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The rapid growth of Android applications has led to a continuous influx of Android 
malware. Numerous research has been undertaken to tackle that issue. Existing 
research has indicated that leveraging machine learning is a highly effective and 
promising approach for Android malware detection. This paper presents a review of 
Android malware detection methodologies that rely on machine learning. We 
commence by providing a brief overview of the background context related to Android 
applications, including insights into the Android system architecture, security 
mechanisms, and the categorization of Android malware. Subsequently, with machine 
learning as the central focus, we methodically examine and condense the current state 
of research, encompassing crucial perspectives such as sample acquisition, data pre-
processing, feature selection, machine learning models, algorithms, and the 
assessment of detection effectiveness. The aim of this review is to equip scholars with 
a holistic understanding of Android malware detection through the lens of machine 
learning. It is intended to serve as a foundational resource for future researchers 
embarking on new endeavours in this field, while also providing overarching guidance 
for research endeavours within the broader domain. 
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1. Introduction 
 

The widespread use of mobile phones [1] has recently led to a significant surge in the 
development of Android malware applications. Consequently, there is a growing interest among 
researchers in identifying distinctive patterns that differentiate regular applications from malicious 
ones. Machine learning techniques are leveraged to address issues where the sheer volume of data 
renders manual analysis impractical for humans. Machine learning classifier algorithms play a crucial 
role in extracting meaningful features from datasets, which are subsequently utilized for object 
classification, prediction, and decision-making [2]. That fast growth of malware poses increasingly 
formidable challenges. Current research trends are shifting towards the adoption of machine learning 
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methodologies for the identification and categorization of Android malware applications. This shift is 
primarily attributed to their effectiveness in keeping pace with the continuous evolution of malware 
[3,4]. 

The significance of employing machine learning for malware classification cannot be overstated. 
Machine learning offers an essential advantage in effectively and efficiently discerning malicious 
software from benign applications [5]. Its importance lies in its ability to adapt and change alongside 
the constantly changing landscape of malware [6]. This adaptability enables the development of 
robust and proactive defence mechanisms that can identify emerging threats and vulnerabilities in 
real-time, enhancing overall cyber security efforts. Furthermore, machine learning can handle vast 
datasets and complex patterns that would be arduous for manual analysis, ensuring that malware 
detection systems remain both accurate and scalable. In essence, the incorporation of machine 
learning in malware classification is paramount for staying ahead in the ongoing battle against cyber 
threats [7].  

The aim of this paper is to review the current trends of previous papers of using machine learning 
for malware classification in android operating system by relying on involving different features and 
focusing on permission features to classify malware apps from non -malicious apps. 

The remainder of the paper follows this structure: Section 2 provides an overview of the 
Background. Section 3 describes the machine learning approaches used for malware detection. 
Section 4 displays the related works and section 5 concludes the study. 

 
2. Background  
2.1 Android Architecture 
 

The Android system consists of multiple layers as shown in Figure 1 below, including the Linux 
kernel layer, middle layer, and application layer, which work together to pro-vide consistent services 
and hide the differences between the layers. These layers are essential for the functioning of the 
Android OS and ensure that the upper layers can access the necessary resources and functionalities. 
The Linux kernel layer is responsible for interacting with the hardware and managing system 
resources. The middle layer acts as a bridge between the kernel and the application layer, providing 
various services and APIs for app development. The application layer is where the user-facing apps 
and functionalities are implemented. These layers work in harmony to provide a seamless user 
experience on Android devices [8,9].  
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Fig. 1. Android architecture 

 
2.2 Android Applications 

 
Google Play is the most popular official market for downloading Android applications, but it may 

charge users for downloads. As a result, users often turn to third-party marketplaces that offer free 
apps. Each Android application has a unique user ID and a set of permissions that are requested at 
installation time. In previous versions of Android (5.1 and below), permissions were requested at 
installation time through an ask-on-install (AOI) policy. However, in Android 6.0 and above, 
permissions are requested at runtime through an ask-on-first-use (AOFU) policy. This updated 
permission mechanism aims to prevent malware and inform users about the capabilities of installed 
applications. The permission model used in Android has several advantages in terms of security and 
user awareness [10,11]. 

 
2.3 Android Security Mechanisms 

 
Android security mechanisms are an important aspect of the operating system. The Android 

framework includes security control structures and a sandbox model to protect against malware and 
security threats [12]. A comprehensive security assessment of the Android framework has been 
conducted, identifying high-risk threats and pro-posing defence mechanisms to mitigate them [13]. 
Various security mechanisms and techniques have been reviewed to ensure the security of Android 
devices, including authorization and consent-related issues [14]. The analysis of Android's app 
installation process reveals limitations in update integrity and UID assignment, leading to 
recommendations for improvements in signing architecture and UID sharing mechanisms [15]. The 
current security mechanisms in place, such as digital signatures and coarse-grained permissions, are 
not sufficient to provide fine-grained control over application activities, resulting in privacy leaks [16]. 
To address this, a service for assessing Android Market applications and a means for mitigating 
security and privacy threats through automated reverse-engineering and refactoring have been pro-
posed. 

Furthermore, the security model of the Android operating system is primarily centred on a 
mandatory access control and sandboxing approach tailored towards applications, effectively limiting 
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access to local resources through permission constraints [17]. For instance, during the installation of 
an application, each app is mandated to allocate a unique User ID and a specific set of permissions. 
This practice acts as a protective measure by restricting access to various functionalities [18-20]. It's 
worth noting that earlier Android versions (5.1 and below) relied on an ask-on-install (AOI) policy, 
where users were required to grant permissions during installation. In contrast, the updated 
permissions mechanism introduced in Android 6.0 follows an ask-on-first-use (AOFU) policy, 
prompting user authorization at runtime when a particular feature is initially accessed [21]. 

 
2.4 Types of Android Malware 

 
Android malware attacks are motivated by the rapid growth of mobile devices and the popularity 

of the Android operating system. The widespread use of Android devices has made them a prime 
target for malware authors, who exploit vulnerabilities in the system to gain access to user data and 
compromise privacy [22-24]. The open nature of the Android platform and the large number of 
applications available in Android markets make it easier for malware to hide among legitimate apps, 
posing a serious threat to Android security [25]. Malware authors are also motivated by the potential 
for financial gain through activities such as stealing confidential information, sending spam, and 
performing Distributed Denial of Service (DDoS) attacks using botnets [26].To combat these attacks, 
research efforts have focused on developing effective detection mechanisms and analysing the 
behaviour of Android mal-ware. And the malware in Android system can be classified into different 
types based on their behaviour and characteristics. There are many types of malwares as listed 
below: 

 
i. Virus: A computer virus is a type of malware that attaches itself to another program (e.g., 

a document) and has the capability to replicate and spread once activated on a system. 
For example, opening a malicious email attachment unknowingly can lead to the virus 
infecting the machine. Viruses can cause data damage, gradually consume system 
resources, and capture keystrokes. 

ii. Trojan: This form of malware typically infiltrates a user's device by disguising itself as an 
email attachment or a free download. Upon download, the malicious code executes its 
intended purpose, such as gaining unauthorized access to business systems, monitoring 
users' online activities, or pilfering confidential information. Unusual changes to computer 
settings are indicative of a Trojan's presence on a device. 

iii. Worm: A computer worm, a subset of Trojan horse malware, can self-replicate and spread 
across systems without human activation once it infiltrates a system. Worms commonly 
utilize Local Area Networks (LAN) or Internet connections to propagate within a network. 

iv. Spyware: Spyware is often described as malicious software designed to infiltrate a 
computer system, gather information about the user, and transmit it to a third party 
without consent. Additionally, spyware can refer to legitimate software that tracks user 
data for commercial purposes like advertising. However, malicious spyware is crafted with 
the aim of profiting from pilfered data. The surveillance activities of spyware, whether 
benign or fraudulent, expose users to the risk of data breaches and misuse of personal 
information. Moreover, the performance of networks and devices is adversely affected by 
malware, causing a slowdown in typical user activities. 

v. Ransomware: Ransomware is a malicious software that can restrict access to computer 
files by encrypting them. Cyber attackers then demand a ransom in exchange for the 
decryption key, often compelling businesses to consider paying to swiftly regain access to 
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their files [103]. Some ransomware variants even include data theft to further pressure 
victims into complying with the ransom demands. 

vi. Rootkit: Rootkit is specifically designed to provide remote access to a system without the 
user's knowledge. A rootkit can perform various actions on the system, such as uploading 
files, installing programs, altering system files, or disabling security tools like antivirus 
software. 

vii. Bot malware, categorized as malware, empowers attackers to seize control of a user's 
system or execute specific tasks without the user's knowledge. In large-scale attacks, bot 
malware is commonly used to leverage the computing capabilities of the compromised 
system. 

viii. Crypto-malware is another type of malware that grants threat actors the ability to engage 
in crypto jacking activities. While the fundamental method used by hackers and legitimate 
crypto miners is similar, crypto-malware exploits another user's devices and processing 
capacity to generate payment. 

 
One common type is information-stealing malware, which aims to steal sensitive data from users' 

devices. Another type is malware that launches various malicious attacks to threaten Android users' 
security. There are also malware samples that undergo different transformations to evade detection 
by antimalware tools [27]. Additionally, Android malware can exhibit common attack features and 
evasion techniques, such as code execution and path constraints .These types of malwares can be 
detected and analysed using a combination of static and dynamic analysis techniques. Besides, that 
threats, there are threats are caused by exploiting requested permissions. That exploitation can be 
done in various ways, through unauthorized camera, SMS, call, audio, image, or location access 
through attacks targeting system calls, permissions, or APIs within the Android device [28-30]. 
Granting certain permissions, like "send_sms" or "receive_sms," can result in privacy breaches and 
financial implications for users. For instance, the "send_sms" permission can be misused by an app 
to send text messages without user consent, potentially incurring unexpected charges or facilitating 
unauthorized communication with third parties [31]. Moreover, specific permissions hold the 
potential to introduce integrity threats to the operating system, files, and physical device itself. 
Permissions such as "change_wifi_state," "install_packages," and "write_external_storage" 
exemplify this risk. For instance, the "write_external_storage" permission grants an app the 
capability to write to or modify the external storage of a mobile device. This permission could be 
exploited by malicious software to damage the device's memory by continually filling it or 
manipulating files. An instance of malware utilizing this permission is the "Moghava" malware, which 
replaces user gallery photos with advertising images, causing significant data loss [32]. By 
understanding the different types of Android malware and their behaviours, researchers and 
developers can develop effective defence techniques and tools to protect users' devices and data. 

      
3. Machine Learning in Malware Classification  

      
Machine learning techniques have been widely used for malware classification. Traditional 

methods have been summarized, and machine learning-based approaches have gained attention due 
to their effectiveness in solving classification problems [33]. Deep learning techniques, such as 
convolutional neural networks (CNN), have shown superior performance in malware classification, 
especially when combined with data augmentation techniques [34] .Quantum machine learning 
algorithms have also been explored for malware classification, with the aim of improving 
classification accuracy [35] support vector machines and random forests are commonly used machine 
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learning methods for malware classification, aiming to detect maliciousness or categorize malware 
by family [36]. Deep learning algorithms have been employed to enhance the performance and 
accuracy of malware classification, eliminating the need for manual feature engineering [37]. 

 
3.1 Machine Learning in Android Malware Detection  

 
The widespread use of mobile phones in recent times has led to a significant increase in the 

development of Android malware applications. Consequently, researchers have become increasingly 
interested in identifying patterns that can distinguish between normal and abnormal apps. Machine 
learning techniques have been employed to address these challenges, especially when dealing with 
large datasets that are difficult for humans to handle effectively [38,39]. Machine learning methods 
can be classified based on their learning approach, according to their fundamental principles [66,67]. 
This widely-accepted classification includes supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning. Supervised learning involves the use of labelled 
datasets to train predictive models. It's commonly used for classification or regression challenges, 
where the goal is to predict discrete outcomes or continuous variables, respectively. Unlike 
supervised learning, unsupervised learning doesn't rely on labelled data and aims to uncover the 
underlying structure or distribution characteristics of datasets, often used for tasks like data 
clustering or feature dimension reduction. Semi-supervised learning combines aspects of both 
supervised and unsupervised learning, using both labelled and unlabelled data. This type of machine 
learning is especially helpful when there's a limited amount of labelled data in a dataset, as it 
empowers the learner to label unlabelled data by leveraging a model of the data distribution [67]. 

Reinforcement learning differs from supervised learning in that it operates without labelled data. 
This process involves a continual loop of prediction and assessment, with input data being fed directly 
into the model, leading to dynamic adjustments to the model parameters. The refinement of the 
learning model and training data is achieved through feedback from the environment, which enables 
the update of model parameters. This machine-learning approach is commonly applied to dynamic 
systems and robot control scenarios [68,102]. 

In this context, machine learning classifiers are used to extract informative features from 
datasets, enabling the classification of objects, prediction of outcomes, and decision-making 
processes. 

The features used for three types:  
 

i. Static Analysis 
Static analysis involves examining the characteristics of an Android application without 
executing it. Machine learning models are trained on static features extracted from the 
app's code, manifest files, and permissions [61]. Common features include: 
• Permissions: Android apps request various permissions to access device resources. 

Malicious apps often request excessive or suspicious permissions. 
• API Calls: Analysis of the APIs called by an application can reveal its behaviour. 

Malware may exhibit unusual or malicious API call patterns. 
• Code Structure: The structure of the app's code, including the presence of obfuscation 

techniques, can be indicative of malware. 
• Intents: Intents define communication between Android components. Suspicious or 

malicious intent usage can signal malware. 
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Static analysis provides a high detection rate while consuming fewer resources than 
dynamic analysis. However, it is limited in its ability to capture the dynamic execution 
behaviour of malware and is significantly affected by techniques such as obfuscation and 
packing. As such, while it can be an effective tool in identifying and analysing potential 
security threats, its limitations must be acknowledged and alternative methods should 
be employed when necessary [61,62]. 

ii. Dynamic Analysis 
Dynamic analysis involves running an Android application in a controlled environment 
and monitoring its behaviour [62]. Machine learning models are trained on features 
extracted during the app's execution. Key dynamic features include: 
•   System Calls: Recording system calls made during the app's execution can reveal 

malicious activities, such as file manipulation, network communication, and privilege 
escalation. 

•  API Calls: Monitoring API calls during runtime can detect suspicious behaviour, such 
as unauthorized access to sensitive resources. 

•  Network Traffic: Analysing network traffic generated by the app can identify 
communication with malicious servers or domains. 

Dynamic analysis often requires emulator or sandbox environments to execute apps 
safely and record their behaviour. Dynamic analysis offers a significant advantage in 
terms of its robustness to obfuscation and shelling techniques. However, this technique 
usually requires a higher level of resource consumption and may encounter challenges in 
traversing all execution paths comprehensively [62]. 

iii. Hybrid Analysis 
This method combines the static and dynamic analysis to overcome some of the 
limitations or weaknesses associated with each individual technique. By combining these 
two approaches, the hybrid analysis can provide a more comprehensive understanding of 
the malware's purpose, potential effects, and capabilities [63]. Additionally, hybrid 
analysis can help in rectifying mislabelling issues in malware detection, improving the 
performance of downstream applications such as malware classification [64]. Overall, the 
use of hybrid analysis in malware detection allows for more accurate and efficient 
identification of malicious software, enhancing system security. 

 
This research primarily relies on supervised learning, which involves predicting outputs based on 

labelled inputs with various features. In the domain of malware classification, machine learning 
models are trained on datasets containing labelled examples of malware and non-malware 
applications for binary classification or different types or families of malware for multiclass 
classification. These models learn to identify distinguishing features between the classes, allowing 
them to classify new and previously unseen examples as malicious or non-malicious, or categorize 
them into specific malware families with a certain level of accuracy [40]. 
 
4. Related Works  

 
In this section, we present previous studies that have utilized machine learning approaches for 

Android malware classification. Malware detection is considered a classification problem, as 
highlighted by [41]. Various classifier algorithms, including Support Vector Machines (SVM), K-
Nearest Neighbors, Decision Trees (DT), Logistic Regression (LR), and Naive Bayes (NB), have been 
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commonly used in security re-search, particularly for behaviour-based or anomaly detection methods 
[42]. 

The literature on this topic can be categorized along five dimensions, as proposed by [43]. The 
first dimension pertains to the dataset used, the second to the types of features employed (static, 
dynamic, or hybrid), the third to feature selection methods, the fourth to feature weighting schemes, 
and the fifth to classification algorithms used to differentiate between suspicious and non-suspicious 
apps. 

This literature review focus on classifying Android applications based on permission features 
through using machine learning approaches, we will emphasize studies that classify Android apps 
based on permissions and other features using machine learning methods. 

Many studies in this domain employ binary classification, with real samples of malware and 
benign apps. Static features are extracted before app execution, while dynamic features are 
extracted afterward. Hybrid features encompass both static and dynamic attributes. For instance, 
[44] conducted a study where they extracted static attributes like opcodes, methods, and strings 
from a dataset containing 612 malignant apps and 758 benign apps. They employed three different 
feature selection techniques, namely information gain, correlation, and Goodman Kruskal's methods. 
To assess the performance of their approach, they utilized six classifier algorithms: Adaboost, Naïve 
Bayes, Ibk, J48, Random Forest, and SMO. They also examined various subsets of features, ranging 
from 100 to 1000 features, to investigate how the length of the feature set impacted accuracy. The 
results indicated that the Adaboost classifier outperformed the other classifiers, achieving an 
accuracy rate of 88.75% when using a subset of 600 features. The primary focus of their research was 
on feature extraction, and they did not evaluate the importance of individual features by assigning 
weights to them.  

In the study of [45], a dataset containing 400 applications, equally divided into 200 malware and 
200 non-malware apps was collected. Their approach involved using permissions and source code as 
static attributes to discern Android malware applications from non-malware ones. They executed 
four experiments in which they applied both classification and clustering algorithms using these 
features to differentiate malware from non-malware applications. The outcomes of their 
experiments demonstrated that the accuracy rate in the classification task surpassed that of the 
clustering task. 

The researchers in [46] conducted an analysis of permissions in Android apps by creating a tool 
named APK Auditor. They gathered a substantial dataset of approximately 6,909 malware-infected 
apps from various sources, including the Drebin dataset, contagio, and the Android Malware Genome 
Project. In addition, they collected clean applications from the Google Play Store, totalling 1,853 clean 
apps. Their system functioned by evaluating apps on a server and assigning scores to the permissions 
requested by these apps. 

Dataset comprising 1,000 malware applications and 1,000 normal applications was gathered by 
[47] with dynamic features. The normal apps were sourced from the Google Play Store in the year 
2014 and were cross-verified using the Virus Total service. Meanwhile, the malicious apps were 
acquired from the Drebin dataset. The dynamic features encompassed sequences of system calls, 
involving the extraction of a sequence of 750 system calls from each app. They applied machine 
learning techniques to automatically acquire associations within these sequences, essentially 
creating a "fingerprint" for the malware. Subsequently, they utilized these fingerprints to detect 
malware and achieved a remarkable detection accuracy of 97%. 

A framework was designed by [48] for the identification of Android malware applications. Their 
framework utilized system calls as features and was tested on a dataset containing 200 apps. In the 
preprocessing stage, they eliminated system calls that were not relevant to the task, while retaining 
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those that displayed correlations. How-ever, reducing the number of system calls proved to be 
challenging due to the lack of clear categories and factors associated with these calls, as highlighted 
by [48]. 

The researchers in [49] used manifest and opcode features, such as hardware, filtered intents, 
opcodes, permissions, application components, and strings, to detect malicious apps. They employed 
feature selection techniques, including entropy-based category coverage difference (ECCD) and 
Weighted Mutual Information (WI). Three datasets were created for their experiments, and Random 
Forest (RF), Rotation Forest (RF), and Support Vector Machine (SVM) classifiers were used. The results 
indicated that weighted mutual information outperformed ECCD. However, their features extracted 
from manifest files were represented as Boolean vectors, while op-codes and strings were 
represented as frequency of attribute vectors. 

The study done by [50] collected a dataset of 107,327 benign apps and 8,701 mal-ware apps, 
yielding a large number of features, of which 34,630 were selected as the most relevant and related 
features. Support Vector Machine (SVM) served as the feature selection method to enhance 
classification performance. Various classifiers, including SVM, CART, K-NN, and NB, were employed 
to distinguish malicious apps from benign ones.  

Another work done by [51] collected 1,227 malicious applications and 1,189 benign applications, 
using 196 system calls as dynamic features. They employed a Back-propagation Neural Network to 
train their dataset. The results indicated the highest F-score rate of 0.982, a true positive rate (TPR) 
of 0.977, and a false positive rate (FPR) of 0.013. Additionally, their model achieved an accuracy rate 
of 0.7. Notably, they used only dynamic features for app classification. 

A tool called SWORD (Semantic Aware Dynamic Malware Detection) was introduced by [52] to 
classify mobile applications as either benign or malicious based on their usage of system calls. They 
assembled a dataset comprising 2,000 applications, evenly split between benign and malicious (1,000 
of each). SWORD monitored app behaviour during runtime to collect system calls and constructed a 
Sequential System-Call Graph (SSG) using Markov chains. They derived typical program behaviour 
paths using the Asymptotic Equipartition Property (AEP) on these graphs, forming the basis for their 
classification model. ALBF metric was applied to each path, and supervised learning was employed 
for model training. Their results demonstrated that the pro-posed model achieved an accuracy rate 
of 94.2%. However, SWORD's high over-head, caused by injecting a substantial number of systems 
calls into malicious paths, posed limitations and impacted learning performance. 

A forensic tool named FAMOUS (Forensic Analysis of Mobile devices using Scoring of application 
permissions) was proposed by [53] for scanning and providing descriptive reports on installed 
applications on attached devices. They collected a dataset comprising 5,553 malware apps and 5,818 
non-malware apps, focusing on static permissions. Random Forest (RF), Naïve Bayes (NB), Decision 
Tree (DT), and Sup-port Vector Machine (SVM) classifiers were utilized, and a scoring engine was 
employed to assign weight values to permissions based on their frequency in malware and non-
malware apps. 

The study conducted by [54] developed EnDroid to differentiate between malware and non-
malware Android apps. They collected two datasets, M1 (8,806 benign apps and 5,213 suspicious 
apps) and M2 (5,000 benign apps and 5,000 suspicious apps). They focused on ten dynamic features, 
such as cryptographic operations, network operations, file operations, dexclass load, information 
leaks, sent SMS, phone calls, service starts, system calls, and receiver actions. Chi-square feature 
selection was used to remove redundant features, and a combination of classifiers, including Decision 
Tree, Extremely Randomized Trees, Random Forest, Linear SVM, and Boosted Trees, with Logistic 
Regression as a meta-classifier, was employed. However, their study solely utilized dynamic features 
and did not investigate permissions requested by apps. 
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A framework was designed by [55] to distinguish between malicious and clean apps by examining 
permission, metadata, and sensitive API call features. They collected a dataset containing 8,177 
applications from the Google Play Store and AndroZoo. Information gain (IG) served as the feature 
selection method, resulting in 20 sensitive API calls and 62 permission features. Decision Tree-J48 
(DT), Random Forest (RF), Naïve Bayes (NB), and Support Vector Machine (SVM) classifiers were 
employed for assessment, and the features were represented in binary vectors. 

The authors in the study of [56] introduced the Multilevel DroidFusion model for Android 
malware detection. They used four datasets, including Malgenome-215, Drebin-215, McAfee-350, 
and McAfee-100, which contained varying numbers of clean and malware instances. Information gain 
(IG) was employed for feature ranking, and DroidFusion was evaluated using different datasets with 
one or more base classifiers. However, the focus of their study was primarily on static features. 

The experiment don by [57] used a dataset containing 9,419 suspicious apps and 6,070 non-
suspicious apps to identify malware. Static permissions were the sole features used in their study, 
and they employed various machine learning classifiers, including Naïve Bayes (NB), Bayesian 
Network (BN), J48, Random Trees (RT), Random Forest (RF), and k-Nearest Neighbors (K-NN). 

However, many studies employed hybrid features to improve classification tasks. For instance, 
[58] proposed by a hybrid approach was that incorporated static features (permissions and intents) 
and dynamic features (data leakages, cryptographic API calls, and network manipulation) to identify 
malware apps from non-malware apps. Feature selection methods, Information Gain (IG) and 
Principal Component Analysis (PCA), were used to select distinctive features. Classifiers included RF, 
NB, GB, and DT. 

The work conducted by [59] collected 8,000 applications (4,000 malware and 4,000 benign) and 
proposed a hybrid feature-based approach using static features (permissions and API calls) and 
dynamic features (system calls). Their hybrid approach out-performed static and dynamic features 
alone, but the representation of features was not specified. Another study employed hybrid features 
made by [64] introduced a model called Tree Augmented Naive Bayes (TAN) for Android malware 
detection, incorporating hybrid features comprising permissions, API calls, and system calls.  

In summary, many existing studies have explored various feature sets and machine learning 
algorithms for Android malware classification, including static features (permissions, intents, and API 
calls), dynamic features (system calls), and hybrid features combining both static and dynamic 
aspects. These studies have used a range of datasets and feature selection techniques, with varying 
degrees of accuracy in distinguishing between benign and malicious apps. However, not all studies 
have investigated dynamic permissions or provided comprehensive details about their 
methodologies. Table 1 below summarized some of the previous works in this study related to 
android applications classification based on using machine learning methods. 
 
Table 1 
Summary of machine learnings technique used in selected references related to Android malware detection 

Study Class label Features used Type of 
features 

Feature 
Selection 
methods 

Feature 
weighting 

Machine 
Learning 
classifier 

Advantages Disadvantages 

[42] 
 

310926 
non-
malware 
apps and 
4868 
malwares 

Permissions Static 
features 

CorrCoef 
,Mutual 
Informati
on, and 
T-test 

N/A SVM, DT, 
and RF 

Reduced 
number of 
features by 
using 
different 
types of 
feature 
selection 
methods. 

Features are 
not assigned 
weights and 
the most top 
important 
patterns of 
permissions 
are not 
identified. 
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[105] 200 clean 
and 200 
malware 
apps 

Permissions 
and source 
code 

Static 
features 

N/A 
 

N/A 
 
 
 

Not 
mentione
d 

Classifying 
apps by 
exploring 
static 
permissions. 

Using all 
features to 
build 
classifier 
models will 
increase 
complexity 
overhead. 

[106] 850 
benign  
apps and 
620 
malware 
apps 

Permissions 
and intent-
filters 

Static 
features 

Informati
on 
gain(IG) 

N/A 
 

ID3 and 
J48 
classifiers 

Using a 
smaller 
number of 
features in 
classifying 
apps. 

IG selects 
features 
based on the 
relations to 
class not to 
classifier. 

[107] 200 clean 
and 200 
malicious 
apps 

Permissions 
and source 
code 

Static 
features 

N/A N/A C4.5 
decision 
trees, RF, 
NB, and 
SVM with 
SMO JRip 

Utilizing 
permission 
features in 
differentiati
ng between 
malware and 
non-
malware. 

Feeding 
classifiers 
with all 
features will 
lead to 
lower 
learning 
process. 

2017 
[99] 
 

11,000 
Android 
apps 

Permissions Hybrid 
permissi
ons  
features 

N/A N/A NB, J48, 
RF, Simple 
Logistic 
and k-star 

Exploring 
permissions 
at 
installation 
& run time. 

Using all 
features in 
learning task 
will increase 
complexity 
overhead. 

[101] 5553 
malware 
and 5818 
benign 
apps 

Permissions 
 

Static 
features 

N/A Frequenc
y method 

RF, DT, 
NB, and 
SVM 

Classifying 
android apps 
based on 
permission 
features. 

Assigning 
weights to 
features 
using the 
frequency 
method is 
more 
expensive 
because 
there are 
many 
permission 
features are 
requested by 
apps. 

[55] 8177 
Android 
apps 
(benign) 
and 
AndroZoo 
(malware) 

Permission, 
sensitive API 
calls, and 
metadata 

Static 
features 

Informati
on gain 
(IG) 

N/A  NB, SVM, 
DT-J48, 
and RF. 

Decreasing 
computation
al overhead 
by selecting 
a small 
number of 
significant 
features 
instead of 
using all 
features. 

Representin
g the 
extracted 
features in 
binary 
values 
makes all 
features are 
equal in 
importance 
which is not. 
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[77] 4000 
malware 
and 4000 
benign 
samples 

Permissions 
and system 
calls 

Hybrid 
Features 

TF-IDF 
 
 

Not 
mention
ed 

NB, RF, 
XGBoost, 
GC Forest 

Utilizing 
hybrid 
features in 
classifying 
apps is more 
efficient. 

Selecting 
important 
features 
using TF-IDF 
will increase 
complexity 
overhead 
due to many 
requested 
permissions. 

[100] 5774 
malware 
apps and 
500 
normal 
apps 

(permissions
) and intents 
and (API 
calls, 
cryptographi
c data 
leakages, & 
network 
manipulatio
n) 

Hybrid 
Features 

Informati
on gain 
(IG) and 
(PCA). 

Not 
mention
ed 

NB, RF, 
GB and DT 

Feeding 
machine 
learning 
classifiers 
with a 
smaller 
number of 
features 
using (IG) 
and PCA. 

IG selects 
features 
based on 
their 
relations to 
the class 
label not to 
the classifier 
which is less 
effective 
than the 
method that 
selects 
features 
based on the 
classifier. 

[107] 6070 
benign 
apps and 
9419 
malware 
apps 

Permission 
Features 

Static 
Features 

Not 
mention
ed 

TF-IDF (NB), 
(BN), J48, 
(RT), (RF) 
and K- (K-
NN) 

Extracting 
the most 
significant 
permission 
features 
using TF-IDF. 

Using TF-IDF 
in extracting 
the 
significant 
permissions 
will increase 
computation
al overhead  

[108] 1650 
malware 
apps and 
1650 good 
ware apps 

API calls, 
permissions 
and system 
calls 

Hybrid 
Features 

Not 
declared 

Not 
declared 

A Tree 
Augmente
d Naive 
Bayes 
(TAN) 

Using hybrid 
features 
makes the 
classification 
process 
more 
effective. 

Feeding 
classifiers 
with all 
features 
helps in 
lowering 
learning 
process & 
increasing 
complexity 
cost 
overhead. 

 
Android malware detection datasets have been reviewed in several papers. Table 2 shows some 

datasets used in the previous studies. 
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Table 2  
Summary of some Datasets used in the 
previous study 
Study Dataset(s) Used 
[69] Derbin 
[70] 
[71] 

Malgenome and Contagio project  
Contagiodump  

[72] AMD Projects  
[73] Drebin, Androzoo 

 
4.1 Feature Selection  

 
Numerous studies have utilized feature selection to decrease the number of features used in a 

model. This involves selecting features that are strongly correlated with class labels, which can help 
reduce the computational cost of the model [74]. However, when addressing real-world problems, 
it's not always possible to identify all the relevant features at the outset. As a result, a large number 
of features are often collected to gain a comprehensive understanding of the domain. Unfortunately, 
many of these features may be irrelevant to the target class [74]. Using a learning model with a 
dataset containing redundant and unimportant attributes can lead to issues, as highlighted by Dash 
and Liu in 1997. 

Different types of features selection approaches have been used by previous studies; the Table 3 
below summarize some of these studies. 

 
Table 3  
Summary of feature selection methods in selected references 
related to Android malware detection based on machine 
learning approaches 
Reference Feature Selection approach used  
[75] Information Gain (IG) 
[76] Chi-Square  
[77] Wrapper method  
[78] 
[79] 

TF-IDF,cosine similarity 
Genetic search (GS) 

 
Feature selection is an essential process in data analysis, as it helps to identify a subset of features 

that are relevant to a specific target variable. One popular approach to feature selection is the use of 
Information Gain (IG) technique. This method has been widely adopted in various studies to classify 
malware apps from non-malware apps as done by [75]. The IG technique evaluates the relevance of 
a feature by measuring the reduction in entropy that occurs when the feature is added to the subset 
of features related to the target variable. Its effectiveness lies in its ability to select a set of features 
that maximizes the mutual information between the features and the target variable, while 
minimizing redundancy among the selected features. 

Chi-Square is a widely used feature selection method utilized by researchers in the classification 
of Android malware applications as used in the study of [76]. It calculates the chi-square statistics 
between each feature variable and the class object, analysing the correlation between the two. If the 
class object is found to be independent of the feature variable, the said feature is not deemed 
significant. 

The wrapper method is a technique used for search problems in feature selection. It presents 
different groups of collections and designs analytical models to evaluate a group of features. The 
accuracy of the model determines the score assigned to the collection group. In a study conducted 
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by [77] has relied on the wrapper approach as a feature selection method to obtain significant 
features that classify malware apps from non-malware. 

The study done by [78] proposed a low-cost and high-efficient method for detecting Android 
malware using static analysis and the Rotation Forest (RF) model and TF-IDF to select the important 
features. It achieves a high accuracy of 88.26% with 88.40% sensitivity at the precision of 88.16%. 
The proposed method improves the accuracy by 3.33% compared to the Support Vector Machine 
(SVM) model. 

 
4.2 Type of Features 

 
In this section, the chosen features from diverse machine learning algorithms within the domain 

of Android malware detection are outlined and assessed. These features can be categorized into 
three groups: static features, dynamic features, and hybrid features, contingent on whether they are 
obtained through the execution of an Android application [79]. The techniques employed for 
analysing these three feature types are termed static analysis, dynamic analysis, and hybrid analysis, 
correspondingly as explained previously. 

 
4.2.1 Static features 

 
Static features are characteristics that are obtained by analysing the source code or other related 

information associated with an application. This analytical approach is known as static analysis and 
is denoted by [80]. In the case of Android applications, the APK file is the primary object of scrutiny 
as it serves as the installation package for Android applications. Decompiling APK files reveals files 
such as AndroidManifest.xml and small files, among others. Analysing these files uncovers a range of 
static features, including permissions, API calls, Dalvik opcodes, and other components. Table 4 
summarizes some static features used in machine learning-based Android malware detection. 
 

Table 4  
Summary of some static features used in selected references 
Study features 
[81] API call 
[82] Permission, API call, System event, URL 
[83] Opcode sequence 
[84]  Description of function, Data flow, Permission 

 
4.2.2 Dynamic features 

 
In the realm of Android applications, the behaviours exhibited during real-world usage or 

simulated testing - known as dynamic features [85] - are analysed through a process called dynamic 
analysis. In the case of Android apps, this includes system calls, API calls, network traffic, and CPU 
data. Many studies have utilized dynamic analysis techniques for Android malware detection, 
including [86,87] which employ dynamic taint analysis, and [88], which integrates Dalvik opcode with 
graph theory. Some dynamic features used in machine learning-based Android malware detection 
are displayed in Table 5 below. 
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Table 5  
Summary of some dynamic features used in selected references 

Study Features 
[89] Frequency  

of system calls  
[90] CPU, Memory, Network traffic 
[91] Network traffic: DNS, HTTP, TCP, Origin- destination. 
[92]  Method call, Inter-component communication (ICC) intent 

 
4.2.3 Hybrid features 

 
Hybrid features involves the fusion of static and dynamic components, forming a comprehensive 

analytical approach [93]. While static analysis prioritizes individual aspects, dynamic analysis covers 
a wider scope. By combining the benefits of both static and dynamic analyses, hybrid analysis can 
detect specific threats in specific scenarios. Some hybrid features used in machine learning-based 
Android malware detection are displayed in Table 6 below. 

 
Table 6 
Summary of some dynamic features used in selected references 

Study features 
[94] 
 
 
[95] 
 
 
 

Static: Permission 
Dynamic: Behaviour (System function, Sensitive permission, Sensitive API) 
 
Static: Permission, Intent, Hardware feature, Software features, IP address, Advertisement module, System 
security setting. 
Dynamic: Behaviour (Sensitive API, System service, IP address) 

[96] Static: Permission, API, Intent, Components, Hardware 
Dynamic: Behaviour (System call) 
 

[97] 
 

Static: Permission, API, Intent, Min_sdk. 
Dynamic: Behaviour (Service startup, File operation, SMS and phone event, Sensitive data leakage, Network 
data transmission, etc.) 

 
As observed from the previous studies that majority of research relies on utilizing static 

permissions, which are obtained at the time of installation without executing the applications. Some 
studies incorporate additional features alongside permissions, such as APIs, as demonstrated by [98]. 
In contrast, the investigation conducted by [99] employs hybrid permissions, combining static and 
dynamic permission features, for identifying Android malware through machine learning classifiers. 
Static permissions are extracted at installation time, while dynamic permissions are extracted during 
runtime after the execution of the apps. They extracted 123 dynamic permissions, categorized them 
into safe and unsafe based on the Android developer website, and assessed their dataset using five 
machine learning classifiers (Naive Bayes, Decision Tree, Random Forest, Simple Logistic, and k-star) 
through cross-validation and a dataset split of 66%. 

The paper provides a succinct overview of the broader context of Android applications while 
concentrating on crucial elements of machine learning, including type of features and feature 
selection. Table 7 shows the differences among those studies. 
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Table 7  
The differences among those studies  
Study  Type of features  Features selection  
[42] Static ü 
[48] Dynamic  ü 
[49] 
[100] 

Static  
Hybrid  

ü 
ü 

[101] Hybrid  ü 
 

5. Conclusions 
 
In this review, we investigate into the literature on various types of malwares and their potential 

risks on the Android operating system. We also examine the machine learning techniques utilized in 
detecting malware within the Android system. Our findings reveal that many studies utilize a 
combination of static, dynamic, and hybrid features to differentiate between benign and malicious 
apps. Additionally, permission features are commonly used as static features. Moving forward, we 
recommend further exploration into machine learning methods that analyse combined permissions 
requested at installation and run time for more accurate malware classification. 
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