography 
images, achieving qualitative outcomes as good as real angiograms. Park et al., presented another 
CGAN called M-GAN, which achieves accurate and correct retinal vessel segmentation via balancing 
losses within stacked fully deep convolutional networks [50]. To measure their model's accuracy, they 
applied the IoU, F1-score, and MCC. The results demonstrated that their model obtained accurate 
performance. They applied DRIVE, STARE, HRF, and CHASE-DB1 datasets to validate their method and 
compared the result with those of other methods. 

Zhou et al., constructed a CGAN model to produce high-resolution fundus images for DR that can 
be manipulated with arbitrary grading and lesion information [51]. They adopted multi-scale spatial 
and channel attention, which was devised to enhance the generation capability to synthesize small 
details. They evaluated the method using an experiment on the EyePACS dataset connected to Kaggle 
and the FGADR dataset. A CGAN containing two generator modules and four discriminator modules 
was developed by Tavakkoli et al., [52]. Expert evaluations demonstrated that the model generates 
high-quality fluorescein angiography images indistinguishable from real angiograms. Many GAN 
approaches can be found in the literature, each study using their own GAN architectures. One of 
them is the deep convolution generative adversarial network (DCGAN), which includes deep neural 
networks inside the GAN, stimulates the GAN training process, and stabilizes the training process. 
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Yang et al., presented SUD-GAN, which merges DCGAN with short connections and dense blocks to 
separate blood vessels from fundus images [53]. The authors evaluated their model on the DRIVE 
and STARE and achieved 0.8340 and 0.9820 sensitivity, and 0.8334 and 0.9897 specificity, 
respectively. 

Guo et al., introduced a technique for producing fundus images based on a combined GAN 
method called Com-GAN, which creates both regular fundus images and fundus images with hard 
exudates [54]. They used existing images to train Com-GAN, which consisted of two subnetworks, im-
WGAN, and im-CGAN. Before they combined the synthesis images with the original image set to 
expand the datasets, they performed qualitative and quantitative evaluations on the produced 
images. They conducted experiments using the DIARETDB1 and e-ophtha EX datasets. The cup-to-
disc ratio technique was used for the structural examination of the optic nerve in glaucoma diagnosis. 
Yang et al., presented a method for cup segmentation employing a combination of the green channel 
of RGB images and the given optic disc mask as the input to a modified U-Net CNN [43]. They achieved 
a mean dice coefficient of 94\% in the DRISHTI-GS dataset. Dong-Gun et al., constructed a synthetic 
image method that reconstructs the vessel image based on prior retinal image data using the 
multilayer perceptron idea, including ANN [55]. They found that high-resolution vessel images can be 
derived from images with low resolution using a mathematical analysis employing images with high 
and low resolution obtained from the same patient to validate their method. 

Table 5 describes for each primary study considering GAN-based models: CycleGAN, CGAN, 
DCGAN, and Com-GAN model information regarding the datasets, methods used, and the 
performance measure used with their values. 

 
Table 5 
Summary of GAN-based methods and their corresponding measures 

Model Study Dataset  Method Class Performance 
CycleGAN [46] Google images CycleGAN - Improved AQE 

grade values 
[47] EyePACS Cycle-CBAM CycleGAN PSNR=18.33 

SSIM=0.66 
 Cycle-CBAM PSNR=19.27 

SSIM=0.68 
ACC=53.6% 
K=0.824 

[48] DRIVE, DRITSHI-GS Multiple-channel - PSNR=23.011 
SSIM=0.8877 

CGAN [49] Private dataset (Feiz 
hospital)  

Residual block  - FID=30.3 

[50] DRIVE, STARE, HRF, 
CHASE-DB1 

Deep residual block M-
GAN 

Drive: ACC=97.06% 
AUC=98.68% 
F1-score=83.24% 
MCC=81.63% 
IoU=71.29 

STARE: ACC=98.76% 
AUC=98.73% 
F1-score=83.7% 
MCC=83.06% 
IoU=71.98 

HRF: ACC=97.61% 
AUC=98.52% 
F1-score=79.72% 
MCC=78.45 
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CHASE-DB1: ACC=97.36% 
AUC=98.59% 
F1-score=81.1% 
MCC=79.79% 

[51] EyePACS, FGADR Muti-scale spatial, 
channel attention 

Average: FID=4.53 
Real synthesized: ACC=87.98% 

K=85.81 
Real+Real  
synthesized: 

ACC=89.32% 
K=87.99 

[52] Private dataset (Feiz 
hospital) 

Residual block, PatchGAN - FID=43 
SSIM=0.67 

DCGAN [53] DRIVE, STARE U-Net encoder/decoder 
SUD-GAN 

DRIVE: ACC=95.6% 
Sen=83.4% 
Spc=98.2% 

STARE: ACC=96.63% 
Sen=83.34% 
Spc=98.97% 

Com-GAN [54] DIARETDB1, 
eophtha EX 

im-WGAN, im-CGAN Normal image: SSIM=0.77 
FID=14.89 

Images with hard 
exudates: 

SSIM=0.74 
FID=15.37 

Image synthetic 
approach 

[55] DRIVE, HRF ANN - RMSE=0.335 

 
Most of the researchers used peak signal-to-noise ratio (PSNR), structural index similarity (SSIM), 

AUC, ACC, Sen, F1-score, and Spc to evaluate the performance of their models; others used Cohen's 
kappa (K), Frechet inception distance (FID), and MCC. Only one study [46] used the automated 
equality evaluation (AQE) to evaluate the CycleGAN method. Another study [55] used the root mean 
square error (RMSE) to evaluate their proposed CNN method. 

Despite the success of GAN techniques in the generation of retinal fundus images, their 
implementation to retinal imaging is recent, and their clinical acceptance seems to be limited or non-
existent thus far. So, several limits should be the focus of future research concerning the suggested 
methods. 

 
i. GAN may work with retinal images that are often lower than the resolution of existing 

retrieval methods of retinal fundus images. This may contribute to a lack of quality of the 
synthesized datasets. 

ii. The point at which the optic disc and macula appear correctly placed is an important but 
insufficient condition; plausible diameter and geometry in the clinical context are critical. 

iii. Current methods place significance to retinal vascularity, demonstrating that the images 
produced retain the retinal vessels' morphology. Due to abnormal interruptions, unusual 
width variation along the same vessel, and lack of differentiation between veins and 
arteries, the synthetic vessel networks are not clinically acceptable [56]. 

iv. Although several techniques for evaluation have been explored, such as segmentation 
methods for image quality, there is no standard evaluation scheme. Furthermore, retinal 
experts and ophthalmologists should al-ways judge the realism and reliability of synthetic 
data. A synthetic retinal image can only be considered clinically suitable after clinical 
examination, and can then be used for more scientific research purposes. 

v. Although synthetic retinal images produced with GANs have a consistent overall 
appearance, retinal lesions cannot be accurately reproduced. 
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4. Datasets Used in Deep Learning Methods for Detecting Diabetic Eye Diseases  
 
This section is divided into two subsections: the first subsection reviews new DL approaches for 

data augmentation to enhance the dataset's quality and dataset size for fundus image datasets; the 
second subsection surveys datasets used in DL-based approaches for diabetic eye detection. Table 6 
lists the publicly available datasets involved in the chosen researches. The table includes the name 
of the dataset, the disease type, a brief description of the particular dataset, and the references of 
the studies that employed the dataset. 

 
Table 6 
Datasets available for automatic Diabetes Eye Detection 

Dataset Diseases Type Description Studies 
ORIGA Glaucoma 650 retinal fundus images (from 482 healthy eye and 

168 glaucoma patient) 
[13,45,47,49,50] 

MESSIDOR DR, DME Consists of 1200 fundus images, images are labelled 
with DR 

[5,13,30,31,38,41,4
9,51] 

MESSIDOR -2 DR Consists of 1748 fundus images, images are labelled 
with DR 

[5,30,38]  

Kaggle DR Competition provided by EyePACS (No DR - Mild – 
Moderate – Severe - Proliferative DR) total 88,702 

[27,31,35,36,38,42,
43,52]  

Retina Cataract, 
Glaucoma 

Retina dataset containing four categories: 1) normal 
2) cataract 3) glaucoma 4) retina disease. 

[5,29,30]  

DIARETDB0 DR 160 fundus images for DR with Hypertensive 
Retinopathy 

[37,41]  

DIARETDB1 DR 89 fundus images [13,28,34,37,41,49,
53,54]  

DRISHTI-GS Glaucoma 101 fundus images divide into 51 testing and 50 
training sample 

[5,30,45,46, 48, 
51,55]  

RIM-ONE Glaucoma Total of 131 (39 Glaucoma & 92 Normal) Manual 
segmentation masks of OD Classification 

[45,46] 

Macula-centred DR 13,767 fundus images of 1872 patients [28] 
ACRIMA Glaucoma 705 fundus images, Classification labels of normal 

and glaucomatous. 
[45] 

HRF DR, Glaucoma 15 healthy, 15 DR, 15 Glaucoma Segmentation 
masks of FOV 

[35,41,49,51,56]  

OCT & CFI Glaucoma 100 fundus images [49] 
REFUGE Glaucoma 1200 fundus images, Pixel-wise annotations of OD 

and OC Localization mask of Fovea Classification 
[45] 

DRIONS-DB Glaucoma 110 fundus images [49,51] 
DRIVE Glaucoma, DR 40 fundus images [37,41,49,51,55,56] 
IDRID DR, DME 516 fundus images with both DR and DMD [38] 
DMR DR 9939 fundus images [38] 
SCES Glaucoma Singapore Chinese Eye Study, is consist of 1676 

images 
[50] 

DR1&DR2 DR 500 fundus images for DR with Hypertensive 
Retinopathy 

[37] 

DR-HAGIS DR, Glaucoma 40 fundus images for 30 DR & 10 glaucoma with 
Hypertensive Retinopathy (HR) 

[37] 

CHASE-DB1 Glaucoma 28 fundus images [51,56]  
STARE Glaucoma 400 fundus images [41,56]  
FGADR DR Seg-set (1842 images) and Grade-set (1000 images). [57] 
RIGA Glaucoma Contain 665 images from three different sources: 

MESSIDOR, Bin Rushed, and Magrabi Eye centre. 
[31] 

HEI-MED DME 169 fundus images [31] 
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Ocular Glaucoma, 
Cataract, DR 

5,000 classifieds into 8 disease classes. [58] 

 
Some datasets only contain fundus images for one particular disease, such as RIM-ONE and 

ORIGA datasets, which are limited to glaucoma. Some datasets have more than one disease, such as 
MESSIDOR and HRF; some datasets offer different categories for grading diseases, such as Kaggle for 
DR (No, Mild, Moderate, Severe, and Proliferative DR). There is a large discrepancy in the numbers 
of images within the datasets. Some datasets contain less than 100 images, such as DRIONS-DB and 
DRIVE; some contain 1748, such as Messidor-2; and the Kaggle dataset contains 88,702 images. To 
the best of our knowledge, the datasets on cataracts are few and limited, whereas glaucoma has 
several datasets. The percentages of the used datasets are illustrated in Figure 1. Overall, 47%, 41%, 
9%, and 3% of the datasets are attributed to glaucoma, DR, DME, and cataract diseases, respectively. 
The following subsection investigates the most commonly used datasets for diabetic eye diseases in 
DL approaches. 
 

 
Fig. 1. The percentages of the commonly used 
Datasets 

 
4.1 DIARETDB1 Dataset [59] 

 
The most common dataset used for DR detection methods is DIARETDB1. The DIARETDB1 dataset 

only consists of 89 fundus images; the authors of [13,28,34,37,41,49,53,54] used DIARETDB1 data. 
The DIARETDB1 contains 84 mild non-proliferative signs (microaneurysms) of DR and five recognized 
as normal, which do not contain any signs of DR. Figure 2 represents an example of data with ground 
truth where DIARETDB1 data correspond to a good practical condition, where the images are 
comparable and can be used to evaluate different methods’ overall performance. 

 

 
Fig. 2. Architecture of integration IoT with DL in smart cities 
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4.2 ORIGA Dataset [60] 
 
The Online Retinal fundus Image database for Glaucoma Analysis and research was collected by 

The Singapore Eye Research Institute and has 482 healthy images and 168 glaucomatous images, as 
shown in Figure 3. ORIGA provides clinical ground truth of fundus images to benchmark segmentation 
and classification algorithms. It presents cup-to-disc ratio and labels for each image and is available 
for online access upon request. This dataset has been used as a primary dataset in some of the recent 
research on glaucoma detection [13,45,47,49,50]. 

 

 
Fig. 3. Samples of ORIGA dataset: (a) glaucomatous image and (b) 
healthy image 

 
4.3 Kaggle Dataset [61] 

 
The Kaggle dataset was constructed for a DR competition by Eye PACS, which is a large set of 

high-resolution retina images (total of 88,702 images). The California Healthcare Foundation 
sponsors the competition. Images are labelled with a caption ID and either left or right and a scale of 
0 to 4, indicating No, Mild, Moderate, Severe, and Proliferative DR, respectively, as shown in Figure 
4. According to our research of state-of-the-art methods, several studies have applied the Kaggle 
dataset [27,31,35,36,38,42,43,52]. 

  

 
Fig. 4. Samples of DR from Kaggle: healthy, mild, moderate, severe, and proliferative DR 

 
4.4 MESSIDOR Dataset [62] 

 
MESSIDOR stands for Methods to Evaluate Segmentation and Indexing Techniques in Retinal 

Ophthalmology, which was a research program funded by the French Ministry of Research and 
Defence. The dataset contains 1200 images for DR and DME with a resolution of 2304 × 1536, 2240 
× 1488, and 1440 × 960 pixels for DR and DME, as shown in Figure 5. 
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Fig. 5. Sample of MESSIDOR dataset 

 
4.5 MESSIDOR-2 Dataset [62] 

 
This is a public dataset consisting of 1748 colour eye fundus images. Images labelled with DR were 

acquired with a 45◦ FOV at 1440 × 960, 2240 × 1488, or 2304 × 1536 pixels (px). 
 
4.6 Retina Dataset [63] 

 
This is a recent dataset from the Kaggle datasets, containing four categories for normal, cataract, 

glaucoma, and retina disease. It includes 601 images divided into 300 retinal images for normal, 100 
retinal images for cataracts, 101 retinal images for glaucoma, and 100 retinal images for retina 
disease, as shown in Figure 6. 
 

 
Fig. 6. Sample of cataract image from the Retina Dataset 

 
4.7 IDRiD Dataset [64] 

 
IDRiD stands for Indian Diabetic Retinopathy Image Dataset. This publicly available dataset 

includes 516 fundus images obtained through a 50◦ FOV expressed in five DR stages. It presents data 
on the disease severity of DR and DME for every image. Furthermore, it comprises typical DR lesions 
and normal retinal structures interpreted at the pixel level. 
 
4.8 Ocular Dataset [58] 

 
Ocular Disease Intelligent Recognition -ODIR is an organized ophthalmic database including age, 

colour fundus pictures from both eyes, and doctors' diagnostic keywords. It is divided into eight 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 56, Issue 2 (2026) 246-274 

264 
 

categories, including Diabetes, Glaucoma, Cataract, Age-related Macular Degeneration, 
Hypertension, Pathological Myopia, Other diseases/abnormalities. 
 
4.9 DMR Dataset [65] 

 
This dataset is formed of 9939 fundus images from 2740 diabetic patients (2720 × 2720 px). 

Images have a 45◦ field of view (FOV) and are graded by modified Davis grading. 
 
4.10 RIGA Dataset [66] 

 
The University of Michigan released the RIGA dataset to evaluate their segmentation method for 

glaucoma diagnosis applications. It involves three parts: 460 images from MESSIDOR, 195 images 
from the Bin Rushed Ophthalmic Centre, and 95 images from the Magrabi Eye Centre. 
 
4.11 HEI-MED Dataset [67] 

 
HEI-MED stands for Hamilton Eye Institute Macular Edema Dataset. It consists of 169 fundus 

images to train and test image processing algorithms to detect exudates of DR and DME. The dataset 
is formed of high-quality jpeg images. An expert ophthalmologist manually segmented all images in 
the dataset. 
 
4.12 DRIVE Dataset [68] 

 
This publicly available dataset is used for blood vessel segmentation. It contains 40 images 

acquired at a 45◦ FOV. The images have a size of 565 × 584 pixels. Among them, there are seven mild 
DR images, and the remaining include images of a normal retina. 
 
4.13 SCES Dataset [69] 

 
This dataset was acquired under the Singapore Chinese eye study conducted on 1060 Chinese 

participants and was graded by a professional grader and retinal specialist. The study was conducted 
to identify the relative importance of anterior chamber depth in Chinese persons in Singapore. 
 
4.14 E-ophtha Dataset [70]:  

 
This publicly available dataset includes E-ophtha EX and E-ophtha MA. E-ophtha EX includes 47 

images with EX and 35 normal images. E-ophtha MA contains 148 images with MA and 233 normal 
images. 
 
4.15 HRF Dataset [71] 

 
This dataset provides openly available images for blood vessel segmentation. It has 45 images 

that are 3504× 2336 pixels in size. It contains 15 images of DR, 15 images of healthy eyes, and 15 
images of glaucoma. 
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4.16 STARE Dataset [72] 
 
This publicly available dataset is used for blood vessel segmentation. It contains 20 images 

acquired at a 35◦ FOV. The images have a size of 700 × 605 pixels. Among them, there are 10 normal 
images. 
 
4.17 CHASE Dataset [73] 

 
This publicly available dataset is provided for blood vessel segmentation. It contains 28 images 

with a size of 1280 × 960 pixels and acquired at a 30◦ FOV. 
 
4.18 ROC Dataset [74] 

 
It contains 100 publicly available retina images acquired at a 45◦ FOV. Its size ranges from 768 × 

576 to 1389 × 1383 pixels. The images are annotated to detect MA. Only training ground truths are 
available. 

 
5. Performance Measures of Diabetic Eye Diseases Models Evaluations 

 
The performance of eye disease classification models can be evaluated using several metrics: the 

accuracy (ACC); loss; recall; positive predictive value (PPV), which is commonly known as the 
precision; specificity (SPC); negative predictive value (NPV); F1-score; Matthew's correlation 
coefficient (MCC); and area under the curve (AUC). Correspondingly, a confusion matrix is introduced 
for each model. Accuracy, in Eq. (1), is the number of examples correctly predicted from the total 
number of examples. Moreover, the intersection over union (IoU) is calculated as in Eq. (2). 
 
Accuracy	(ACC) = !"#!$

!"#!$#%"#%$                                (1) 

 
Intersection	over	Union	(IoU) = !"

!"#%"#%$
                           (2) 

 
where Tp and Tn are the true positive and negative parameters, respectively. Fp and Fn are the false 
positive and false negative values. Sensitivity or Recall, given in Eq. (3), is the number of samples 
actually and predicted as Positive from the total number of samples actually Positive Also known as 
True positive rate. While the True Negative Rate, as was called Specificity, given in Eq. (4), is the 
number of samples actually and predicted as Negative from the total number of samples actually 
Negative. 
 
Recall	(Sensitivity) = !"

!"#%$                             (3) 

 
Specificity	(SPC) = !$

!$#%"                      (4) 

 
Eq. (5) shows the Precision, also called Positive Predictive Value [75], which represents the 

number of samples actually and predicted as Positive from total number of samples predicted as 
Positive and mAP means the mean average precision (mAP). Whereas the Negative Predictive Value 
(NPV), [76], is the number of samples actually and predicted as Negative from the total number of 
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samples predicted as Negative, given in Eq. (6).  The Harmonic Mean of Precision and Recall that is 
known as F1-score is shown in Eq. (7).  Finally, Matthew's correlation coefficient range, [77], that 
allows one to gauge how well the classification model/function is performing.  
 
Precision	(PPV) = !"

!"#%"            (5) 

 
NPV = !$

!$#%$            (6) 
 
F1 − score = &∗!"

&∗!"#%"#%$            (7) 

 
MCC = (!"×!$)+(%"×%$)

√(!"#%")(!"#%$)(!$#%")(!$#%$)            (8) 

 
Root Mean Square Error (RMSE) is a standard way to measure the error of a model in predicting 

quantitative data [78]. Formally it is defined as in Eq. (9). Mean Absolute Error (MAE) measures the 
average magnitude of the errors in a set of forecasts, without considering their direction. It measures 
accuracy for continuous variables, as shown in Eq. (10) 
 

𝑅𝑀𝑆𝐸 = E∑ (.!"#$%&',%+.$)'),%)*+
%,-

/
                                                            (9) 

 
𝑀𝐴𝐸 = 0

/
∑ H𝑦1234567,5 − 𝑦4979,5H/
5:0                                                         (10) 

 
Where ypredict,i is the predicted energy consumption at time point i, ydata,i is the actual energy 

consumption at time point i, y d̅ata is the average energy consumption, and n is the total number of 
data points in the dataset. 

Researchers have mostly evaluated the GAN fundus images using PSNR and SSIM to measure the 
image's quality, since the evaluation of fundus images is a challenging task and human opinion is 
influenced by environmental and psychological parameters. PSNR determines the ratio of the 
maximum possible power of a signal to the power of reducing noise that affects its representation 
accuracy. The SSIM was designed based on three factors: contrast distortion, luminance distortion, 
and loss of correlation.  

Automated quality evaluation (AQE) assesses the retinal image quality of the most important 
human factors for evaluating image quality, which are image sharpness and illumination [78]. The 
dice coefficient is used in evaluating the accuracy of the area segmentation of the correct 
classifications of points inside the segmented region. The dice coefficient is similar to Jaccard, as 
shown in Eq. (11). 

 
𝐷𝑖𝑐𝑒	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	(𝐷𝐶) = &!"

&!"#%"#%$`
                                                                    (11) 

 
The Frechet inception distance (FID) is applied to assess the performance of image generation 

models. FID is used to estimate the similarity of the real images to the synthesized images in GAN. 
FID is calculated by measuring the Frechet distance within a couple of Gaussians fitted to the feature 
representations of the inception network. Another measure is Cohen's kappa, which is a statistic that 
is used to measure the inter-rater reliability for categorical items, as shown in Eq. (12). he quadratic 
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weighted kappa broadly adopts the multi-class classification model to measure the agreement 
between two ratings that each classify N items into C mutually exclusive categories [79]. 

 
𝐶𝑜ℎ𝑒𝑛<𝑠	𝐾𝑎𝑝𝑝𝑎	(𝐾) 	= 1 − 0+1.

0+1#
                                                                                (12) 

 
Some researchers applied Cohen's kappa score, whereas others used weighted kappa, which 

allows disagreements to be weighed separately and is particularly beneficial when codes are ordered. 
Human experts have reviewed the results, meaning that some models were evaluated by 
professional ophthalmologists to determine the effect of the detection model and the synthesized 
images in GAN. Table 7 describes the different performance measures used to evaluate diabetic eye 
diseases models.  

 
Table 7 
Different performance measures for diabetic eye disease models in the studies considered in this review 

Model 
Techniqu
e 

Categorie
s 

Performance Measurements 
AC
C 

Se
n 

AU
C 

SP
C 

F1-
sco
re 

PP
V 

SSI
M 

PS
NR 

AQ
E 

RM
SE 

Io
U 

MC
C 

M
AP 

D
C 

FI
D 

K H
E 

Stu
dy 

Classifica
tion 
based 
model 

TL - √ √ √ - - - - - - - - - - - - - [26] 
√ - - - √ - - - - - - - - - - √ - [27] 
√ √ √ √ √ √ - - - - - - - - - √ √ [28] 
√ - - - - - - - - - - - - - - √ - [29] 
√ √ - √ - √ - - - - - - - - - - - [30] 

DL with 
ML 

√ - - - - - - - - - - - - - - - - [32] 
√ √ √ - √ √ - - - √ - - - - - - √ [33] 
√ - √ - - - - - - - - - - - - - - [34] 

Tailored 
DL 

- √ √ √ - - - - - - - - - - - √ - [35] 
- √ - √ - - - - - - - - - - - - - [36] 
√ √ √ √ - - - - - - - - - - - - - [37] 
- √ - - - - - - - - - - - - - √ √ [38] 
√ √ √ √ √ √ - - - - - - - - - - - [41] 
√ - √ - - - - - - - - - - - - √ - [42]

  
√ √ - √ - - - - - - - - - - - - - [5] 

Localizati
on 
 based 
model 

Segmenta
tion 

√ - √ - - - - - - - - - - - - - √ [45]
  

√ √ √ √ - - - - - - √ - - √ - - √ [46]
  

√ √ √ √ - - - - - √ - - - - - - - [47]
  

RCNN √ √ √ √ - - - - - - - - √ - - - - [13] 
- - √ - - - - - - - - - - - - - - [50] 
- √ √ √ √ √ - - - - √ - - - - - - [49] 

GAN 
based 
models 

CycleGAN - - - - - - - - √ - - - - - - - - [75] 
- - - - - - √ √ - - - - - - - - - [55] 
√ - - - - - √ √ - - - - - - - √ - [52] 

CGAN - - - - - - - - - - - - - - √ - - [76] 
√ √ √ √ - - √ - - - √ √ - - - - - [56] 
- - - - - - √ √ - - - - - - √ - - [77] 
√ - - - - - - - - - - - - - √ √ - [57] 

Other 
GANs 

√ √ √ √ - √ - - - - - - - - - - - [79] 
√ √ - √ - - √ - - - - - - - √ - - [53] 
- - - - - - - - - - - - - √ - - - [48] 
- - - - - - - - - √ - - - - - - - [80] 

Positive predictive value (PPV),  peak signal-to-noise ratio (PSNR), structural index similarity (SSIM),  automated quality evaluation 
(AQE), root mean square error (RMSE),  mean average precision (MAP),  Frechet inception distance (FID),  human expert (HR) 
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The most commonly used evaluation measures of DED models, per Table 6, are the accuracy, 
sensitivity, area under the curve (AUC), and specificity, as shown in Figure 7. Overall, 16%, 14%, 14%, 
and 12% of the reviewed studies used accuracy, sensitivity, AUC, and specificity, respectively, to 
evaluate the DED models. More recent work is using deep learning and machine learning in many 
areas as in the studies [81-93]. 

 

 
Fig. 7. The percentages of the Diabetic eye diseases performance measures 

 
7. Conclusion 

 
This review paper delivered a comprehensive overview of the state-of-the-art studies on diabetic 

eye disease (DED) methods that used machine learning and deep learning for detecting, classifying, 
and grading diabetic eye diseases. We focused on the common four eye diseases: diabetic 
retinopathy (DR), diabetic macular edema (DME), glaucoma, and cataracts. We classified the model 
techniques reported in recent studies into three main categories: classification-based, localization-
based, and generative adversarial network (GAN) models. Furthermore, we investigated the current 
and commonly used datasets that are available containing fundus images of diabetic eye diseases. 
We reviewed studies that employed different GAN techniques to improve the fundus images dataset 
or increase the size of the images in the datasets. Finally, we described the performance measures 
used in the previous studies for evaluating various models of diabetic eye diseases. 

Based on the review conducted in this study, we found that the generation of retinal fundus 
images in GAN techniques still faced several limitations to clinical acceptance. Some issues include 
the point at which the optic disc and macula appear correctly placed, and retinal lesions cannot 
reproduce accurately. So, the results should be judged by retina experts or ophthalmologists on the 
reality and reliability of the synthetic data. Due to the limited availability of cataract datasets, the 
cataract disease did not have sufficient studies investigating cataract classification and prediction. 
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Furthermore, most studies studying cataracts were independent studies to classify the cataract 
disease separately, not combine the cataract disease with other diseases to test the classification's 
accuracy with other diseases. 

To conclude the most advanced method in Diabetic Eye Diseases, we found that 25% of the 
studies used commonly CNN architectures such as AlexNet, VGG16, DensNet (Based on included 
studies in this review). Furthermore, we found that RCNN, Fast RCNN, and RCNN with attention were 
the most recent method segmentation studies which Region-Based Convolutional Neural Networks. 
The convolutional residual block is a stack of layers mainly employed with GAN techniques for 
generating synthesis fundus images.  
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