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Cloud computing has transformed the digital landscape, offering scalable services to 
individuals and businesses. However, ensuring continuous cloud service availability 
requires robust disaster management. For instance, in case of strikes of natural 
disasters, a fully functioning cloud landscape will collapse, which leads to substantial 
loss in terms of time, effort, and monetary aspects. This research paper explores current 
cloud computing solutions, emphasizing the importance of disaster management, and 
introduces two innovative models for selecting potential backup sites. The study begins 
with a comprehensive review of existing cloud computing solutions and their disaster 
management mechanisms. Evaluating their strengths and limitations, However, the 
current disaster recovery (DR) solutions are costly since they demand permanent 
contracts with cloud providers to pre-assign constant DR locations as replicas of the 
primary landscapes. To minimize this cost, we stress the urgent need for cost-effective 
disaster recovery strategies. This is accomplished by developing two models 
considering the most influential factors that contribute to DR site selection. The 
Weighted Grid Decision Model (WGDM) combines geographical and environmental 
attributes to evaluate the desirability of candidate sites. This structured approach 
allows for informed decision-making. The second model, the Artificial Neural Network 
(ANN) model, leverages machine learning to analyse historical data on disaster 
incidents and their effects on cloud infrastructure. By identifying patterns and trends, 
the ANN model assists in making intelligent backup site choices. This research 
demonstrates the benefits of employing AI-driven decision-making tools for disaster 
management in cloud computing. 
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1. Introduction 
 

Cloud computing has emerged as a transformative force in the field of information technology, 
revolutionizing the way businesses and individuals’ access and manage their data and applications. 
The term "cloud computing" refers to the practice of storing and accessing data and programs over 
the internet, rather than on local servers or personal computers. This paradigm shift in computing 
has unlocked unprecedented levels of scalability, flexibility, and cost-efficiency, offering an array of 
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services that have reshaped the modern digital landscape. Companies like Amazon, Google, and 
Microsoft played pivotal roles in popularizing the cloud computing model, introducing services such 
as Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure, respectively [1-
3]. 

However, cloud computing is susceptible to potential service interruptions. Therefore, disaster 
management is crucial in cloud computing to ensure service continuity and data protection amid 
various risks such as hardware failures, natural disasters, cyberattacks, and human errors. Key 
strategies include redundancy through data and service replication across multiple geographically 
dispersed data centers, guaranteeing seamless shifting in case of failure. Robust backup and recovery 
mechanisms involve regular automated backups stored securely to prevent data loss or corruption. 
Comprehensive security measures encompass encryption, access controls, and threat detection to 
counter cyber threats and unauthorized access. 

The goal is to ensure that DR plans are adaptable and responsive to specific disaster scenarios, 
rather than being tied to long-term contracts. This might be applicable by automating the DR site 
selection process. By optimizing costs, organizations can improve the effectiveness of their DR plans 
and minimize unnecessary expenses. 

Therefore, this research paper aims to address the challenge of automating DR site selection by 
developing backup selection site models to optimize disaster recovery strategies. The focus will be 
on identifying the most important factors that influence the choice of backup location, taking into 
account various considerations such as geographical proximity, data redundancy, security, and 
compliance requirements. Two distinct models are proposed: a grid decision model and an artificial 
neural network. The grid decision model will utilize a systematic approach to evaluate different 
backup locations based on predefined criteria, offering a structured and objective decision-making 
process. On the other hand, the artificial neural network will leverage machine learning techniques 
to identify patterns and correlations among factors, enabling data-driven backup location selection. 

The remainder of this paper is organized into several sections to present a comprehensive 
investigation into backup site selection criteria and model development for disaster recovery in cloud 
computing environments. Section 2 delves into the background, providing context and relevant 
literature on disaster recovery and cloud computing. In Section 3, the focus shifts to the crucial aspect 
of backup site selection criteria, where various factors influencing the choice of backup location are 
explored in detail. Section 4 outlines the methodology employed for data collection and processing, 
highlighting the sources of data and the techniques used to ensure data accuracy and reliability. 
Moving forward, Section 5 elaborates on the development of two distinct models: the grid decision 
model and the artificial neural network, explaining their respective methodologies and approaches. 
Finally, Section 6 presents the conclusions drawn from the study, summarizing the findings and 
discussing their implications. 
 
2. Background 
 

This section briefly reviews the main key concepts related to disaster management, GIS, IoT, and 
cloud computing. 
 
2.1 Disaster Types 
 

Disasters can be broadly categorized into several types based on their origin and impact. These 
events can cause significant damage to communities, economies, and the environment, resulting in 
loss of life, destruction of property, and disruption of essential services. Understanding the different 
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types of disasters is crucial for preparedness, response, and recovery efforts. Detailed information 
about disaster types can be found in the studies by Shaluf et al., [4] and Abdelaziz and Mesbah [5]. 

Natural disasters are among the most common and devastating types of disasters. They result 
from natural processes and forces of nature and are beyond human control. Earthquakes, for 
instance, occur due to the movement of tectonic plates, resulting in sudden shaking of the Earth's 
surface. Hurricanes, cyclones, and typhoons are intense tropical storms characterized by strong 
winds and heavy rainfall, often causing widespread destruction in their paths. Floods occur when 
water overflows onto normally dry land, and they can be triggered by heavy rainfall, storm surges, or 
dam failures. Wildfires, on the other hand, are uncontrolled fires that spread rapidly through forests, 
grasslands, or even urban areas. Tsunamis, caused by underwater earthquakes, volcanic eruptions, 
or landslides, lead to large ocean waves that can devastate coastal regions. Lastly, volcanic eruptions 
involve the outpouring of molten lava, ash, and gases from a volcano, posing risks to nearby 
populations [6,7]. 

Technological disasters are another category of disasters, resulting from human-made processes 
and often involving complex technological systems. Industrial accidents can lead to chemical spills, 
explosions, or equipment failures in industrial facilities, causing severe environmental and human 
health impacts. Nuclear accidents involve radioactive releases from nuclear power plants or nuclear 
weapons testing, with potentially long-lasting consequences for the affected areas. Cyber-attacks are 
also considered technological disasters, wherein malicious individuals or groups exploit computer 
systems, networks, or critical infrastructure, leading to significant disruptions and potential data 
breaches [8,9]. 

Biological disasters are characterized by the outbreak or spread of infectious diseases that can 
cause widespread illness and mortality. Pandemics and epidemics fall under this category, and they 
can have far-reaching global consequences. One prominent example is the COVID-19 pandemic, 
which led to a worldwide health crisis and major socio-economic disruptions [10]. 

Environmental disasters result from human activities that cause extensive damage to the 
environment, ecosystems, and natural resources. Deforestation, the large-scale removal of forests, 
leads to the loss of biodiversity and disrupts the ecological balance, impacting climate and weather 
patterns. Pollution, including air, water, and soil pollution, arises from industrial, agricultural, and 
urban activities, resulting in environmental degradation and adverse effects on human health and 
wildlife. Climate change, primarily driven by greenhouse gas emissions, is a long-term environmental 
disaster that alters global weather patterns, leading to rising temperatures, extreme weather events, 
and sea-level rise [11]. 

Man-made disasters are those that result from human actions or negligence, often with 
unintended consequences. Terrorism, involving deliberate acts of violence and intimidation to 
achieve political, religious, or ideological goals, poses significant security challenges. Civil unrest, such 
as riots, protests, or social conflicts, can escalate into violent situations, impacting societal stability 
and safety. Additionally, infrastructure failures, including the collapse of bridges, dams, or buildings 
due to poor maintenance or construction practices, can lead to catastrophic consequences [12]. 

Each type of disaster presents unique challenges and requires specific strategies for 
preparedness, response, and recovery. Governments, organizations, and communities worldwide 
work collaboratively to develop disaster management plans and implement measures to mitigate the 
impact of these events, protect lives, and preserve property and infrastructure. 
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2.2 IoT and GIS Technologies 
 

The Internet of Things (IoT) and Geographic Information Systems (GIS) are two cutting-edge 
technologies that have revolutionized disaster management practices, enhancing preparedness, 
response, and recovery efforts. 

IoT, a network of interconnected devices and sensors, plays a pivotal role in disaster management 
by providing real-time data and insights [13,14]. During disasters, IoT devices can be deployed in 
various locations to monitor critical factors such as temperature, humidity, air quality, water levels, 
and structural integrity. These devices can also track the movement of people and assets, allowing 
authorities to assess the situation and make informed decisions promptly. For instance, in the case 
of wildfires, IoT sensors can detect changes in temperature and smoke levels, alerting authorities to 
potential fire outbreaks and enabling quicker responses. Similarly, during floods, IoT-based water 
level sensors can monitor rising water levels in rivers and lakes, helping authorities issue timely 
warnings and evacuation orders. By harnessing IoT data, disaster management teams can gain a 
comprehensive understanding of the situation on the ground and allocate resources effectively to 
minimize the impact of disasters on communities and infrastructures [15]. 

GIS technology is instrumental in spatially analyzing and visualizing disaster-related data [16]. GIS 
allows disaster management professionals to integrate diverse datasets, such as topography, land 
use, infrastructure, population distribution, and hazard mapping, into a geospatial context. This 
enables them to identify vulnerable areas, assess potential risks, and create evacuation plans 
accordingly. GIS also facilitates the coordination of emergency responses by providing real-time maps 
that display critical information about the disaster's impact and the location of affected populations 
and resources. First responders can use GIS to optimize their routes to reach affected areas quickly 
and efficiently. Moreover, GIS aids in resource management during recovery operations, helping to 
prioritize relief efforts based on the severity and extent of damage in different regions. By using GIS 
technology, disaster management teams can make data-driven decisions, allocate resources 
strategically, and improve overall situational awareness to better respond to disasters and support 
affected communities [17]. 

The integration of IoT and GIS technologies in disaster management has paved the way for a more 
efficient and effective approach to handling crises. These technologies facilitate the collection and 
analysis of real-time data, enabling faster and more accurate decision-making during critical 
situations. As the IoT continues to expand and the capabilities of GIS evolve, disaster management 
practices will continue to benefit from the innovative solutions and insights these technologies offer, 
ultimately contributing to a safer and more resilient world [15,17]. 
 
2.3 Existing Cloud Solutions 
 

Cloud computing has evolved into a diverse ecosystem of solutions, offering a range of services 
catering to different business needs and requirements. Among the major cloud providers, Google 
Cloud Platform (GCP), Microsoft Azure, and Amazon Web Services (AWS) stand out as the dominant 
players in the market, each offering a comprehensive set of services to cater to various industries 
and workloads [18-20]. 

GCP provides a robust and scalable infrastructure, leveraging Google's extensive global network 
and data centers [18]. GCP offers a variety of services, including computing resources through Google 
Compute Engine, managed Kubernetes with Google Kubernetes Engine (GKE), and serverless 
computing with Google Cloud Functions. Google's data analytics solutions, such as BigQuery, enable 
businesses to process and analyze vast amounts of data efficiently. Additionally, GCP provides 
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machine learning capabilities through its AI Platform, allowing organizations to build and deploy AI 
models for various applications. Google's expertise in data processing, machine learning, and 
analytics makes GCP particularly attractive for businesses focused on data-driven insights and 
advanced AI solutions. 

Microsoft Azure, backed by Microsoft's vast experience in enterprise technologies, offers a 
comprehensive suite of cloud services for businesses of all sizes [19]. Azure's infrastructure services, 
such as Azure Virtual Machines and Azure App Service, provide flexible and scalable computing 
resources. With Azure Kubernetes Service (AKS), Microsoft enables easy deployment and 
management of containerized applications. Azure's strength lies in its seamless integration with 
Microsoft's existing software ecosystem, making it a preferred choice for organizations already using 
Microsoft products. Furthermore, Azure's Data and AI services, such as Azure SQL Database and 
Azure Cognitive Services, empower businesses with powerful data management and machine 
learning capabilities. Microsoft's strong focus on hybrid cloud solutions and compliance features 
makes Azure a popular choice for industries with stringent regulatory requirements. 

AWS is the pioneer and one of the most widely adopted cloud computing platforms globally [20]. 
AWS offers a vast array of services, including Amazon Elastic Compute Cloud (EC2) for scalable 
computing, Amazon Simple Storage Service (S3) for secure and durable object storage, and AWS 
Lambda for serverless computing. AWS's global presence with multiple data centers enables 
organizations to deploy applications closer to end-users for reduced latency. The platform's extensive 
set of AI and machine learning services, such as Amazon SageMaker and Amazon Rekognition, 
empowers businesses to leverage AI capabilities easily. AWS's vast customer base, extensive partner 
network, and wide range of services make it a compelling choice for businesses of all sizes and 
industries. 

Other cloud providers, such as IBM Cloud, Oracle Cloud, and Alibaba Cloud, also offer competitive 
cloud solutions catering to specific industry verticals and use cases [21-23]. The cloud computing 
landscape continues to evolve rapidly, with providers constantly expanding their service offerings 
and enhancing existing features to meet the growing demands of businesses worldwide. 
 
3. Backup Location Selection Criteria 
 

Selecting the appropriate backup location in cloud computing is a crucial decision that can 
significantly impact data security, accessibility, and disaster recovery capabilities. Cloud computing 
backup location selection criteria revolve around a combination of factors, ranging from geographical 
considerations to compliance requirements and data redundancy. Organizations must carefully 
evaluate these criteria to ensure that their critical data is securely stored, readily accessible, and well-
protected from potential disasters or disruptions. By making informed decisions based on the specific 
needs of their business, they can maximize the benefits of cloud-based backups while minimizing 
potential risks and vulnerabilities [24-26]. 
 
3.1 Location and Geographic Separation 
 

The geographic location of the disaster recovery site is a crucial factor in mitigating risks 
associated with regional disasters. Research indicates that a considerable distance between the 
primary data center and the disaster recovery site is essential for reducing the likelihood of 
simultaneous disruptions due to natural calamities. Moreover, the location should also consider 
factors such as access to reliable utilities and transportation infrastructure, as these can impact the 
site's operational efficiency during recovery efforts. Disaster recovery sites with proximity to major 
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transportation hubs and redundant utility connections exhibited faster recovery times and reduced 
logistical challenges during emergencies. Therefore, geographical separation and accessibility are key 
considerations when selecting an optimal disaster recovery site for cloud-based data centers [24]. 
 
3.2 Redundancy and Reliability 
 

The level of redundancy and reliability of the disaster recovery site is directly tied to its ability to 
provide seamless failover during a disaster. Disaster recovery sites equipped with redundant power 
sources, networking equipment, and data storage systems significantly reduce the risk of single 
points of failure. Ensuring high levels of reliability also involves robust environmental controls to 
prevent overheating and humidity-related issues. Furthermore, disaster recovery sites equipped with 
advanced cooling systems and environmental monitoring exhibited improved uptime and reduced 
equipment failure rates. Reliability can be strengthened by employing diversified network carriers to 
avoid a single carrier's network outage. By prioritizing redundancy and reliability, organizations can 
ensure continuous access to critical data and services during times of crisis [27]. 
 
3.3 Security Measures 
 

The security of the disaster recovery site is of paramount importance in safeguarding sensitive 
data and protecting against unauthorized access. Comprehensive physical security measures, 
including access controls, surveillance cameras, and biometric authentication, are essential to thwart 
potential security breaches. Encryption plays a vital role in securing data in transit and at rest. 
Disaster recovery sites that employ strong encryption algorithms for data replication and storage 
offer an additional layer of protection against data breaches and unauthorized access. Regular 
security audits and vulnerability assessments are also crucial to identifying and mitigating potential 
weaknesses in the disaster recovery site's security infrastructure. By prioritizing security measures, 
organizations can bolster their data center's resilience and safeguard critical assets against cyber 
threats [28]. 
 
3.4 Network Connectivity and Bandwidth 
 

A reliable and robust network connectivity is essential for seamless data replication and 
synchronization between the primary data center and the disaster recovery site. High-bandwidth 
connections with low latency ensure minimal data transmission delays during failover operations. 
Organizations should consider leveraging dedicated and redundant network links to ensure 
continuous data accessibility during disaster scenarios. Moreover, the disaster recovery site should 
have ample network capacity to accommodate increased workloads during recovery periods. Over-
provisioning network bandwidth at the disaster recovery site can prevent bottlenecks and ensure 
optimal performance during the transition from the primary data center to the recovery 
environment. 
 
3.5 Recovery Time Objective (RTO) and Recovery Point Objective (RPO) 
 

The Recovery Time Objective (RTO) and Recovery Point Objective (RPO) are critical factors in 
determining the maximum acceptable downtime and data loss during a disaster event. Organizations 
with stringent RTO and RPO requirements need disaster recovery sites with near real-time data 
replication capabilities. 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 48, Issue 1 (2025) 100-116 

106 
 

To meet aggressive RTO and RPO targets, organizations should consider employing continuous 
data protection (CDP) technologies. CDP solutions allow for continuous data backups, ensuring that 
data changes are immediately replicated to the disaster recovery site, minimizing data loss. 
Additionally, the use of snapshot-based replication strategies can help achieve shorter RTOs by 
providing point-in-time recovery options [24,25]. 
 
3.6 Scalability and Capacity 
 

The disaster recovery site should be able to accommodate increased workloads and data volumes 
during recovery operations and future growth. Adopting scalable cloud-based disaster recovery 
solutions enables organizations to easily expand resources based on demand. Scalability is especially 
crucial in cloud-based environments where resource provisioning can be dynamically adjusted. 
Implementation of auto-scaling mechanisms allows the disaster recovery site to automatically adjust 
resource allocation based on predefined thresholds. This ensures that the site can handle sudden 
surges in demand during recovery without manual intervention. Additionally, organizations should 
conduct regular capacity planning exercises to assess current and future resource requirements, 
enabling them to make informed decisions about scaling the disaster recovery site [29]. 
 
3.7 Compatibility and Integration 
 

Seamless integration between the primary data center and the disaster recovery site is vital for 
efficient data replication and failover operations. Ensuring compatibility between the hardware, 
software, and cloud infrastructure at both locations is critical. Deploying disaster recovery solutions 
from the same vendor as the primary data center can facilitate compatibility and simplify integration. 
Leveraging standardized data formats and protocols further enhances compatibility, enabling 
smooth data synchronization between environments. Interoperability testing should be conducted 
regularly to validate compatibility and ensure that all systems and applications function as intended 
during recovery efforts. 
 
3.8 Cost and Budget Constraints 
 

Cost considerations play a significant role in disaster recovery site selection. Organizations must 
strike a balance between investing in robust disaster recovery capabilities and adhering to budget 
constraints. While implementing high-end disaster recovery solutions might provide superior 
resilience, it may not always be financially viable for all organizations. Exploring cost-effective 
disaster recovery options, such as hybrid cloud deployments, which combine on-premises resources 
with cloud-based recovery capabilities. Additionally, cost optimization can be achieved by prioritizing 
critical workloads and data for recovery while adopting less expensive solutions for less critical assets 
[24]. 
 
3.9 Expertise and Support 
 

The expertise and support provided by the disaster recovery site provider are crucial in ensuring 
a successful recovery process. Choosing a provider with a proven track record in disaster recovery 
and expertise in cloud-based solutions is essential. References from previous clients and customer 
testimonials can be valuable in evaluating the provider's capabilities. Furthermore, the provider 
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should offer 24/7 support, including trained personnel who can assist during the recovery process 
[24]. 
 
3.10 Compliance and Regulatory Requirements 
 

Adherence to industry regulations and data protection laws is paramount when selecting a 
disaster recovery site. Different industries may have specific compliance requirements, such as HIPAA 
for healthcare or GDPR for businesses dealing with EU citizens' data. Organizations must ensure that 
the disaster recovery site complies with all relevant regulations and meets the necessary data 
security and privacy standards [26]. 
 
3.11 Testing and Monitoring Capabilities 
 

Regular testing and monitoring of the disaster recovery site are essential to validate its 
effectiveness and identify any potential issues proactively. Conducting periodic disaster recovery 
drills and simulations enables organizations to identify weaknesses in their recovery plans and make 
necessary improvements. Implementing comprehensive monitoring tools helps track the health and 
performance of the disaster recovery site continuously. This ensures that any deviations from 
expected performance are detected promptly and addressed [24]. 
 
4. Data Collection and Processing 
4.1 Data Source 
 

In this research, the data were collected from the three major cloud providers, namely GCP, 
Microsoft Azure, and AWS [18-20]. For each provider, the geographic distribution and location of the 
data centers were collected on the regional level. The collected dataset contains 134 data centers, 
divided among the cloud provides as follows: 23 for GCP [30], 52 for AWS [20], and 58 for Microsoft 
Azure [31]. Subsequently, the geographic coordinates (latitude and longitude) of each data center 
were found using the address of each data center with the help of Google Sheets [32] and ezGeocode 
extension [33]. These geographic coordinates will then be used in the model development to 
estimate the distances between data centers. The geographic distribution of all considered data 
centers of the three cloud providers was visualized using ArcMap [34] as presented in Figure 1. 
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Fig. 1. Geographical distribution of cloud data centers 
 

In this study, an unconventional approach was undertaken by merging regional data centers from 
the three leading cloud providers, namely GCP, Microsoft Azure, and AWS, into a unified entity. This 
unconventional method aimed to construct an expansive and diverse dataset, treating the collective 
data centers as a single cloud provider. The rationale behind this unconventional consolidation was 
to curate a dataset that encompassed a substantial number of data centers, thus facilitating the 
development of robust models designed to meticulously select the optimal backup location. By 
treating these major cloud providers as a cohesive unit, the study sought to enhance the accuracy 
and effectiveness of the models, ensuring they are equipped to make informed decisions that align 
with the complex demands of data backup and recovery strategies. 
 
4.2 Data Processing 
 

Disaster recovery (DR) site selection depends on several factors, of which we consider the most 
important factors to be distance, time of data transfer, Network latency, predictions of natural 
disasters, cyber security, and physical security as described in Section 3. These factors formulate our 
disaster recovery model, which allows us to specify potential disaster recovery locations. In other 
words, the mentioned factors are the independent variables that affect our dependent variable, 
disaster recovery site selection. To generate the values corresponding to each independent variable, 
we assumed that Beijing is the original data center and the availability of all data centers of the three 
cloud providers as part of a hypothesized collaboration protocol in case of threats of natural 
disasters. the following approach was adopted as follows: 

(a) Distance: we assumed that the original data center location is in Beijing (located in the Far 
East), from which we are seeking the optimal DR location across the globe and among the 
three cloud providers, assuming that the farthest location is the safest one. Since we know 
the geographic coordinates of all data centers, we calculated the spatial distances from Beijing 
to the remaining 133 data centers using MATLAB mapping toolbox [35,36]. Subsequently, we 
specified the maximum distance between Beijing and the farthest data center which was 
19263 km. We then normalized all calculated distances in kilometres on a scale from 0-100 as 
a percentage of the maximum distance as shown by Eq. (1). 
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            (1) 

 
Where: : the normalized value of the distance; : the distance value in km; and : the 
maximum distance value in km (19263 km). 
(b) Time of data transfer: the time to transfer the vulnerable data from the original data center 

(Beijing) to the DR location primarily depends on data size and internet bandwidth. To account 
for all potential data sizes of various landscapes or architectures, we calculated the time of data 
transfer per terra byte (TB) of data. As a result, the time of data transfer will solely rely on the 
bandwidth, assuming symmetric download and upload speeds, which were calculated using Eq. 
(2). 
 

             (2) 

 
Where : the normalized time of transfer for a data record; : the time of transfer in seconds; and 

: the minimum value of transfer in seconds (10 seconds). 
We randomly generated bandwidth speeds that varied from 1 to 100 GB/sec, which takes into 

consideration the variance of bandwidth among sites globally. An example bandwidth of GCP that 
can reach up to 100 GB/sec can be found via Google Cloud [37]. 

(c) Network latency: we assumed the benchmark network latency to be 20 ms, which is optimally 
convenient for real-time applications. Therefore, we randomly generated latency values 
varying from 20 ms to 200 ms to account for the distances from the origin data center to 
potential DR locations. It is crucial to mention that while distance is correlated to network 
latency, the spatial distance, the first independent variable, is not physically correlated to the 
network latency because it was considered as a measure of safety. All latency values were 
normalized on a scale of 1-100 using Eq. (3). 
 

            (3) 

 
Where : the normalized value of the network latency; : the value of network latency in 
milliseconds; and : the minimum value of network latency (20 milliseconds). 

(d) Predictions of natural disasters: it was assumed that predictions that reach 50% or above are 
considered an imminent threat, in which case all DR sites under this prediction threshold will 
be ignored. On the contrary, predictions that below 50% are considered safe. As a result, 
values from 0% to 49% were randomly generated for all potential DR locations. 

(e) Cyber and physical security: values for these independent variables were assumed and 
randomly generated between 1 and 100 for all DR sites. 

 
The final result after the data processing is a set of independent variables whose values vary from 

0 to 100. A sample of the final dataset is presented in Table 1. 
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Table 1 
A sample of the cloud data centers dataset 

Data center Distance 
(x1) 

Time of 
data 
transfer 
(x2) 

Network 
latency 
(x3) 

Prediction 
of natural 
disaster 
(x4) 

Cyber 
security 
(x5) 

Physical 
security 
(x6) 

Berkeley County, South 
Carolina 

61 7 10 48 28 82 

Council Bluffs, Iowa 54 55 11 14 15 19 
The Dalles, Oregon 46 62 11 43 20 83 
Douglas County, Georgia 60 77 20 4 69 15 
Henderson, Nevada 52 68 42 49 39 50 

 
5. Development of Low-cost Disaster Recovery Models 
 

The proposed DR models in this section are optimally suitable for large-scale business 
corporations that possess a large landscape or architecture, where such architecture requires heavy 
computational resources (large capital expenditure). In this scenario, the disaster recovery service 
will be significantly expensive because a similar architecture of a productive system must be 
replicated in the DR site. These types of contracts are billed either monthly or yearly. To minimize 
the cost, the proposed models will drastically reduce the cost. In other words, payments will be 
required only at the time of a potential disaster. 
 
5.1 Grid Analysis Decision Model 
 

After completing the data processing stage, a prerequisite for developing a grid analysis decision 
model is determining the weights of the independent variables. In this research, these weights are 
estimated as shown in Table 2. 
 

Table 2 
Weights of the factors considered for disaster recovery location selection 
Independent 
variable 

Distance 
(x1) 

Time of data 
transfer 
(x2) 

Network 
latency 
(x3) 

Prediction of 
natural 
disaster 
(x4) 

Cyber 
security 
(x5) 

Physical 
security 
(x6) 

Weight (w) 2 3 1.5 1 1 1 
 

It is important to mention that the assigned variable weights reflect the importance of each 
variable. This weight estimation is completely subjective, and such subjectivity is common when 
developing grid analysis decision models. However, the weight estimations can be less susceptible to 
subjectivity should more data records be available (i.e., big data from major cloud providers). 

The final step of the grid decision model is to calculate the scores of all potential DR locations, 
which is accomplished using Eq. (4). 
 

             (4) 
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5.2 Artificial Neural Network Model 
 

Artificial neural networks (ANNs) are computational models designed to imitate the intricate 
workings of the human brain. Just like the human brain's interconnected web of neurons, ANNs 
consist of layers of artificial neurons, each performing simple operations and passing signals to the 
next layer. These connections enable them to process vast amounts of data, recognize patterns, and 
make decisions, much like the human brain's synaptic connections facilitate learning and cognition. 
Moreover, just as the brain refines its connections through learning, ANNs utilize algorithms to adjust 
the strengths of their connections based on input data, allowing them to adapt and improve their 
performance over time. While ANNs are still simplified representations of the brain's complexity, 
they demonstrate the remarkable capacity to process information and perform tasks, fueling ongoing 
research and advancements in artificial intelligence and machine learning. These networks excel in 
modelling complex relationships and patterns in data, making them versatile for various applications. 
ANNs have found extensive use in modelling tasks, such as image recognition, natural language 
processing, speech recognition, and recommendation systems. Additionally, ANNs have also proven 
to be highly effective in modelling regression problems, where the goal is to predict a continuous 
output variable based on input features. ANNs can capture complex nonlinear relationships between 
input variables and the target, making them well-suited for regression tasks with intricate data 
patterns. By employing various activation functions and multiple hidden layers, ANNs can learn to 
approximate complex functions, enabling accurate regression predictions [38-43]. 

For instance, the effectiveness of demonstrated the effectiveness of deep convolutional neural 
networks like VGG and ResNet in image classification and object detection tasks was demonstrated 
by Krizhevsky et al., [44]. In the domain of natural language processing, recurrent neural networks 
(RNNs) and transformer-based models like BERT and GPT have achieved state-of-the-art results in 
tasks such as machine translation, sentiment analysis, and language generation [45]. Moreover, ANN 
applications extend beyond these domains, encompassing diverse fields like finance, healthcare, and 
robotics. 

In this study, the ANN model developed using Keras was tailored to address a specific problem 
with input data containing six features [46]. The architecture was thoughtfully crafted to extract 
meaningful representations from the input data through the use of multiple layers. The initial layer 
serves as the input layer with six neurons, each corresponding to one feature in the dataset. This 
layer acts as the gateway for the data, passing it forward for further processing. Subsequently, the 
model comprises two hidden layers, the first with 12 neurons and the second with eight neurons. 
These hidden layers are essential for the network's ability to learn intricate and non-linear 
relationships within the data. The neurons in these layers apply weighted transformations to the 
input data, capturing higher-level features and patterns. The choice of 12 and eight neurons in the 
hidden layers was carefully determined through experimentation and tuning to strike a balance 
between model complexity and generalization. Moving forward in the architecture, we reach the 
output layer with a single neuron. This neuron is responsible for producing the final prediction based 
on the learned representations from the previous layers. Depending on the nature of the problem 
being addressed, this prediction could be a regression value, binary classification, or a probability 
score, among others. The architecture of the developed network is presented in Figure 2, generated 
by the NN-SVG tool [47,48]. 

To ensure the model's ability to generalize well on unseen data and avoid overfitting, the dataset 
was thoughtfully divided into three sets: the training set, responsible for training the model; the 
cross-validation set, used for tuning hyperparameters and early stopping; and the testing set, 
employed to assess the model's performance on entirely new data. 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 48, Issue 1 (2025) 100-116 

112 
 

For optimization during training, I opted to use the Adam optimizer, which is an adaptive learning 
rate algorithm. The Adam optimizer combines the advantages of both the stochastic gradient descent 
(SGD) and root mean square propagation (RMSprop) optimizers. It efficiently adapts the learning rate 
based on each parameter's past gradients, allowing the model to converge faster and potentially find 
better solutions for the given task. The use of Adam further enhances the training process and 
contributes to the model's overall performance and accuracy. 
 

 
 

Fig. 2. A graphical visualization of the developed ANN 
 

As shown in Figure 3, the Root Mean Squared Error (RMSE) curve provides valuable insights into 
the performance of the ANN during the training and validation phases. The RMSE is a widely used 
metric for regression tasks, measuring the average difference between the predicted values and the 
actual target values. As the training progresses, the RMSE curve illustrates how effectively the model 
is learning from the data. A decreasing RMSE indicates that the network is successfully reducing 
prediction errors and honing its ability to approximate the target values. In the context of this ANN, 
it is encouraging to observe a decreasing trend in the RMSE curve for both the training and validation 
sets, signifying that the model is making accurate predictions for the unseen validation data as well. 
This suggests that the ANN is effectively capturing underlying patterns and generalizing well to new 
samples. 
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Fig. 3. ANN performance expressed by the RMSE for training and validation 
 

The loss curve is presented in Figure 4. The figure showcases the performance of the ANN from a 
computational perspective, depicting how the loss function evolves during the training and validation 
processes. The loss function represents the discrepancy between the predicted outputs and the 
actual targets. A lower value of the loss function signifies that the model's predictions are closer to 
the ground truth, indicating better convergence and improved model performance. Throughout the 
training and validation stages, observing a decreasing trend in the loss curve is a positive indicator, 
indicating that the network is effectively minimizing the error and fitting the data well. The alignment 
of the training and validation loss curves is crucial; if both curves follow a similar trajectory, it implies 
that the model is not overfitting and maintains a stable generalization ability. The presence of 
consistent and decreasing loss values in this ANN's training and validation curves signifies its accurate 
learning, strong generalization, and overall effectiveness in handling the given task. 
 

 
 

Fig. 4. ANN loss curve for training and validation 
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6. Conclusions 
 

In this research, we have explored various factors that play a significant role in this decision-
making process. Among these factors, redundancy, data center location, and proximity to users have 
emerged as the most important considerations for choosing a backup site. To aid organizations in 
making informed decisions, we have developed two models: the grid decision analysis model and a 
neural network model. These models offer valuable insights and a systematic approach to evaluating 
and selecting the optimal backup site from available alternatives. The power of helping, through the 
Internet of Things (IoT), represents a significant advancement in disaster preparedness and 
mitigation strategies that help propose a cost-efficient disaster recovery approach. By leveraging IoT-
enabled sensors, data collection, and predictive analytics, organizations can enhance their ability to 
anticipate and respond to potential disasters effectively. This approach involves the real-time 
monitoring of environmental conditions, infrastructure health, and critical systems. By combining 
theoretical analysis with practical application, our research contributes to enhancing disaster 
preparedness and ensuring service continuity in cloud computing environments. It is crucial to 
mention that the developed models require more real-world datasets collected by cloud providers in 
order to increase the generalization and robustness of the models. As cloud technology continues to 
evolve, the findings of this study can serve as a foundation for further research and improvements in 
disaster management strategies. 
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