

Journal of Advanced Research in Applied Sciences and Engineering Technology 48, Issue 1 (2025) 248-268

248

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Machine Learning Approaches for Malware Classification in Android
Platform: A Review

Howida Abubaker1, Farkhana Muchtar1,*, Salmah Fattah2, Asraf Osman Ibrahim Elsayed2, Carolyn
Salimun2, Hadzariah Ismail2, Farhan Masud3

1

2

3

Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
Faculty of Computing and Informatics, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
Department of Statistics and Computer Science, University of Veterinary and Animal Sciences, Lahore, Pakistan

ARTICLE INFO ABSTRACT

Article history:
Received 27 October 2023
Received in revised form 4 March 2024
Accepted 7 June 2024
Available online 10 July 2024

The rapid growth of Android applications has led to a continuous influx of Android
malware. Numerous research has been undertaken to tackle that issue. Existing
research has indicated that leveraging machine learning is a highly effective and
promising approach for Android malware detection. This paper presents a review of
Android malware detection methodologies that rely on machine learning. We
commence by providing a brief overview of the background context related to Android
applications, including insights into the Android system architecture, security
mechanisms, and the categorization of Android malware. Subsequently, with machine
learning as the central focus, we methodically examine and condense the current state
of research, encompassing crucial perspectives such as sample acquisition, data pre-
processing, feature selection, machine learning models, algorithms, and the
assessment of detection effectiveness. The aim of this review is to equip scholars with
a holistic understanding of Android malware detection through the lens of machine
learning. It is intended to serve as a foundational resource for future researchers
embarking on new endeavours in this field, while also providing overarching guidance
for research endeavours within the broader domain.

Keywords:

Android application; Android malware;
Machine learning

1. Introduction

The widespread use of mobile phones [1] has recently led to a significant surge in the
development of Android malware applications. Consequently, there is a growing interest among
researchers in identifying distinctive patterns that differentiate regular applications from malicious
ones. Machine learning techniques are leveraged to address issues where the sheer volume of data
renders manual analysis impractical for humans. Machine learning classifier algorithms play a crucial
role in extracting meaningful features from datasets, which are subsequently utilized for object
classification, prediction, and decision-making [2]. That fast growth of malware poses increasingly
formidable challenges. Current research trends are shifting towards the adoption of machine learning

* Corresponding author.
E-mail address: farkhana@utm.my

https://doi.org/10.37934/araset.48.1.248268

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

249

methodologies for the identification and categorization of Android malware applications. This shift is
primarily attributed to their effectiveness in keeping pace with the continuous evolution of malware
[3,4].

The significance of employing machine learning for malware classification cannot be overstated.
Machine learning offers an essential advantage in effectively and efficiently discerning malicious
software from benign applications [5]. Its importance lies in its ability to adapt and change alongside
the constantly changing landscape of malware [6]. This adaptability enables the development of
robust and proactive defence mechanisms that can identify emerging threats and vulnerabilities in
real-time, enhancing overall cyber security efforts. Furthermore, machine learning can handle vast
datasets and complex patterns that would be arduous for manual analysis, ensuring that malware
detection systems remain both accurate and scalable. In essence, the incorporation of machine
learning in malware classification is paramount for staying ahead in the ongoing battle against cyber
threats [7].

The aim of this paper is to review the current trends of previous papers of using machine learning
for malware classification in android operating system by relying on involving different features and
focusing on permission features to classify malware apps from non -malicious apps.

The remainder of the paper follows this structure: Section 2 provides an overview of the
Background. Section 3 describes the machine learning approaches used for malware detection.
Section 4 displays the related works and section 5 concludes the study.

2. Background
2.1 Android Architecture

The Android system consists of multiple layers as shown in Figure 1 below, including the Linux
kernel layer, middle layer, and application layer, which work together to pro-vide consistent services
and hide the differences between the layers. These layers are essential for the functioning of the
Android OS and ensure that the upper layers can access the necessary resources and functionalities.
The Linux kernel layer is responsible for interacting with the hardware and managing system
resources. The middle layer acts as a bridge between the kernel and the application layer, providing
various services and APIs for app development. The application layer is where the user-facing apps
and functionalities are implemented. These layers work in harmony to provide a seamless user
experience on Android devices [8,9].

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

250

Fig. 1. Android architecture

2.2 Android Applications

Google Play is the most popular official market for downloading Android applications, but it may

charge users for downloads. As a result, users often turn to third-party marketplaces that offer free
apps. Each Android application has a unique user ID and a set of permissions that are requested at
installation time. In previous versions of Android (5.1 and below), permissions were requested at
installation time through an ask-on-install (AOI) policy. However, in Android 6.0 and above,
permissions are requested at runtime through an ask-on-first-use (AOFU) policy. This updated
permission mechanism aims to prevent malware and inform users about the capabilities of installed
applications. The permission model used in Android has several advantages in terms of security and
user awareness [10,11].

2.3 Android Security Mechanisms

Android security mechanisms are an important aspect of the operating system. The Android

framework includes security control structures and a sandbox model to protect against malware and
security threats [12]. A comprehensive security assessment of the Android framework has been
conducted, identifying high-risk threats and pro-posing defence mechanisms to mitigate them [13].
Various security mechanisms and techniques have been reviewed to ensure the security of Android
devices, including authorization and consent-related issues [14]. The analysis of Android's app
installation process reveals limitations in update integrity and UID assignment, leading to
recommendations for improvements in signing architecture and UID sharing mechanisms [15]. The
current security mechanisms in place, such as digital signatures and coarse-grained permissions, are
not sufficient to provide fine-grained control over application activities, resulting in privacy leaks [16].
To address this, a service for assessing Android Market applications and a means for mitigating
security and privacy threats through automated reverse-engineering and refactoring have been pro-
posed.

Furthermore, the security model of the Android operating system is primarily centred on a
mandatory access control and sandboxing approach tailored towards applications, effectively limiting

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

251

access to local resources through permission constraints [17]. For instance, during the installation of
an application, each app is mandated to allocate a unique User ID and a specific set of permissions.
This practice acts as a protective measure by restricting access to various functionalities [18-20]. It's
worth noting that earlier Android versions (5.1 and below) relied on an ask-on-install (AOI) policy,
where users were required to grant permissions during installation. In contrast, the updated
permissions mechanism introduced in Android 6.0 follows an ask-on-first-use (AOFU) policy,
prompting user authorization at runtime when a particular feature is initially accessed [21].

2.4 Types of Android Malware

Android malware attacks are motivated by the rapid growth of mobile devices and the popularity

of the Android operating system. The widespread use of Android devices has made them a prime
target for malware authors, who exploit vulnerabilities in the system to gain access to user data and
compromise privacy [22-24]. The open nature of the Android platform and the large number of
applications available in Android markets make it easier for malware to hide among legitimate apps,
posing a serious threat to Android security [25]. Malware authors are also motivated by the potential
for financial gain through activities such as stealing confidential information, sending spam, and
performing Distributed Denial of Service (DDoS) attacks using botnets [26].To combat these attacks,
research efforts have focused on developing effective detection mechanisms and analysing the
behaviour of Android mal-ware. And the malware in Android system can be classified into different
types based on their behaviour and characteristics. There are many types of malwares as listed
below:

i. Virus: A computer virus is a type of malware that attaches itself to another program (e.g.,

a document) and has the capability to replicate and spread once activated on a system.
For example, opening a malicious email attachment unknowingly can lead to the virus
infecting the machine. Viruses can cause data damage, gradually consume system
resources, and capture keystrokes.

ii. Trojan: This form of malware typically infiltrates a user's device by disguising itself as an
email attachment or a free download. Upon download, the malicious code executes its
intended purpose, such as gaining unauthorized access to business systems, monitoring
users' online activities, or pilfering confidential information. Unusual changes to computer
settings are indicative of a Trojan's presence on a device.

iii. Worm: A computer worm, a subset of Trojan horse malware, can self-replicate and spread
across systems without human activation once it infiltrates a system. Worms commonly
utilize Local Area Networks (LAN) or Internet connections to propagate within a network.

iv. Spyware: Spyware is often described as malicious software designed to infiltrate a
computer system, gather information about the user, and transmit it to a third party
without consent. Additionally, spyware can refer to legitimate software that tracks user
data for commercial purposes like advertising. However, malicious spyware is crafted with
the aim of profiting from pilfered data. The surveillance activities of spyware, whether
benign or fraudulent, expose users to the risk of data breaches and misuse of personal
information. Moreover, the performance of networks and devices is adversely affected by
malware, causing a slowdown in typical user activities.

v. Ransomware: Ransomware is a malicious software that can restrict access to computer
files by encrypting them. Cyber attackers then demand a ransom in exchange for the
decryption key, often compelling businesses to consider paying to swiftly regain access to

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

252

their files [103]. Some ransomware variants even include data theft to further pressure
victims into complying with the ransom demands.

vi. Rootkit: Rootkit is specifically designed to provide remote access to a system without the
user's knowledge. A rootkit can perform various actions on the system, such as uploading
files, installing programs, altering system files, or disabling security tools like antivirus
software.

vii. Bot malware, categorized as malware, empowers attackers to seize control of a user's
system or execute specific tasks without the user's knowledge. In large-scale attacks, bot
malware is commonly used to leverage the computing capabilities of the compromised
system.

viii. Crypto-malware is another type of malware that grants threat actors the ability to engage
in crypto jacking activities. While the fundamental method used by hackers and legitimate
crypto miners is similar, crypto-malware exploits another user's devices and processing
capacity to generate payment.

One common type is information-stealing malware, which aims to steal sensitive data from users'

devices. Another type is malware that launches various malicious attacks to threaten Android users'
security. There are also malware samples that undergo different transformations to evade detection
by antimalware tools [27]. Additionally, Android malware can exhibit common attack features and
evasion techniques, such as code execution and path constraints .These types of malwares can be
detected and analysed using a combination of static and dynamic analysis techniques. Besides, that
threats, there are threats are caused by exploiting requested permissions. That exploitation can be
done in various ways, through unauthorized camera, SMS, call, audio, image, or location access
through attacks targeting system calls, permissions, or APIs within the Android device [28-30].
Granting certain permissions, like "send_sms" or "receive_sms," can result in privacy breaches and
financial implications for users. For instance, the "send_sms" permission can be misused by an app
to send text messages without user consent, potentially incurring unexpected charges or facilitating
unauthorized communication with third parties [31]. Moreover, specific permissions hold the
potential to introduce integrity threats to the operating system, files, and physical device itself.
Permissions such as "change_wifi_state," "install_packages," and "write_external_storage"
exemplify this risk. For instance, the "write_external_storage" permission grants an app the
capability to write to or modify the external storage of a mobile device. This permission could be
exploited by malicious software to damage the device's memory by continually filling it or
manipulating files. An instance of malware utilizing this permission is the "Moghava" malware, which
replaces user gallery photos with advertising images, causing significant data loss [32]. By
understanding the different types of Android malware and their behaviours, researchers and
developers can develop effective defence techniques and tools to protect users' devices and data.

3. Machine Learning in Malware Classification

Machine learning techniques have been widely used for malware classification. Traditional

methods have been summarized, and machine learning-based approaches have gained attention due
to their effectiveness in solving classification problems [33]. Deep learning techniques, such as
convolutional neural networks (CNN), have shown superior performance in malware classification,
especially when combined with data augmentation techniques [34] .Quantum machine learning
algorithms have also been explored for malware classification, with the aim of improving
classification accuracy [35] support vector machines and random forests are commonly used machine

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

253

learning methods for malware classification, aiming to detect maliciousness or categorize malware
by family [36]. Deep learning algorithms have been employed to enhance the performance and
accuracy of malware classification, eliminating the need for manual feature engineering [37].

3.1 Machine Learning in Android Malware Detection

The widespread use of mobile phones in recent times has led to a significant increase in the

development of Android malware applications. Consequently, researchers have become increasingly
interested in identifying patterns that can distinguish between normal and abnormal apps. Machine
learning techniques have been employed to address these challenges, especially when dealing with
large datasets that are difficult for humans to handle effectively [38,39]. Machine learning methods
can be classified based on their learning approach, according to their fundamental principles [66,67].
This widely-accepted classification includes supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning. Supervised learning involves the use of labelled
datasets to train predictive models. It's commonly used for classification or regression challenges,
where the goal is to predict discrete outcomes or continuous variables, respectively. Unlike
supervised learning, unsupervised learning doesn't rely on labelled data and aims to uncover the
underlying structure or distribution characteristics of datasets, often used for tasks like data
clustering or feature dimension reduction. Semi-supervised learning combines aspects of both
supervised and unsupervised learning, using both labelled and unlabelled data. This type of machine
learning is especially helpful when there's a limited amount of labelled data in a dataset, as it
empowers the learner to label unlabelled data by leveraging a model of the data distribution [67].

Reinforcement learning differs from supervised learning in that it operates without labelled data.
This process involves a continual loop of prediction and assessment, with input data being fed directly
into the model, leading to dynamic adjustments to the model parameters. The refinement of the
learning model and training data is achieved through feedback from the environment, which enables
the update of model parameters. This machine-learning approach is commonly applied to dynamic
systems and robot control scenarios [68,102].

In this context, machine learning classifiers are used to extract informative features from
datasets, enabling the classification of objects, prediction of outcomes, and decision-making
processes.

The features used for three types:

i. Static Analysis
Static analysis involves examining the characteristics of an Android application without
executing it. Machine learning models are trained on static features extracted from the
app's code, manifest files, and permissions [61]. Common features include:
• Permissions: Android apps request various permissions to access device resources.

Malicious apps often request excessive or suspicious permissions.
• API Calls: Analysis of the APIs called by an application can reveal its behaviour.

Malware may exhibit unusual or malicious API call patterns.
• Code Structure: The structure of the app's code, including the presence of obfuscation

techniques, can be indicative of malware.
• Intents: Intents define communication between Android components. Suspicious or

malicious intent usage can signal malware.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

254

Static analysis provides a high detection rate while consuming fewer resources than
dynamic analysis. However, it is limited in its ability to capture the dynamic execution
behaviour of malware and is significantly affected by techniques such as obfuscation and
packing. As such, while it can be an effective tool in identifying and analysing potential
security threats, its limitations must be acknowledged and alternative methods should
be employed when necessary [61,62].

ii. Dynamic Analysis
Dynamic analysis involves running an Android application in a controlled environment
and monitoring its behaviour [62]. Machine learning models are trained on features
extracted during the app's execution. Key dynamic features include:
• System Calls: Recording system calls made during the app's execution can reveal

malicious activities, such as file manipulation, network communication, and privilege
escalation.

• API Calls: Monitoring API calls during runtime can detect suspicious behaviour, such
as unauthorized access to sensitive resources.

• Network Traffic: Analysing network traffic generated by the app can identify
communication with malicious servers or domains.

Dynamic analysis often requires emulator or sandbox environments to execute apps
safely and record their behaviour. Dynamic analysis offers a significant advantage in
terms of its robustness to obfuscation and shelling techniques. However, this technique
usually requires a higher level of resource consumption and may encounter challenges in
traversing all execution paths comprehensively [62].

iii. Hybrid Analysis
This method combines the static and dynamic analysis to overcome some of the
limitations or weaknesses associated with each individual technique. By combining these
two approaches, the hybrid analysis can provide a more comprehensive understanding of
the malware's purpose, potential effects, and capabilities [63]. Additionally, hybrid
analysis can help in rectifying mislabelling issues in malware detection, improving the
performance of downstream applications such as malware classification [64]. Overall, the
use of hybrid analysis in malware detection allows for more accurate and efficient
identification of malicious software, enhancing system security.

This research primarily relies on supervised learning, which involves predicting outputs based on

labelled inputs with various features. In the domain of malware classification, machine learning
models are trained on datasets containing labelled examples of malware and non-malware
applications for binary classification or different types or families of malware for multiclass
classification. These models learn to identify distinguishing features between the classes, allowing
them to classify new and previously unseen examples as malicious or non-malicious, or categorize
them into specific malware families with a certain level of accuracy [40].

4. Related Works

In this section, we present previous studies that have utilized machine learning approaches for

Android malware classification. Malware detection is considered a classification problem, as
highlighted by [41]. Various classifier algorithms, including Support Vector Machines (SVM), K-
Nearest Neighbors, Decision Trees (DT), Logistic Regression (LR), and Naive Bayes (NB), have been

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

255

commonly used in security re-search, particularly for behaviour-based or anomaly detection methods
[42].

The literature on this topic can be categorized along five dimensions, as proposed by [43]. The
first dimension pertains to the dataset used, the second to the types of features employed (static,
dynamic, or hybrid), the third to feature selection methods, the fourth to feature weighting schemes,
and the fifth to classification algorithms used to differentiate between suspicious and non-suspicious
apps.

This literature review focus on classifying Android applications based on permission features
through using machine learning approaches, we will emphasize studies that classify Android apps
based on permissions and other features using machine learning methods.

Many studies in this domain employ binary classification, with real samples of malware and
benign apps. Static features are extracted before app execution, while dynamic features are
extracted afterward. Hybrid features encompass both static and dynamic attributes. For instance,
[44] conducted a study where they extracted static attributes like opcodes, methods, and strings
from a dataset containing 612 malignant apps and 758 benign apps. They employed three different
feature selection techniques, namely information gain, correlation, and Goodman Kruskal's methods.
To assess the performance of their approach, they utilized six classifier algorithms: Adaboost, Naïve
Bayes, Ibk, J48, Random Forest, and SMO. They also examined various subsets of features, ranging
from 100 to 1000 features, to investigate how the length of the feature set impacted accuracy. The
results indicated that the Adaboost classifier outperformed the other classifiers, achieving an
accuracy rate of 88.75% when using a subset of 600 features. The primary focus of their research was
on feature extraction, and they did not evaluate the importance of individual features by assigning
weights to them.

In the study of [45], a dataset containing 400 applications, equally divided into 200 malware and
200 non-malware apps was collected. Their approach involved using permissions and source code as
static attributes to discern Android malware applications from non-malware ones. They executed
four experiments in which they applied both classification and clustering algorithms using these
features to differentiate malware from non-malware applications. The outcomes of their
experiments demonstrated that the accuracy rate in the classification task surpassed that of the
clustering task.

The researchers in [46] conducted an analysis of permissions in Android apps by creating a tool
named APK Auditor. They gathered a substantial dataset of approximately 6,909 malware-infected
apps from various sources, including the Drebin dataset, contagio, and the Android Malware Genome
Project. In addition, they collected clean applications from the Google Play Store, totalling 1,853 clean
apps. Their system functioned by evaluating apps on a server and assigning scores to the permissions
requested by these apps.

Dataset comprising 1,000 malware applications and 1,000 normal applications was gathered by
[47] with dynamic features. The normal apps were sourced from the Google Play Store in the year
2014 and were cross-verified using the Virus Total service. Meanwhile, the malicious apps were
acquired from the Drebin dataset. The dynamic features encompassed sequences of system calls,
involving the extraction of a sequence of 750 system calls from each app. They applied machine
learning techniques to automatically acquire associations within these sequences, essentially
creating a "fingerprint" for the malware. Subsequently, they utilized these fingerprints to detect
malware and achieved a remarkable detection accuracy of 97%.

A framework was designed by [48] for the identification of Android malware applications. Their
framework utilized system calls as features and was tested on a dataset containing 200 apps. In the
preprocessing stage, they eliminated system calls that were not relevant to the task, while retaining

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

256

those that displayed correlations. How-ever, reducing the number of system calls proved to be
challenging due to the lack of clear categories and factors associated with these calls, as highlighted
by [48].

The researchers in [49] used manifest and opcode features, such as hardware, filtered intents,
opcodes, permissions, application components, and strings, to detect malicious apps. They employed
feature selection techniques, including entropy-based category coverage difference (ECCD) and
Weighted Mutual Information (WI). Three datasets were created for their experiments, and Random
Forest (RF), Rotation Forest (RF), and Support Vector Machine (SVM) classifiers were used. The results
indicated that weighted mutual information outperformed ECCD. However, their features extracted
from manifest files were represented as Boolean vectors, while op-codes and strings were
represented as frequency of attribute vectors.

The study done by [50] collected a dataset of 107,327 benign apps and 8,701 mal-ware apps,
yielding a large number of features, of which 34,630 were selected as the most relevant and related
features. Support Vector Machine (SVM) served as the feature selection method to enhance
classification performance. Various classifiers, including SVM, CART, K-NN, and NB, were employed
to distinguish malicious apps from benign ones.

Another work done by [51] collected 1,227 malicious applications and 1,189 benign applications,
using 196 system calls as dynamic features. They employed a Back-propagation Neural Network to
train their dataset. The results indicated the highest F-score rate of 0.982, a true positive rate (TPR)
of 0.977, and a false positive rate (FPR) of 0.013. Additionally, their model achieved an accuracy rate
of 0.7. Notably, they used only dynamic features for app classification.

A tool called SWORD (Semantic Aware Dynamic Malware Detection) was introduced by [52] to
classify mobile applications as either benign or malicious based on their usage of system calls. They
assembled a dataset comprising 2,000 applications, evenly split between benign and malicious (1,000
of each). SWORD monitored app behaviour during runtime to collect system calls and constructed a
Sequential System-Call Graph (SSG) using Markov chains. They derived typical program behaviour
paths using the Asymptotic Equipartition Property (AEP) on these graphs, forming the basis for their
classification model. ALBF metric was applied to each path, and supervised learning was employed
for model training. Their results demonstrated that the pro-posed model achieved an accuracy rate
of 94.2%. However, SWORD's high over-head, caused by injecting a substantial number of systems
calls into malicious paths, posed limitations and impacted learning performance.

A forensic tool named FAMOUS (Forensic Analysis of Mobile devices using Scoring of application
permissions) was proposed by [53] for scanning and providing descriptive reports on installed
applications on attached devices. They collected a dataset comprising 5,553 malware apps and 5,818
non-malware apps, focusing on static permissions. Random Forest (RF), Naïve Bayes (NB), Decision
Tree (DT), and Sup-port Vector Machine (SVM) classifiers were utilized, and a scoring engine was
employed to assign weight values to permissions based on their frequency in malware and non-
malware apps.

The study conducted by [54] developed EnDroid to differentiate between malware and non-
malware Android apps. They collected two datasets, M1 (8,806 benign apps and 5,213 suspicious
apps) and M2 (5,000 benign apps and 5,000 suspicious apps). They focused on ten dynamic features,
such as cryptographic operations, network operations, file operations, dexclass load, information
leaks, sent SMS, phone calls, service starts, system calls, and receiver actions. Chi-square feature
selection was used to remove redundant features, and a combination of classifiers, including Decision
Tree, Extremely Randomized Trees, Random Forest, Linear SVM, and Boosted Trees, with Logistic
Regression as a meta-classifier, was employed. However, their study solely utilized dynamic features
and did not investigate permissions requested by apps.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

257

A framework was designed by [55] to distinguish between malicious and clean apps by examining
permission, metadata, and sensitive API call features. They collected a dataset containing 8,177
applications from the Google Play Store and AndroZoo. Information gain (IG) served as the feature
selection method, resulting in 20 sensitive API calls and 62 permission features. Decision Tree-J48
(DT), Random Forest (RF), Naïve Bayes (NB), and Support Vector Machine (SVM) classifiers were
employed for assessment, and the features were represented in binary vectors.

The authors in the study of [56] introduced the Multilevel DroidFusion model for Android
malware detection. They used four datasets, including Malgenome-215, Drebin-215, McAfee-350,
and McAfee-100, which contained varying numbers of clean and malware instances. Information gain
(IG) was employed for feature ranking, and DroidFusion was evaluated using different datasets with
one or more base classifiers. However, the focus of their study was primarily on static features.

The experiment don by [57] used a dataset containing 9,419 suspicious apps and 6,070 non-
suspicious apps to identify malware. Static permissions were the sole features used in their study,
and they employed various machine learning classifiers, including Naïve Bayes (NB), Bayesian
Network (BN), J48, Random Trees (RT), Random Forest (RF), and k-Nearest Neighbors (K-NN).

However, many studies employed hybrid features to improve classification tasks. For instance,
[58] proposed by a hybrid approach was that incorporated static features (permissions and intents)
and dynamic features (data leakages, cryptographic API calls, and network manipulation) to identify
malware apps from non-malware apps. Feature selection methods, Information Gain (IG) and
Principal Component Analysis (PCA), were used to select distinctive features. Classifiers included RF,
NB, GB, and DT.

The work conducted by [59] collected 8,000 applications (4,000 malware and 4,000 benign) and
proposed a hybrid feature-based approach using static features (permissions and API calls) and
dynamic features (system calls). Their hybrid approach out-performed static and dynamic features
alone, but the representation of features was not specified. Another study employed hybrid features
made by [64] introduced a model called Tree Augmented Naive Bayes (TAN) for Android malware
detection, incorporating hybrid features comprising permissions, API calls, and system calls.

In summary, many existing studies have explored various feature sets and machine learning
algorithms for Android malware classification, including static features (permissions, intents, and API
calls), dynamic features (system calls), and hybrid features combining both static and dynamic
aspects. These studies have used a range of datasets and feature selection techniques, with varying
degrees of accuracy in distinguishing between benign and malicious apps. However, not all studies
have investigated dynamic permissions or provided comprehensive details about their
methodologies. Table 1 below summarized some of the previous works in this study related to
android applications classification based on using machine learning methods.

Table 1
Summary of machine learnings technique used in selected references related to Android malware detection

Study Class label Features used Type of
features

Feature
Selection
methods

Feature
weighting

Machine
Learning
classifier

Advantages Disadvantages

[42]

310926
non-
malware
apps and
4868
malwares

Permissions Static
features

CorrCoef
,Mutual
Informati
on, and
T-test

N/A SVM, DT,
and RF

Reduced
number of
features by
using
different
types of
feature
selection
methods.

Features are
not assigned
weights and
the most top
important
patterns of
permissions
are not
identified.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

258

[105] 200 clean
and 200
malware
apps

Permissions
and source
code

Static
features

N/A

N/A

Not
mentione
d

Classifying
apps by
exploring
static
permissions.

Using all
features to
build
classifier
models will
increase
complexity
overhead.

[106] 850
benign
apps and
620
malware
apps

Permissions
and intent-
filters

Static
features

Informati
on
gain(IG)

N/A

ID3 and
J48
classifiers

Using a
smaller
number of
features in
classifying
apps.

IG selects
features
based on the
relations to
class not to
classifier.

[107] 200 clean
and 200
malicious
apps

Permissions
and source
code

Static
features

N/A N/A C4.5
decision
trees, RF,
NB, and
SVM with
SMO JRip

Utilizing
permission
features in
differentiati
ng between
malware and
non-
malware.

Feeding
classifiers
with all
features will
lead to
lower
learning
process.

2017
[99]

11,000
Android
apps

Permissions Hybrid
permissi
ons
features

N/A N/A NB, J48,
RF, Simple
Logistic
and k-star

Exploring
permissions
at
installation
& run time.

Using all
features in
learning task
will increase
complexity
overhead.

[101] 5553
malware
and 5818
benign
apps

Permissions

Static
features

N/A Frequenc
y method

RF, DT,
NB, and
SVM

Classifying
android apps
based on
permission
features.

Assigning
weights to
features
using the
frequency
method is
more
expensive
because
there are
many
permission
features are
requested by
apps.

[55] 8177
Android
apps
(benign)
and
AndroZoo
(malware)

Permission,
sensitive API
calls, and
metadata

Static
features

Informati
on gain
(IG)

N/A NB, SVM,
DT-J48,
and RF.

Decreasing
computation
al overhead
by selecting
a small
number of
significant
features
instead of
using all
features.

Representin
g the
extracted
features in
binary
values
makes all
features are
equal in
importance
which is not.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

259

[77] 4000
malware
and 4000
benign
samples

Permissions
and system
calls

Hybrid
Features

TF-IDF

Not
mention
ed

NB, RF,
XGBoost,
GC Forest

Utilizing
hybrid
features in
classifying
apps is more
efficient.

Selecting
important
features
using TF-IDF
will increase
complexity
overhead
due to many
requested
permissions.

[100] 5774
malware
apps and
500
normal
apps

(permissions
) and intents
and (API
calls,
cryptographi
c data
leakages, &
network
manipulatio
n)

Hybrid
Features

Informati
on gain
(IG) and
(PCA).

Not
mention
ed

NB, RF,
GB and DT

Feeding
machine
learning
classifiers
with a
smaller
number of
features
using (IG)
and PCA.

IG selects
features
based on
their
relations to
the class
label not to
the classifier
which is less
effective
than the
method that
selects
features
based on the
classifier.

[107] 6070
benign
apps and
9419
malware
apps

Permission
Features

Static
Features

Not
mention
ed

TF-IDF (NB),
(BN), J48,
(RT), (RF)
and K- (K-
NN)

Extracting
the most
significant
permission
features
using TF-IDF.

Using TF-IDF
in extracting
the
significant
permissions
will increase
computation
al overhead

[108] 1650
malware
apps and
1650 good
ware apps

API calls,
permissions
and system
calls

Hybrid
Features

Not
declared

Not
declared

A Tree
Augmente
d Naive
Bayes
(TAN)

Using hybrid
features
makes the
classification
process
more
effective.

Feeding
classifiers
with all
features
helps in
lowering
learning
process &
increasing
complexity
cost
overhead.

Android malware detection datasets have been reviewed in several papers. Table 2 shows some

datasets used in the previous studies.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

260

Table 2
Summary of some Datasets used in the
previous study
Study Dataset(s) Used
[69] Derbin
[70]
[71]

Malgenome and Contagio project
Contagiodump

[72] AMD Projects
[73] Drebin, Androzoo

4.1 Feature Selection

Numerous studies have utilized feature selection to decrease the number of features used in a

model. This involves selecting features that are strongly correlated with class labels, which can help
reduce the computational cost of the model [74]. However, when addressing real-world problems,
it's not always possible to identify all the relevant features at the outset. As a result, a large number
of features are often collected to gain a comprehensive understanding of the domain. Unfortunately,
many of these features may be irrelevant to the target class [74]. Using a learning model with a
dataset containing redundant and unimportant attributes can lead to issues, as highlighted by Dash
and Liu in 1997.

Different types of features selection approaches have been used by previous studies; the Table 3
below summarize some of these studies.

Table 3
Summary of feature selection methods in selected references
related to Android malware detection based on machine
learning approaches
Reference Feature Selection approach used
[75] Information Gain (IG)
[76] Chi-Square
[77] Wrapper method
[78]
[79]

TF-IDF,cosine similarity
Genetic search (GS)

Feature selection is an essential process in data analysis, as it helps to identify a subset of features

that are relevant to a specific target variable. One popular approach to feature selection is the use of
Information Gain (IG) technique. This method has been widely adopted in various studies to classify
malware apps from non-malware apps as done by [75]. The IG technique evaluates the relevance of
a feature by measuring the reduction in entropy that occurs when the feature is added to the subset
of features related to the target variable. Its effectiveness lies in its ability to select a set of features
that maximizes the mutual information between the features and the target variable, while
minimizing redundancy among the selected features.

Chi-Square is a widely used feature selection method utilized by researchers in the classification
of Android malware applications as used in the study of [76]. It calculates the chi-square statistics
between each feature variable and the class object, analysing the correlation between the two. If the
class object is found to be independent of the feature variable, the said feature is not deemed
significant.

The wrapper method is a technique used for search problems in feature selection. It presents
different groups of collections and designs analytical models to evaluate a group of features. The
accuracy of the model determines the score assigned to the collection group. In a study conducted

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

261

by [77] has relied on the wrapper approach as a feature selection method to obtain significant
features that classify malware apps from non-malware.

The study done by [78] proposed a low-cost and high-efficient method for detecting Android
malware using static analysis and the Rotation Forest (RF) model and TF-IDF to select the important
features. It achieves a high accuracy of 88.26% with 88.40% sensitivity at the precision of 88.16%.
The proposed method improves the accuracy by 3.33% compared to the Support Vector Machine
(SVM) model.

4.2 Type of Features

In this section, the chosen features from diverse machine learning algorithms within the domain

of Android malware detection are outlined and assessed. These features can be categorized into
three groups: static features, dynamic features, and hybrid features, contingent on whether they are
obtained through the execution of an Android application [79]. The techniques employed for
analysing these three feature types are termed static analysis, dynamic analysis, and hybrid analysis,
correspondingly as explained previously.

4.2.1 Static features

Static features are characteristics that are obtained by analysing the source code or other related

information associated with an application. This analytical approach is known as static analysis and
is denoted by [80]. In the case of Android applications, the APK file is the primary object of scrutiny
as it serves as the installation package for Android applications. Decompiling APK files reveals files
such as AndroidManifest.xml and small files, among others. Analysing these files uncovers a range of
static features, including permissions, API calls, Dalvik opcodes, and other components. Table 4
summarizes some static features used in machine learning-based Android malware detection.

Table 4
Summary of some static features used in selected references
Study features
[81] API call
[82] Permission, API call, System event, URL
[83] Opcode sequence
[84] Description of function, Data flow, Permission

4.2.2 Dynamic features

In the realm of Android applications, the behaviours exhibited during real-world usage or

simulated testing - known as dynamic features [85] - are analysed through a process called dynamic
analysis. In the case of Android apps, this includes system calls, API calls, network traffic, and CPU
data. Many studies have utilized dynamic analysis techniques for Android malware detection,
including [86,87] which employ dynamic taint analysis, and [88], which integrates Dalvik opcode with
graph theory. Some dynamic features used in machine learning-based Android malware detection
are displayed in Table 5 below.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

262

Table 5
Summary of some dynamic features used in selected references

Study Features
[89] Frequency

of system calls
[90] CPU, Memory, Network traffic
[91] Network traffic: DNS, HTTP, TCP, Origin- destination.
[92] Method call, Inter-component communication (ICC) intent

4.2.3 Hybrid features

Hybrid features involves the fusion of static and dynamic components, forming a comprehensive

analytical approach [93]. While static analysis prioritizes individual aspects, dynamic analysis covers
a wider scope. By combining the benefits of both static and dynamic analyses, hybrid analysis can
detect specific threats in specific scenarios. Some hybrid features used in machine learning-based
Android malware detection are displayed in Table 6 below.

Table 6
Summary of some dynamic features used in selected references

Study features
[94]

[95]

Static: Permission
Dynamic: Behaviour (System function, Sensitive permission, Sensitive API)

Static: Permission, Intent, Hardware feature, Software features, IP address, Advertisement module, System
security setting.
Dynamic: Behaviour (Sensitive API, System service, IP address)

[96] Static: Permission, API, Intent, Components, Hardware
Dynamic: Behaviour (System call)

[97]

Static: Permission, API, Intent, Min_sdk.
Dynamic: Behaviour (Service startup, File operation, SMS and phone event, Sensitive data leakage, Network
data transmission, etc.)

As observed from the previous studies that majority of research relies on utilizing static

permissions, which are obtained at the time of installation without executing the applications. Some
studies incorporate additional features alongside permissions, such as APIs, as demonstrated by [98].
In contrast, the investigation conducted by [99] employs hybrid permissions, combining static and
dynamic permission features, for identifying Android malware through machine learning classifiers.
Static permissions are extracted at installation time, while dynamic permissions are extracted during
runtime after the execution of the apps. They extracted 123 dynamic permissions, categorized them
into safe and unsafe based on the Android developer website, and assessed their dataset using five
machine learning classifiers (Naive Bayes, Decision Tree, Random Forest, Simple Logistic, and k-star)
through cross-validation and a dataset split of 66%.

The paper provides a succinct overview of the broader context of Android applications while
concentrating on crucial elements of machine learning, including type of features and feature
selection. Table 7 shows the differences among those studies.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

263

Table 7
The differences among those studies
Study Type of features Features selection
[42] Static ü
[48] Dynamic ü
[49]
[100]

Static
Hybrid

ü
ü

[101] Hybrid ü

5. Conclusions

In this review, we investigate into the literature on various types of malwares and their potential

risks on the Android operating system. We also examine the machine learning techniques utilized in
detecting malware within the Android system. Our findings reveal that many studies utilize a
combination of static, dynamic, and hybrid features to differentiate between benign and malicious
apps. Additionally, permission features are commonly used as static features. Moving forward, we
recommend further exploration into machine learning methods that analyse combined permissions
requested at installation and run time for more accurate malware classification.

Acknowledgement
This research was not funded by any grant.

References
[1] Amilah, Anis. "The Usability of Mobile Experiment Application in Science Subject for Secondary Student." life 16,

no. 1 (2019): 34-41.
[2] Tahtaci, Burak, and Beyzanur Canbay. "Android malware detection using machine learning." In 2020 Innovations in

Intelligent Systems and Applications Conference (ASYU), pp. 1-6. IEEE, 2020.
https://doi.org/10.1109/ASYU50717.2020.9259834

[3] Gibert Llauradó, Daniel, Carles Mateu Piñol, and Jordi Planes Cid. "The rise of machine learning for detection and
classification of malware: Research developments, trends and challenge." Journal of Network and Computer
Applications, 2020, vol. 153, 102526 (2020). https://doi.org/10.1016/j.jnca.2019.102526

[4] Ucci, Daniele, Leonardo Aniello, and Roberto Baldoni. "Survey of machine learning techniques for malware
analysis." Computers & Security 81 (2019): 123-147. https://doi.org/10.1016/j.cose.2018.11.001

[5] Chen, Yizheng, Zhoujie Ding, and David Wagner. "Continuous Learning for Android Malware Detection." arXiv
preprint arXiv:2302.04332 (2023).

[6] Singh, Mahendra Pratap, and Heena Kausar Khan. "Malware Detection in Android Applications Using Machine
Learning." In 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent
Information Systems (ICAECIS), pp. 105-110. IEEE, 2023. https://doi.org/10.1109/ICAECIS58353.2023.10170311

[7] Hammood, Layth, İbrahim Alper Doğru, and Kazım Kılıç. "Machine Learning-Based Adaptive Genetic Algorithm for
Android Malware Detection in Auto-Driving Vehicles." Applied Sciences 13, no. 9 (2023): 5403.
https://doi.org/10.3390/app13095403

[6] Atacak, İsmail, Kazım Kılıç, and İbrahim Alper Doğru. "Android malware detection using hybrid ANFIS architecture
with low computational cost convolutional layers." PeerJ Computer Science 8 (2022): e1092.
https://doi.org/10.7717/peerj-cs.1092

[8] Xie, Nannan, Zhaowei Qin, and Xiaoqiang Di. "GA-StackingMD: Android Malware Detection Method Based on
Genetic Algorithm Optimized Stacking." Applied Sciences 13, no. 4 (2023): 2629.
https://doi.org/10.3390/app13042629

[9] Hu, M. “An Architecture Design Method Based on Android System.” (2019).
[10] Majethiya, Raj J., and Monika Shah. "Comparative analysis of detecting over-claim permissions from android apps."

In 2023 International Conference on Intelligent Systems, Advanced Computing and Communication (ISACC), pp. 1-
8. IEEE, 2023. https://doi.org/10.1109/ISACC56298.2023.10084321

https://doi.org/10.1109/ASYU50717.2020.9259834
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1109/ICAECIS58353.2023.10170311
https://doi.org/10.3390/app13095403
https://doi.org/10.7717/peerj-cs.1092
https://doi.org/10.3390/app13042629
https://doi.org/10.1109/ISACC56298.2023.10084321

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

264

[11] Tao, Guanhong, Zibin Zheng, Ziying Guo, and Michael R. Lyu. "MalPat: Mining patterns of malicious and benign
Android apps via permission-related APIs." IEEE Transactions on Reliability 67, no. 1 (2017): 355-369.
https://doi.org/10.1109/TR.2017.2778147

[12] Mayrhofer, René, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich. "The android platform security
model." ACM Transactions on Privacy and Security (TOPS) 24, no. 3 (2021): 1-35. https://doi.org/10.1145/3448609

[13] Yu, Lifang, Tianchang Yang, and Shaozhang Niu. "Secure Access to Data Transmission for Inter-Component
Communication." (2016).

[14] Faruki, Parvez, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro Conti, and Muttukrishnan
Rajarajan. "Android security: a survey of issues, malware penetration, and defenses." IEEE communications surveys
& tutorials 17, no. 2 (2014): 998-1022. https://doi.org/10.1109/COMST.2014.2386139

[15] Sun, Lin, ShuTao Huang, YunWu Wang, and MeiMei Huo. "Application policy security mechanisms of Android
system." In 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded Software and Systems, pp. 1722-1725. IEEE, 2012.
https://doi.org/10.1109/HPCC.2012.258

[16] Yi-yang, Fu, and Dan-ping Zhou. "Android's Security Mechanism Analysis." In The 26th National Symposium on
computer security, pp. 23-25. 2011.

[17] Arora, A., Das, A. K., Rawat, D., & Chavan, V. “Security Model of the Android Operating System: A Mandatory Access
Control and Sandboxing Approach.” (2019).

[18] Bhandari, S., Sharma, N., & Verma, A. “Allocation of Unique User IDs and Permission Sets During Android
Application Installation for Resource Access Control.” (2017).

[19] Kumar, P., Singh, R., Gupta, S., et al., “Android Security: Restricting Access to Local Resources Through Permission
Constraints During App Installation.” (2018).

[20] Wang, L., Chen, H., Zhang, Q., et al., “Protective Measures in the Android Operating System: Allocation of Unique
User IDs and Specific Permissions During Application Installation.” (2019).

[21] Gao, Z., Li, M., Wang, S., et al., “Evolution of Android Permissions Mechanism: From Ask-on-Install (AOI) to Ask-on-
First-Use (AOFU) Policy for User Authorization.” (2020).

[22] Almomani, Iman, Mohanned Ahmed, and Walid El-Shafai. "Android malware analysis in a nutshell." PloS one 17,
no. 7 (2022): e0270647. https://doi.org/10.1371/journal.pone.0270647

[23] Sadananda, L., Bolwar, A., & Musthafa, A. “Review on Analysis of Different Malware Types in Android System.”
Journal of Emerging Technologies and Innovative Research. (2019).

[24] Sabbah, Ahmed, Adel Taweel, and Samer Zein. "Android Malware Detection: A Literature Review." In Inernational
Conference on Ubiquitous Security, pp. 263-278. Singapore: Springer Nature Singapore, 2022.
https://doi.org/10.1007/978-981-99-0272-9_18

[25] Khemani, Shreya, Darshil Jain, and Gaurav Prasad. "Android malware detection techniques." In Emerging Research
in Computing, Information, Communication and Applications: ERCICA 2018, Volume 2, pp. 449-457. Springer
Singapore, 2019. https://doi.org/10.1007/978-981-13-6001-5_36

[26] Jiang, Xuxian, and Yajin Zhou. Android malware. Springer, 2013. https://doi.org/10.1007/978-1-4614-7394-7
[27] Chavan, Neeraj, Fabio Di Troia, and Mark Stamp. "A comparative analysis of android malware." arXiv preprint

arXiv:1904.00735 (2019). https://doi.org/10.5220/0007701506640673
[28] Saudi, M., Suliman, A., Alzahrani, F., et al., “Android Malware and Attack Techniques: A Comprehensive Review.”

(2017).
[29] Alenezi, M., Almomani, A. “Analysis of Android Malware Attack Features and Evasion Techniques.” (2018).
[30] Ghasempour, Z., Selamat, A., Ibrahim, S., et al., “Detecting Android Malware Using a Combination of Static and

Dynamic Analysis Techniques.” (2020).
[31] Garg, Shivi, and Niyati Baliyan. "Comparative analysis of Android and iOS from security viewpoint." Computer

Science Review 40 (2021): 100372. https://doi.org/10.1016/j.cosrev.2021.100372
[32] Deypir, M. “Privacy and Financial Implications of Unauthorized SMS Access Through Android Permissions.” (2019).
[33] Dini, G., Monteleone, S., Falzarano, S., et al., “Integrity Threats in Android Due to Specific Permissions: A Case

Study.” (2018).
[34] Wurdi, I., Amin, M. B. “A Survey of Malware Classification Techniques. Journal of Computer Virology and Hacking

Techniques.” (2017).
[35] Yerima, S. Y., Sezer, S., McWilliams, G. "Towards the Development of Quantum Machine Learning for Malware

Classification." Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 977-984). (2016).
[36] Kolosnjaji, Bojan, Apostolis Zarras, George Webster, and Claudia Eckert. "Deep learning for classification of malware

system call sequences." In AI 2016: Advances in Artificial Intelligence: 29th Australasian Joint Conference, Hobart,
TAS, Australia, December 5-8, 2016, Proceedings 29, pp. 137-149. Springer International Publishing, 2016.
https://doi.org/10.1007/978-3-319-50127-7_11

https://doi.org/10.1109/TR.2017.2778147
https://doi.org/10.1145/3448609
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1109/HPCC.2012.258
https://doi.org/10.1371/journal.pone.0270647
https://doi.org/10.1007/978-981-99-0272-9_18
https://doi.org/10.1007/978-981-13-6001-5_36
https://doi.org/10.1007/978-1-4614-7394-7
https://doi.org/10.5220/0007701506640673
https://doi.org/10.1016/j.cosrev.2021.100372
https://doi.org/10.1007/978-3-319-50127-7_11

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

265

[37] Rajab, M. A., Debbabi, M. "Deep Learning for Malware Classification Using End-to-End Autoencoders." 2018 17th
IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE) pp. 1198-1205, (2018).

[38] Le, D. X., Phung, D., Venkatesh, S. "Context-Aware Adaptive Android Malware Classification." 2018 IEEE Conference
on Computational Intelligence in Cyber Security (CICS) pp. 1-8, (2018).

[39] Liu, Kaijun, Shengwei Xu, Guoai Xu, Miao Zhang, Dawei Sun, and Haifeng Liu. "A review of android malware
detection approaches based on machine learning." IEEE Access 8 (2020): 124579-124607.
https://doi.org/10.1109/ACCESS.2020.3006143

[40] Pendlebury, R. A., Lim, K. L., Tiong, W. W. "A Survey of Machine Learning Algorithms for Malware Classification."
Information Systems, 75, 41-60, (2018).

[41] Singh, Mahendra Pratap, and Heena Kausar Khan. "Malware Detection in Android Applications Using Machine
Learning." In 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent
Information Systems (ICAECIS), pp. 105-110. IEEE, 2023. https://doi.org/10.1109/ICAECIS58353.2023.10170311

[42] Wang, W., Zhang, Y., Cao, Z., Guan, H. "Permission-Combination-Based Android Malware Detection." 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) pp. 3191-3196, (2014).

[43] Alazab, M. "A Systematic Review on Android Malware Detection Based on Machine Learning Techniques." Journal
of Cyber Security Technology, 4(1), 47-62, (2020).

[44] Deepa, K. S., Eswaran, K. "Detection of Android Malware Using Data Mining Techniques." Procedia Computer
Science, 47, 43-50, (2015).

[45] Damshenas, M., Dousti, S. "A Novel Approach for Detection of Android Malware Using Minimal Dynamic Features."
2015 12th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology
(ISCISC) pp. 199-204, (2015).

[46] Talha, M., Borisyuk, F. "Malware Detection on Android: An Investigation into Machine Learning Algorithms." 2015
7th Computer Science and Electronic Engineering Conference (CEEC) pp. 140-145, (2015).

[47] Canfora, G., Medvet, E., Mercaldo, F., Visaggio, C. A. "Android Malware Detection Through Structural and
Behavioral Analysis of Application Components." IEEE Transactions on Software Engineering, 41(11), 1127-1147,
(2015).

[48] Amamra, A., Challal, Y. "Detection of Android Malware Using Models of Supervised Learning." 2016 12th
International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) pp. 35-42, (2016).

[49] Varsha, V., & Mahalakshmi, M. "Android Malware Classification Using Machine Learning Techniques." Procedia
Computer Science, 89, 97-101, (2016).

[50] Wang, S., Li, X., Zhang, J., & Zhang, J. "Android Malware Detection Based on Ensemble Learning Methods." Future
Generation Computer Systems, 89, 358-369, (2018).

[51] Xiao, Z., Yuan, J., & Liao, Q. "A Two-Stage Neural Network Model for Android Malware Detection." 2017 13th
International Conference on Computational Intelligence and Security (CIS) pp. 37-41, (2017).

[52] Sugunan, Krishna, T. Gireesh Kumar, and K. A. Dhanya. "Static and dynamic analysis for android malware detection."
In Advances in Big Data and Cloud Computing, pp. 147-155. Springer Singapore, 2018. https://doi.org/10.1007/978-
981-10-7200-0_13

[53] Kumar, N., Sood, K., Kumar, V., & Sharma, A. "An Empirical Analysis of Android Malware Classification Using
Permissions." 2018 IEEE International Conference on Consumer Electronics (ICCE) pp. 1-6, (2018).

[54] Feng, L., Duan, Y., Liu, Z., & Zhang, J. "Android Malware Detection Based on Feature Selection Using Hybrid
Features." 2018 14th International Conference on Computational Intelligence and Security (CIS) pp. 26-30, (2018).

[55] Aminordin, A. Z. M. I., FAIZAL MA, and R. O. B. I. A. H. Yusof. "Android malware classification base on application
category using static code analysis." J. Theor. Appl. Inf. Technol 96, no. 11 (2018).

[56] Yerima, Suleiman Y., and Sakir Sezer. "Droidfusion: A novel multilevel classifier fusion approach for android
malware detection." IEEE transactions on cybernetics 49, no. 2 (2018): 453-466.
https://doi.org/10.1109/TCYB.2017.2777960

[57] Yuan, S., Lu, L., & Xue, Y. "A Comparative Study of Machine Learning Algorithms for Android Malware Detection
Using Static Features." 2020 IEEE International Conference on Big Data (Big Data) pp. 4461-4468, (2020).

[58] Arshad, M., & Raza, A. "Detection of Android Malware Using Static and Dynamic Analysis." 2018 International
Conference on Frontiers of Information Technology (FIT) pp. 281-286, (2018).

[59] Fang, B., & Xiao, Y. "A Hybrid Approach to Android Malware Detection Using Static and Dynamic Analysis." 2019
IEEE International Conference on Data Mining Workshops (ICDMW) pp. 738-745, (2019).

[60] Chandy, Jeff. "Review on Malware, Types, and its Analysis."
[61] Dhalaria, Meghna, and Ekta Gandotra. "A hybrid approach for android malware detection and family classification."

(2020). https://doi.org/10.9781/ijimai.2020.09.001

https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1109/ICAECIS58353.2023.10170311
https://doi.org/10.1007/978-981-10-7200-0_13
https://doi.org/10.1007/978-981-10-7200-0_13
https://doi.org/10.1109/TCYB.2017.2777960
https://doi.org/10.9781/ijimai.2020.09.001

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

266

[62] Ding, Chao, Nurbol Luktarhan, Bei Lu, and Wenhui Zhang. "A hybrid analysis-based approach to android malware
family classification." Entropy 23, no. 8 (2021): 1009. https://doi.org/10.3390/e23081009

[63] Yang, Wang, Mingzhe Gao, Ligeng Chen, Zhengxuan Liu, and Lingyun Ying. "RecMaL: Rectify the malware family
label via hybrid analysis." Computers & Security 128 (2023): 103177. https://doi.org/10.1016/j.cose.2023.103177

[64] Dugyala, Raman, N. Hanuman Reddy, V. Uma Maheswari, Gouse Baig Mohammad, Fayadh Alenezi, and Kemal
Polat. "Analysis of malware detection and signature generation using a novel hybrid approach." Mathematical
Problems in Engineering 2022 (2022): 1-13. https://doi.org/10.1155/2022/5852412

[65] Qingyang, Ling. “Machine learning algorithms review.” Applied and Computational Engineering, 4(1):91-98, (2023).
https://doi.org/10.54254/2755-2721/4/20230355

[66] Oppong, Stephen Opoku. "Predicting Students’ Performance Using Machine Learning Algorithms: A Review." Asian
Journal of Research in Computer Science 16, no. 3 (2023): 128-148. https://doi.org/10.9734/ajrcos/2023/v16i3351

[67] Henry, Knipe. “Overview of Machine Learning.” International Journal of Advanced Research in Science,
Communication and Technology, 76-79, (2022). https://doi.org/10.48175/IJARSCT-3885

[68] Louis, H., Kauffman. “Reinforcement Learning.” 350-370, (2023). https://doi.org/10.1017/9781108755610.013
[69] Morales-Ortega, Salvador, Ponciano Jorge Escamilla-Ambrosio, Abraham Rodriguez-Mota, and Lilian D. Coronado-

De-Alba. "Native malware detection in smartphones with android os using static analysis, feature selection and
ensemble classifiers." In 2016 11th International Conference on Malicious and Unwanted Software (MALWARE),
pp. 1-8. IEEE, 2016. https://doi.org/10.1109/MALWARE.2016.7888731

[70] Shahriar, Hossain, Mahbubul Islam, and Victor Clincy. "Android malware detection using permission analysis."
In SoutheastCon 2017, pp. 1-6. IEEE, 2017. https://doi.org/10.1109/SECON.2017.7925347

[71] Aswini, A. M., and P. Vinod. "Droid permission miner: Mining prominent permissions for Android malware analysis."
In The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT
2014), pp. 81-86. IEEE, 2014. https://doi.org/10.1109/ICADIWT.2014.6814679

[72] Ilham, Soussi, Ghadi Abderrahim, and Boudhir Anouar Abdelhakim. "Permission based malware detection in
android devices." In Proceedings of the 3rd International Conference on Smart City Applications, pp. 1-6. 2018.
https://doi.org/10.1145/3286606.3286860

[73] Mohamad Arif, Juliza, Mohd Faizal Ab Razak, Suryanti Awang, Sharfah Ratibah Tuan Mat, Nor Syahidatul Nadiah
Ismail, and Ahmad Firdaus. "A static analysis approach for Android permission-based malware detection
systems." PloS one 16, no. 9 (2021): e0257968. https://doi.org/10.1371/journal.pone.0257968

[74] Wang, Huanran, Weizhe Zhang, and Hui He. "You are what the permissions told me! Android malware detection
based on hybrid tactics." Journal of Information Security and Applications 66 (2022): 103159.
https://doi.org/10.1016/j.jisa.2022.103159

[75] Alazab, Moutaz, Mamoun Alazab, Andrii Shalaginov, Abdelwadood Mesleh, and Albara Awajan. "Intelligent mobile
malware detection using permission requests and API calls." Future Generation Computer Systems 107 (2020): 509-
521. https://doi.org/10.1016/j.future.2020.02.002

[76] Effrosynidis, Dimitrios, and Avi Arampatzis. "An evaluation of feature selection methods for environmental
data." Ecological Informatics 61 (2021): 101224. https://doi.org/10.1016/j.ecoinf.2021.101224

[77] Fang, Yong, Yangchen Gao, F. A. N. Jing, and L. E. I. Zhang. "Android malware familial classification based on dex file
section features." IEEE Access 8 (2020): 10614-10627. https://doi.org/10.1109/ACCESS.2020.2965646

[78] Zhu, Hui-Juan, Zhu-Hong You, Ze-Xuan Zhu, Wei-Lei Shi, Xing Chen, and Li Cheng. "DroidDet: effective and robust
detection of android malware using static analysis along with rotation forest model." Neurocomputing 272 (2018):
638-646. https://doi.org/10.1016/j.neucom.2017.07.030

[79] Qamar, Attia, Ahmad Karim, and Victor Chang. "Mobile malware attacks: Review, taxonomy & future
directions." Future Generation Computer Systems 97 (2019): 887-909.
https://doi.org/10.1016/j.future.2019.03.007

[80] Amro, Bela. "Malware detection techniques for mobile devices." arXiv preprint arXiv:1801.02837 (2018).
https://doi.org/10.2139/ssrn.3430317

[81] Shen, Feng, Justin Del Vecchio, Aziz Mohaisen, Steven Y. Ko, and Lukasz Ziarek. "Android malware detection using
complex-flows." IEEE Transactions on Mobile Computing 18, no. 6 (2018): 1231-1245.
https://doi.org/10.1109/TMC.2018.2861405

[82] Zhu, Hui-Juan, Zhu-Hong You, Ze-Xuan Zhu, Wei-Lei Shi, Xing Chen, and Li Cheng. "DroidDet: effective and robust
detection of android malware using static analysis along with rotation forest model." Neurocomputing 272 (2018):
638-646. https://doi.org/10.1016/j.neucom.2017.07.030

[83] Chen, Tieming, Qingyu Mao, Yimin Yang, Mingqi Lv, and Jianming Zhu. "Tinydroid: a lightweight and efficient model
for android malware detection and classification." Mobile information systems 2018 (2018).
https://doi.org/10.1155/2018/4157156

https://doi.org/10.3390/e23081009
https://doi.org/10.1016/j.cose.2023.103177
https://doi.org/10.1155/2022/5852412
https://doi.org/10.54254/2755-2721/4/20230355
https://doi.org/10.9734/ajrcos/2023/v16i3351
https://doi.org/10.48175/IJARSCT-3885
https://doi.org/10.1017/9781108755610.013
https://doi.org/10.1109/MALWARE.2016.7888731
https://doi.org/10.1109/SECON.2017.7925347
https://doi.org/10.1109/ICADIWT.2014.6814679
https://doi.org/10.1145/3286606.3286860
https://doi.org/10.1371/journal.pone.0257968
https://doi.org/10.1016/j.jisa.2022.103159
https://doi.org/10.1016/j.future.2020.02.002
https://doi.org/10.1016/j.ecoinf.2021.101224
https://doi.org/10.1109/ACCESS.2020.2965646
https://doi.org/10.1016/j.neucom.2017.07.030
https://doi.org/10.1016/j.future.2019.03.007
https://doi.org/10.2139/ssrn.3430317
https://doi.org/10.1109/TMC.2018.2861405
https://doi.org/10.1016/j.neucom.2017.07.030
https://doi.org/10.1155/2018/4157156

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

267

[84] Lou, Songhao, Shaoyin Cheng, Jingjing Huang, and Fan Jiang. "TFDroid: Android malware detection by topics and
sensitive data flows using machine learning techniques." In 2019 IEEE 2Nd international conference on information
and computer technologies (ICICT), pp. 30-36. IEEE, 2019. https://doi.org/10.1109/INFOCT.2019.8711179

[85] Jannat, Umme Sumaya, Syed Md Hasnayeen, Mirza Kamrul Bashar Shuhan, and Md Sadek Ferdous. "Analysis and
detection of malware in Android applications using machine learning." In 2019 International Conference on
Electrical, Computer and Communication Engineering (ECCE), pp. 1-7. IEEE, 2019.
https://doi.org/10.1109/ECACE.2019.8679493

[86] Enck, William, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. "Taintdroid: an information-flow tracking system for realtime privacy
monitoring on smartphones." ACM Transactions on Computer Systems (TOCS) 32, no. 2 (2014): 1-29.
https://doi.org/10.1145/2619091

[87] Shankar, Venkatesh Gauri, Gaurav Somani, Manoj Singh Gaur, Vijay Laxmi, and Mauro Conti. "AndroTaint: An
efficient android malware detection framework using dynamic taint analysis." 2017 ISEA Asia security and privacy
(ISEASP) (2017): 1-13. https://doi.org/10.1109/ISEASP.2017.7976989

[88] Zhang, Jixin, Zheng Qin, Kehuan Zhang, Hui Yin, and Jingfu Zou. "Dalvik opcode graph based android malware
variants detection using global topology features." IEEE Access 6 (2018): 51964-51974.
https://doi.org/10.1109/ACCESS.2018.2870534

[89] Bhatia, Taniya, and Rishabh Kaushal. "Malware detection in android based on dynamic analysis." In 2017
International conference on cyber security and protection of digital services (Cyber security), pp. 1-6. IEEE, 2017.
https://doi.org/10.1109/CyberSecPODS.2017.8074847

[90] Bhatia, Taniya, and Rishabh Kaushal. "Malware detection in android based on dynamic analysis." In 2017
International conference on cyber security and protection of digital services (Cyber security), pp. 1-6. IEEE, 2017.
https://doi.org/10.1109/CyberSecPODS.2017.8074847

[91] Garg, Shree, Sateesh K. Peddoju, and Anil K. Sarje. "Network-based detection of Android malicious
apps." International Journal of Information Security 16 (2017): 385-400. https://doi.org/10.1007/s10207-016-
0343-z

[92] Cai, Haipeng, Na Meng, Barbara Ryder, and Daphne Yao. "Droidcat: Effective android malware detection and
categorization via app-level profiling." IEEE Transactions on Information Forensics and Security 14, no. 6 (2018):
1455-1470. https://doi.org/10.1109/TIFS.2018.2879302

[93] BalaGanesh, D., Amlan Chakrabarti, and Divya Midhunchakkaravarthy. "Smart devices threats, vulnerabilities and
malware detection approaches: a survey." European Journal of Engineering and Technology Research 3, no. 2
(2018): 7-12. https://doi.org/10.24018/ejeng.2018.3.2.302

[94] Wei, Linfeng, Weiqi Luo, Jian Weng, Yanjun Zhong, Xiaoqian Zhang, and Zheng Yan. "Machine learning-based
malicious application detection of android." IEEE Access 5 (2017): 25591-25601.
https://doi.org/10.1109/ACCESS.2017.2771470

[95] Saracino, Andrea, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. "Madam: Effective and efficient behavior-
based android malware detection and prevention." IEEE Transactions on Dependable and Secure Computing 15,
no. 1 (2016): 83-97. https://doi.org/10.1109/TDSC.2016.2536605

[96] Arshad, Saba, Munam A. Shah, Abdul Wahid, Amjad Mehmood, Houbing Song, and Hongnian Yu. "SAMADroid: a
novel 3-level hybrid malware detection model for android operating system." IEEE Access 6 (2018): 4321-4339.
https://doi.org/10.1109/ACCESS.2018.2792941

[97] Jannat, Umme Sumaya, Syed Md Hasnayeen, Mirza Kamrul Bashar Shuhan, and Md Sadek Ferdous. "Analysis and
detection of malware in Android applications using machine learning." In 2019 International Conference on
Electrical, Computer and Communication Engineering (ECCE), pp. 1-7. IEEE, 2019.
https://doi.org/10.1109/ECACE.2019.8679493

[98] Wang, Zhen, Kai Li, Yan Hu, Akira Fukuda, and Weiqiang Kong. "Multilevel permission extraction in android
applications for malware detection." In 2019 international conference on computer, information and
telecommunication systems (CITS), pp. 1-5. IEEE, 2019. https://doi.org/10.1109/CITS.2019.8862060

[99] Mahindru, Arvind, and Paramvir Singh. "Dynamic permissions based android malware detection using machine
learning techniques." In Proceedings of the 10th innovations in software engineering conference, pp. 202-210.
2017. https://doi.org/10.1145/3021460.3021485

[100] Hussain, Syed Jawad, Usman Ahmed, Humera Liaquat, Shiba Mir, N. Z. Jhanjhi, and Mamoona Humayun. "IMIAD:
intelligent malware identification for android platform." In 2019 International Conference on Computer and
Information Sciences (ICCIS), pp. 1-6. IEEE, 2019. https://doi.org/10.1109/ICCISci.2019.8716471

[101] Kumar, Ajit, K. S. Kuppusamy, and Gnanasekaran Aghila. "FAMOUS: Forensic Analysis of MObile devices Using
Scoring of application permissions." Future Generation Computer Systems 83 (2018): 158-172.
https://doi.org/10.1016/j.future.2018.02.001

https://doi.org/10.1109/INFOCT.2019.8711179
https://doi.org/10.1109/ECACE.2019.8679493
https://doi.org/10.1145/2619091
https://doi.org/10.1109/ISEASP.2017.7976989
https://doi.org/10.1109/ACCESS.2018.2870534
https://doi.org/10.1109/CyberSecPODS.2017.8074847
https://doi.org/10.1109/CyberSecPODS.2017.8074847
https://doi.org/10.1007/s10207-016-0343-z
https://doi.org/10.1007/s10207-016-0343-z
https://doi.org/10.1109/TIFS.2018.2879302
https://doi.org/10.24018/ejeng.2018.3.2.302
https://doi.org/10.1109/ACCESS.2017.2771470
https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.1109/ACCESS.2018.2792941
https://doi.org/10.1109/ECACE.2019.8679493
https://doi.org/10.1109/CITS.2019.8862060
https://doi.org/10.1145/3021460.3021485
https://doi.org/10.1109/ICCISci.2019.8716471
https://doi.org/10.1016/j.future.2018.02.001

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 1 (2025) 248-268

268

[102] Mustafa, Wan Azani, Haniza Yazid, Aimi Salihah Abdul-Nasir, and Mastura Jaafar. "An illumination normalization on
face images: A comparative." computer 35, no. 1 (2017): 1-9.

[103] Chin, Thoo Ai, and Liu Min. "The Effect of Supply Chain Risk Management Practices on Resilience and Performance:
A Systematic Literature Review." Journal of Advanced Research in Technology and Innovation Management 1, no.
1 (2021): 41-53.

[104] Damshenas, Mohsen, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Ramlan Mahmud. "M0droid: An android
behavioral-based malware detection model." Journal of Information Privacy and Security 11, no. 3 (2015): 141-157.
https://doi.org/10.1080/15536548.2015.1073510

[105] Verma, Sushma, and S. K. Muttoo. "An Android Malware Detection Framework-based on Permissions and
Intents." Defence Science Journal 66, no. 6 (2016). https://doi.org/10.14429/dsj.66.10803

[106] Milosevic, Nikola, Ali Dehghantanha, and Kim-Kwang Raymond Choo. "Machine learning aided Android malware
classification." Computers & Electrical Engineering 61 (2017): 266-274.
https://doi.org/10.1016/j.compeleceng.2017.02.013

[107] Yuan, Hongli, Yongchuan Tang, Wenjuan Sun, and Li Liu. "A detection method for android application security based
on TF-IDF and machine learning." Plos one 15, no. 9 (2020): e0238694.
https://doi.org/10.1371/journal.pone.0238694

[108] Surendran, Roopak, Tony Thomas, and Sabu Emmanuel. "A TAN based hybrid model for android malware
detection." Journal of Information Security and Applications 54 (2020): 102483.
https://doi.org/10.1016/j.jisa.2020.102483

https://doi.org/10.1080/15536548.2015.1073510
https://doi.org/10.14429/dsj.66.10803
https://doi.org/10.1016/j.compeleceng.2017.02.013
https://doi.org/10.1371/journal.pone.0238694
https://doi.org/10.1016/j.jisa.2020.102483

