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The development of a precise flood forecasting methodology necessitates the 
utilization of an automated data collection system for the examination of a 
comprehensive range of hydrographic catchment parameters that are continuously 
monitored. Monitoring river basins is a topic of significant strategic importance. In 
recent years, researchers have introduced several cutting-edge technologies to 
enhance this process, including the utilization of artificial intelligence (AI). Notably, AI 
has been applied in various techniques such as knowledge-based systems, agent-based 
modelling, and neural networks. These AI-based approaches have shown promise in 
improving the monitoring and management of river basins. The nationwide flood 
forecasting and warning system, known as 'NaFFWS', has been implemented in 
Malaysia through the PRAB program. The establishment was created with the purpose 
of facilitating the advancement of mitigation technologies aimed at minimizing the 
potential consequences of forthcoming flood events. The current utilization of 
modelling tools incorporates multiple factors that contribute to uncertainty, which can 
be attributed to the specific characteristics of the system. This review paper aims to 
explore the potential capabilities of an integrated multi-agent system specifically 
designed for the purpose of monitoring flood events. The proposed system is 
composed of logical agents and utilizes deep reinforcement learning (MADRL) 
techniques. This approach introduces a conceptual framework wherein a collection of 
intelligent agents collaborates to accomplish diverse tasks and effectively exchange 
information, ultimately facilitating the generation of timely alerts in the context of 
flood crises. The agents in question operate in collaboration with a hybrid approach 
that combines the DQN and TD3 algorithms. This combination is utilized to mitigate the 
various challenges arising from uncertainty. The proposed model's contribution is 
notable in enhancing flood forecasting accuracy amidst diverse sources of uncertainty. 
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1. Introduction 
 

It is estimated that one-fifth of Malaysia's total population is at risk of flooding. Large parts of the 
country are regularly hit by severe and prolonged flooding. These events result in significant 
economic disruption, destruction of critical infrastructure, and often require the evacuation of entire 
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communities from disaster-affected areas. Due to rapid urban growth and, in some cases, changes in 
rural land use, the impact of these floods has increased significantly over the past decade. This is 
because these developments have changed river runoff regimes and flood mechanisms [1]. According 
to the annual flood report by the Malaysian Ministry of Irrigation and Drainage (JPS) [2-6] for the five 
years from 2017 to 2021, a total of 4544 floods were recorded across the country, including flash 
floods, monsoon floods, mud flood and flood due to dam release. The breakdown of flood events by 
year is as follows; 2017 (1239 cases), 2018 (844 cases), 2019 (535 cases), 2020 (869 cases), 2021 
(1057 cases). Two states with the most floods in the last five years are Sarawak with a total of 1371 
and Selangor with a total of 689. 

As a direct response to the devastating floods that struck eight different states in Malaysia in 
December 2014, the country's government established the National Flood Forecasting and Warning 
Program (PRAB). These states are Kelantan, Terengganu, Pahang, Perak, Perlis, Johor, Sabah, and 
Sarawak. More than half a million people were forced to evacuate their homes as a result of the 
flood, and the damage caused by the disaster exceeded RM 2.85 billion. PRAB's mission is to create 
and maintain an effective and efficient integrated flood forecasting and river monitoring system, 
complete with flood warning dissemination, by utilising national network data, telemetry data, radar 
data, and rainfall forecasts. However, the system will be implemented by phases [7]. 

Flood forecasting has become a significant topic of study for this reason; it is essential for national 
economic planning and saving lives. In recent years, computer science has been incorporated into 
flood forecasting technology, and flood forecasting capabilities have been considerably enhanced by 
database technology, artificial intelligence technology, and various Web-based decision support 
systems [8]. While it may be impossible to totally remove flood risks, their impact can be mitigated 
with the help of early warning systems and real-time flood forecast. 

The purpose of flood forecasting is to anticipate potentially hazardous conditions as early as 
possible based on information about water supply and upcoming weather. Constraints such as data 
assimilation, minimal computation, and response time are essential for accurate real-time prediction 
[9]. Therefore, it is necessary to provide a real-time flood forecasting and warning system that 
considers all the above limitations. In this research, we propose a new multi-agent system (MAS) a 
real-time forecasting and alerting framework that acts as a guide for future development. 

The remaining sections are organised as follows: Section 2 introduces the National Flood 
Forecasting and Warning System. In addition, Section 2 presents the previous research conducted by 
various scholars. Methods and techniques used in for the proposed conceptual model presented in 
the section 3. In Section 4, we introduce our real-time flood forecasting and warning system, which 
is based on multi-agent systems and the potential contribution of our proposed work. Section 5 
concludes with a conclusion and recommendations for future work. 

 
2. Preliminaries and Related Work 
2.1 National Flood Forecasting and Warning System 

 
Malaysia, through its PRAB had introduced new National Flood Forecasting and Warning System 

(NaFFWS) to serve as mitigation strategies to reduce the effects of future floods. NaFFWS forecasts 
river flows up to seven days in advance and issues flood alerts. NaFFWS Phase 1's flood forecasting 
system uses InfoWorks ICM for hydrological and hydrodynamic models and ICMLive for the shell. 
ICMLive loads real-time data, runs forecast simulations at predetermined times, analyses outcomes, 
and generates warnings [1].  

ICMLive is a live modelling tool that was developed by Innonyze. It interfaces with hydraulic 
models, SCADA historians, and GIS applications in order to deliver updates on the operation of the 
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system in a manner that is very close to real time. It is able to take radar data into account in order 
to estimate the influence that rainfall will have on collection system performance, floods, and the 
probability of overflow events occurring [10]. 

According to [11] ICMLive has been utilised in NaFFWS Phase 1 basins to generate flood forecasts 
based on real-time data. The created system automates the necessary processes by collecting and 
processing actual and forecast data and combining them with the ICM model (for simulating 
hydrologic and hydraulic processes) to produce flood forecasts:  

 
i. Consolidate and validate real-time hydrometric data from river and rain gauges from JPS, 

radar data from Met Malaysia, and quantitative precipitation forecasts (QPFs) from 
Malaysia Meteorology Department (Met Malaysia). ICMLive's adaptable data connectivity 
permits the reading of a variety of real-time data formats 

ii. Automatically initialize model simulations (using antecedent conditions and continuous 
tracking of the soil moisture content) 

iii. Analyse and report on the observed data and the model forecasts 
iv. Generate and disseminate alerts based on the data and/or model projections. Figure 1 

shows the overview of NaFFWS. 
 

 
Fig. 1. Overview of NaFFWS 

 
The NaFFWS system revolves around ICMLive as the primary hub. ICMLive automatically retrieves 

the input data (precipitation and water level) from the main database (main DB) and storage folders, 
and then imports this data into its own time series database (TSDB). Run the ICM hydrological and 
hydraulic flood models 7 days in advance, store the results in a database, and export the flood results 
to the main database. Additionally, it is set to send notifications when certain water levels are 
reached at rivers, towns, villages and other pre-selected points of interest (POIs). 
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ICMs, like every other modelling tool, have a variety of sources of uncertainty as a result of the 
characteristics that are inherent to the system. Complex processes are represented with minimal 
knowledge, relationships are calibrated using constrained data sets (which may lead to a poorly 
recognisable parameterisation), and linked simulations are carried out across a wide variety of 
spatiotemporal scales [12]. The step-by-step process of abstracting from the real world to represent 
it in a model, with all of the necessary simplifications and idealizations of the real systems that go 
along with it, inevitably results in the appearance of uncertainty [13]. These uncertainties include 
errors introduced by model parameterization, model-forcing data (such as precipitation), model 
input data (such as digital elevation models, soil or sewer conduit maps), model validation data (such 
as the use of incorrect water level rating curves), and model structures. For example, precipitation is 
an example of a model-forcing data (e.g. different mathematical representations) 
 
2.2 Literature Review and Analysis 

 
Priority areas and challenges, as well as gaps in the literature, are identified as a result of this 

review, which provided substantive directions for a new approach. Fourth steps were used to identify 
pertinent literature: First, a database search of Google Scholar was conducted using the search terms 
"Flood Forecasting" AND "Multi Agent System." Due to the nature and timeliness of the topic, Google 
was also searched for Flood Forecasting-related literature, including research results. Second, we 
conducted a search of academic databases (WoS and Scopus) for articles containing the terms "Flood 
Forecasting AND Multi Agent System." Thirdly, relevant papers were selected from the articles listed 
in the references of the key articles. Fourth, as a result of the literature review, related topics, such 
as machine learning and deep learning, have been selected as focal points. Moreover, based on the 
identified literature analysis, areas containing Multi Agent System Flood Forecasting challenges and 
issues were researched using keywords associated with these subjects.  

George et al., [14] presented a real-time simulator that forecasts floods using an adaptive model. 
The simulator is made up of two levels of self-organizing multi-agent systems. Each agent on the 
higher level has the responsibility of computing the change in water level over the course of a unitary 
period (usually an hour), and they accomplish this by using a weighted sum of the agents on the lower 
level. Enhancement of the real-time simulator from previous work on [14] have been implemented 
by integrating the Decision Support System with Adaptive MAS theory.  

A combination of MAS theory and Decision Support System (DSS) for reservoir group's flood 
prevention optimizing schedule algorithm also has been introduced by [15]. In this research, a two-
stage multi-joint reservoir scheduling model was designed based on Mobile Agent and Agent's 
cooperation. Meanwhile, De Roure et al., [16] proposed a pervasive computing system that consists 
of stationary and mobile agents and an expert system to manage available sensors on the network 
and use their information to monitor the water level in a river, as well as feed data into a grid-based 
flood predictor model in order to generate an alert for the situation.  

The role of MAS in monitoring and analysing potential flood events is utilize by [17] in a 
distributed system environment. The monitoring and analysing multi-agent system, often known as 
MASMA, is a decentralised system that consists of both central components (the dispatcher agent) 
and local components (the measuring agents). In contrast, Weerawardhana and Jayatilleke [18] 
proposed a distributed system by integrating Belief-Desire-Intention (BDI) based MAS with web 
services. This work built a web services inter-agent communication framework to share beliefs and 
aims. Using a service-based strategy let multi-agent systems interoperate in actual software 
environments like the Internet. The communication architecture uses a message broker service 
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concept. The implemented multi agent system simulates Sri Lanka's flood forecasting system and 
employs the proposed communication infrastructure to share goals and beliefs. 

Mabrouk et al., [19] proposed a new optimal model based on multi-agent systems for treatment 
of dataset received from wireless sensors in order to classify data into two classes Valid and Invalid 
data to overcome the flood disaster. This model then gone through several enhancement on the 
implementation. In [20], Mabrouk et al., had combining the roles of MAS and Wireless Sensor 
Network (WSN) with an expert system. The agents are responsible for making the processing in real-
time proposed by the two levels of forecasting and they are also responsible for deciding about the 
flood occurrence by communicating with the knowledge base that contains the decision rules under 
decision tree format. Meanwhile in [21], they described an intelligent Pre-Processing model for 
classification and aggregation of real-time flood forecasting and warning data based on MAS and 
WSN. The suggested model comprises of multiple stages to monitor the wireless sensors and their 
proper operation, to give the most accurate real-time data from wireless sensor networks, and to 
produce historical data for future flood forecasting. 

Linghu and Chen in their [22] study presents a case-based multi-agent approach for flood disaster 
forecasting. First, the suggested framework includes Front end user computer, Back-end server, and 
Flood disaster predicting servers. The suggested flood disaster predicting system consists of multiple 
agents, each of which implements a certain function. In the proposed algorithm, each agent has its 
own case base and cannot visit other agents' directly. Each case has a problem and a solution.  

Meanwhile, [23] presents a distributed decision support system for flood management. This 
system uses Multi-Agent Systems and Anytime Algorithm and has two processing modes: Pre-
Processing to test and control sensor data in real-time and Main Processing with three components. 
The first part, Trigger Mode, monitors rainfall and triggers the second part, Offline Mode, which 
anticipates floods based on past data without using a real-time decision support system. The online 
mode estimates the flood using real-time data, module communications, hydrodynamic data, GIS, 
decision support, and remote sensing. 

An agent-based system that combines the capabilities of neural networks with those of intelligent 
logical agents to obtain a tool for real-time flood recognition, alert transmission and mobilisation of 
rescue activities, fire departments, and essentially all required authorities had been proposed by [24]. 
In contrast, [25] presents a tropical catchment modelling environment in which the multi-agent 
systems approach was used as a substitute for the conventional hydrologic model to construct a 
system that operates at the catchment level and is displayed with hydrometric stations, which use 
the data from hydrometric sensors networks (e.g., rainfall, river stage, river flow) captured, stored, 
and administered by an organisation of interacting agents whose primary objective is to perform flow 
forecasting. 

Table 1 and Table 2 provide summary in yearly manner of the related research on flood 
forecasting/prediction based on MAS approaches and the parameter used to forecast the events. 
Based on the table, we could see how the flood forecasting using MAS has been evolved over the 
years. 
 
 
 
 
 
 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 50, Issue 1 (2025) 220-237 

225 
 

Table 1 
Summary on Previous Work 

Authors Year Method Use of MAS Flood 
forecasting 

Flood 
Control 

Disseminate 
flood warning 
to third parties 

George et al.,  2003 MAS + Adaptive 
MAS (AMAS) 
Theory 

Real Time Simulation / x x 

De Roure et al., 2005 MAS + Grid 
computing 

agent-based pervasive 
computing simulator 

/ x x 

Xie et al., 2009 MAS + DSS + Agent 
Theory +scheduling 

reservoir group's flood 
prevention optimizing 
schedule algorithm 

x / x 

George et al., 2009 MAS+DSS+AMAS 
Theory 

Real-Time Decision 
Support System 

/ x x 

Matei 2011 MAS monitoring and 
analysing of the 
parameters of the 
hydrographical basin 

/ x x 

Weerawardhana 
et al., 

2011 MAS+BDI+Web 
services 

monitoring and 
analysing of the 
parameters of the 
hydrographical basin 

/ x / (general 
public and 
media) 

Marouane et al., 2014 MAS+WSN Data Classifier / x / (Base Station) 
Linghu et al., 2014 MAS+Case Based 

Reasoning 
Forecasting agent / x x 

El Mabrouk et 
al., 

2015 MAS + Expert 
System 

Real-Time processor 
and communicator  

/ x / (via email and 
SMS) 

El Mabrouk et 
al., 

2017 MAS+WSN Data classifier / / x 

Wahyu Satria Aji 2019 MAS +  Particle 
Swarm 
Optimization 

Rainfall point detector 
based on sensor 

/ x x 

Marouane et al., 2021 MAS+Ditributed 
DSS + Anytime 
Algorithm 

Forecasting using 
anytime algorithm  
and communicating 
among modules 

/ x / (within the 
system) 

Rafanelli et al., 2022 MAS+ML+ Neural 
Network 

monitoring flood 
events 

/ x /(send alert to 
relevant 
authorities) 

Simmonds et al., 2022 MAS+BDI stream-flow 
predictions  

/ x not stated 

*MAS: Multi Agent System DSS: Decision Support System WSN: Wireless Sensor Network BDI: Belief-Desire-Intention 
ML: Machine Learning 
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Table 2 
Summary of Input Parameter 

Authors Year Input Parameter Lead Time 
  Water 

Level 
Rainfall 
Level 

Flow 
Level 

River 
Velocity 

Air 
Temperature 

Runoff  

George et al., 2003 / / x x x x Not Mention 
De Roure et al., 2005 / x x x x x Not mention 
Xie et al., 2009 / / x x x x Not Mention 
George et al., 2009 / / x x x x Not Mention 
Matei 2011 / / / / / x Not Mention 
Weerawardhana 
et al., 

2011 / / x x x x Not Mention 

Marouane et al., 2014 / / / x x / Not Mention 
Linghu et al., 2014 / / x x x x Not mention 
El Mabrouk et al., 2015 / / x x x / Short Term, 

Medium Term, 
Long Term 

El Mabrouk et al., 2017 / / x x x / Not Mention 
Wahyu Satria Aji 2019  / x x x x Not mention 
Marouane et al., 2021 / / x x x / Not Mention 
Rafanelli et al., 2022 / / x x x x Not Mention 
Simmonds et al., 2022 / / / x x x Not Mention 

 
3. Methodology 

 
This section presents the methods used in proposing our new multi-agent-based Flood 

Forecasting and Warning System Model (MFFWS). The development of this model is based on the 
System, Model, Problem guidelines introduced by [26]. In this study, the System was 
Hydrometeorological Monitoring System (HMS), Flood Forecasting and Warning System (FFWS) was 
the Model and the Problem was ‘training the multi agent for forecasting flood and issuing early 
warning’. Figure 2 summarizes the methodology mapping in developing the MFFWS conceptual 
model. 
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Fig. 2. Methodology Mapping 

 
3.1 Multi-Agent Deep Reinforcement Learning Overview 

 
The advancements in reinforcement learning have yielded phenomenal results in numerous 

fields. Despite the fact that the multi-agent domain has been overshadowed by its single-agent 
counterpart during this period of progress, multi-agent reinforcement learning is gaining rapid 
traction, and the most recent achievements target problems with real-world complexity [27].  

As illustrated in Figure 3, there are two distinct types of solution methods: model-based and 
model-free. In model-based DRL, the model is either learned or known. A significant advantage of 
the model-based strategy is that it requires less learning examples. However, it becomes significantly 
more computationally complex when the model becomes unexpectedly difficult to master. On the 
contrary, model-free RL will be easier to work with. Effectiveness requires no accurate description of 
the environment, and it is also less computationally complex [28,29].  
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Fig. 3. Overview of Deep Reinforcement Learning Algorithm 

 
In model-free DRL broadly classified into two types: value-based and policy-based. Using dynamic 

programming, value-based methods construct optimal policy by obtaining an approximation of the 
optimal function Q*(s, a). The Q-function in DRL is represented by a deep neural network. Policy-
based algorithms use gradient approximate estimations relative to policy parameters to directly 
optimise policy π* without any additional information about MDP [27,30]. 

The framework of multi-agent reinforcement learning as shown in Figure 4 is a Markov Decision 
Process-based (MDP) stochastic game represented by the tuple S, A1…An, R1…Rn, P. Where n is the 
number of agents, A = A1 ×…×An is the joint action space of all agents, and Rn ∶ S × A × S → R is the 
agent's reward function, and P ∶ S × A × S → [0, 1] is the state transition function, assuming the reward 
function is constrained [31]. 

 

 
Fig. 4. Multi Agent Interaction with environment in MADRL [31] 
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3.2 Flood Related Deep Reinforcement Learning (DRL) Applications 
 
In order to proceed with the designing our new proposed conceptual model. We did some 

research on DRL approach used on related flood areas. Table 3 summarizes the findings. 
 
Table 3 
DRL Approach on Related Flood Events 

Author Agent 
System 

Algorithm/ RL 
Methods 

Training and 
Execution Scheme 

Input Reward 
Structure 

(Arakawa and Chun) 
[32] 

Single 
agent 

Twin Delayed 
DDPG (TD3) 

- Rainfall 
Flow rates 

Deterministic 

(Wang et al.,) [33] Single 
Agent 

Model-Free 
(Based on MDP) 

- Flood level Deterministic 

(Saliba et al.,)  [34] Single 
Agent 

DDPG Centralized 
Training 

Rainfall Deterministic 

(Baldazo, Parras, and 
Zazo) [35] 

Multi-
Agent 

DQN CTDE 2D Map 
Water level 

Independent 
reward 
Shared reward 

(Rongtao et al.,) [36] Multi-
Agent 

MADDPG CTDE Production time 
The bottom hole 
pressures 
The oil 
production rate 
Gas-oil ratio 

Net present 
Value (NPV) 

(Rajulapati, 
Nukavarapu, and 
Durbha) [37] 

Multi-
Agent 

MADDPG CTDE Flood 
inundation 
Water 
inundation 
Road Blocked 

Not Mention 

 
[33] proposed the development of an IoT-enabled, MDP-based method for simulating storm 

surges using deep reinforcement learning. Utilizing the power of the IoT system, the suggested 
method is able to accurately evaluate the degradation of subterranean pipelines. Experiments are 
performed on a case study that initialises an urban IoT system for storm surge and gathers the volume 
of flooding. Meanwhile [32] develop a model for operating several dams for flood control using deep 
reinforcement learning. The developed model utilised Twin Delayed Deep Deterministic Policy 
Gradient (TD3) for the dam operating AI, and it was deployed to three different dams in a river basin. 
Flood control utilising an AI for dam operation for each dam was compared to flood control using 
dam operation guidelines. The performance of the dam operation AI was also tested based on the 
sort of reward. 

Three Deep Deterministic Policy Gradient (DDPG) agents were trained through 10,000-time steps 
of interaction with a Storm Water Management Model simulation in [32]. Following training, the RL 
policies were tested on a series of rainfall events that had never been observed before. The 
researchers discovered that the DDPG techniques were able to tolerate unclear data, resulting in 
comparable flood mitigation capabilities for all three data circumstances. In multi agent 
environment, [35-37] adopt Deep Q-Network (DQN) and DDPG as the DRL algorithm to simulate the 
process of monitoring their specific flood event. Figure 5 illustrates the schematic diagram of single 
agent and multi-agent in the flood monitoring system with deep reinforcement learning control loop. 

A technique for training through DRL using DDPG for guiding multiple fixed wing aircraft to 
monitor floods in a decentralized fashion was introduced by [35]. Agents are able to make 
judgements based on raw input data, which consists of a processed optical image and some 
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information about the swarm's local state. The degree of decentralisation in training was compared 
across two incentive schemes. Simulation results indicate that planes are capable of monitoring 
floods in a coordinated manner with both incentive schemes. These controllers could be placed in 
actual UAVs to lower operational expenses. We trained on simulated floods caused by dam failures, 
but the training method should work well on all types of floods if the training material is sufficiently 
generic. 

We simplified the DRL algorithm, training scheme, and reward structure in a schematic DRL 
learning control loop based on Flood Monitoring System (FMS) as the environment as in Figure 4. 
This schematic showing a clear distinction between the RL algorithm that currently used in FMS 
environment. 
 

 
Fig. 5. Schematic showing a Flood Monitoring System Deep Reinforcement Learning Control Loop 

 
3.3 Proposed Multi-Agent Based Flood Forecasting and Warning System Model (MFFWS) 

 
This section describes the process of deriving new FFWS model by integrating the FMS and DRL 

control loop in one mechanism to monitor flood. Based on our literature findings, we constructed a 
new conceptual model for multi-agent-based flood forecasting and warning system. Our new 
conceptual model derived from the current forecasting system used by Malaysia known as NaFFWS 
as shown as in Figure 1. Figure 6 shows the enhancement area that we made on the current NaFFWS. 
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Fig. 6. Area of Research Contribution 

 
3.3.1 Multi-agent system architecture 

 
The proposed Multi-Agent System (MAS) framework is structured to efficiently handle the 

complexities of real-time flood monitoring and forecasting. It comprises several interdependent 
agents, each specializing in distinct tasks that contribute to the overall predictive capability of the 
system:  

 
i. Rainfall Agent (RA): The RA is responsible for collecting real-time rain data from field rain 

gauge sensors. It then transmits this data to the Processor Agent for further processing 
and analysis. 

ii. Water Level Agent (WLA): The WLA gathers real-time river surface water level data from 
field water level sensors. Similar to the RA, this data is sent to the Processor Agent for 
integration into the forecasting process. 

iii. Flow Level Agent (FLA): The FLA focuses on obtaining real-time flow discharge data from 
field flow meter sensors. Like the RA and WLA, this data is relayed to the Processor Agent. 

iv. Processor Agent (PA): The PA acts as a central hub for data processing. It receives data 
from the RA, WLA, and FLA, and then performs essential pre-processing tasks, including 
data treatment and imputation. These steps ensure that the incoming data is reliable and 
consistent for subsequent analysis. 

v. Historic Agent (HA): The HA plays a vital role in data management and storage. It keeps a 
record of all data flowing through the MAS environment, logging communications and 
sensor readings. This stored information is available for reference and sharing among 
agents when needed. 

vi. Forecast Agents (FAs): The FAs represent a collaborative group of agents designed to 
implement the Multi-Agent Deep Reinforcement Learning (MADRL) algorithm. These 
agents are trained to effectively interact with the environment and learn optimal control 
policies. During execution, they use their learned policies to make real-time decisions that 
contribute to the forecasting process. 

vii. Alert Agent (AA): The AA holds the crucial responsibility of interpreting the forecast 
outputs generated by the FAs. It categorizes potential flood events based on severity, 
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generating alerts that are color-coded to indicate different levels of risk. The AA also 
communicates these alerts to relevant authorities and users through an intuitive user 
interface. 

 
3.3.2 Data processing and integration 

 
The integration of real-time data from the RA, WLA, and FLA into the framework is a critical step. 

Raw data obtained from these sensors may contain anomalies or missing values. The Processor Agent 
(PA) plays a pivotal role in rectifying these issues through data treatment and imputation. By ensuring 
the quality and consistency of the input data, the PA contributes to the accuracy of subsequent 
analyses. 

 
3.3.3 Deep reinforcement learning algorithms 

 
The core of the forecasting process involves the application of Deep Reinforcement Learning 

(DRL) algorithms. Specifically, the Twin Delayed Deep Deterministic Policy Gradient (TD3) and Deep 
Q Network (DQN) algorithms are employed. These algorithms enable agents to learn and optimize 
control policies that guide their decision-making in the face of uncertain and dynamic flood-related 
scenarios. 

 
3.3.4 Environment and state representation 

 
The MAS framework operates within an environment defined by the input data streams, including 

rainfall, river flow, and water level data. Agents interact with this environment by perceiving its state. 
The state representation is multidimensional and includes: 

 
i. 24-hour rainfall forecast 

ii. Water flow rate 
iii. Water level rate 
iv. Reservoir volume 

 
This rich state representation empowers agents to make informed decisions by capturing relevant 

information about the current and predicted environmental conditions. 
 

3.3.5 Actions and rewards 
 
In response to the perceived state, agents take actions that influence the forecast outcomes. The 

central goal is to determine the probability of flood occurrence categorized into different levels of 
intensity. The actions taken by agents guide the decision-making process to mitigate potential flood 
risks. Rewards within the MAS framework is designed to incentivize desired behaviour. During 
flooding events, specific rewards are employed: 

 
i. Positive reward based on flow rate: Encourages agents to respond effectively to changing 

flow conditions, facilitating optimal water management. 
ii. Negative reward when reservoir capacity is reached: Discourages actions that may lead to 

the reservoir exceeding its maximum storage capacity, mitigating flood-related risks 
downstream. 
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3.4 Uncertainty Analysis 
 
As part of the model evaluation, an uncertainty analysis will be carried out. We used two types 

of uncertainties in this study: (a) the diversity of rainfall events and (b) the RL agents' imperfect inputs 
[38]. Typically, the flooding and overflow volume of a given water reservoir are strongly influenced 
by rainfall conditions, making it difficult to assess the performance of the RL agents. Given this, we 
used the ratio of total flooding and overflow to total inflow (RSI) as an indicator of the RL agents' 
performance in the uncertainty analysis. 

 
𝑅𝑆𝐼 = 𝑡ℎ𝑒	𝑠𝑢𝑚	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤	𝑎𝑛𝑑	𝑡𝑜𝑡𝑎𝑙	𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔/𝑡𝑜𝑡𝑎𝑙	𝑖𝑛𝑓𝑙𝑜𝑤	       (1) 

 
This index ranges from 0 to 1. Therefore, it reduces the influence of the rainy conditions and 

offers a relatively objective evaluation of the RL agents' forecasting ability. 
 

4. Result & Discussion 
4.1 System Architecture and Agent Roles 

 
The intricate architecture of the proposed Multi-Agent System (MAS) framework plays a pivotal 

role in the effectiveness of flood monitoring and forecasting. The distribution of roles among agents 
- Rainfall Agent (RA), Water Level Agent (WLA), Flow Level Agent (FLA), Processor Agent (PA), Historic 
Agent (HA), Forecast Agents (FAs), and Alert Agent (AA) - enables a seamless flow of information and 
a division of labour that is conducive to accurate predictions. The collaborative efforts of these agents 
ensure the efficient gathering, preprocessing, analysis, and dissemination of data, underscoring the 
system's robustness. 
 
4.2 Data Integration and Quality Assurance 

 
The success of any forecasting system hinges on the quality and reliability of input data. The 

Processor Agent (PA) acts as a crucial gatekeeper by conducting data treatment and imputation. The 
integration of data from various sensors, each susceptible to noise and errors, poses a challenge that 
the PA adeptly addresses. This data refinement process significantly contributes to the accuracy of 
subsequent analyses, highlighting the importance of proper data handling in real-world forecasting 
scenarios. 
 
4.3 Deep Reinforcement Learning Algorithms 

 
The utilization of Twin Delayed Deep Deterministic Policy Gradient (TD3) and Deep Q Network 

(DQN) algorithms represents a pivotal step towards enhancing flood forecasting accuracy. These 
algorithms provide agents with the ability to learn optimal control policies through interactions with 
the environment. The distinct algorithms cater to both continuous and discrete action spaces, 
allowing for a versatile approach to decision-making. This adaptation in algorithm selection 
showcases a well-thought-out strategy to cater to the inherent complexities of flood monitoring and 
forecasting. 
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4.4 Real-Time Decision-Making and Alert Generation 
 
The Forecast Agents (FAs) are at the heart of real-time decision-making within the MAS 

framework. Through their training with DRL algorithms, these agents learn to act in a manner that 
maximizes the accuracy of flood predictions. The integration of forecast outputs into the Alert Agent's 
(AA) decision-making process leads to well-informed and timely alert generation. This fluid 
collaboration between forecast generation and alert dissemination minimizes response time, a 
critical factor in disaster preparedness. 
 
4.5 Performance Metrics and Practical Implications 

 
The framework's efficacy is evaluated through pertinent performance metrics, emphasizing 

accuracy, timeliness, and efficiency. The integration of intelligent agents and DRL algorithms results 
in heightened forecast accuracy, translating to actionable insights for stakeholders. Timely alerts, 
categorized by severity, enhance decision-makers' ability to assess risks and allocate resources 
effectively. The MAS framework's ability to adapt to changing conditions and its potential to 
revolutionize flood risk management underscore its practical implications for real-world disaster 
scenarios. 

Our proposed conceptual model is comprised of the multi-agent architecture for flood forecasting 
and warning system integrated with Deep Reinforcement Learning for optimal flood forecast decision 
making. Figure 7 depicts our proposed conceptual model. The knowledge gained from the related 
literature review and related concepts resulted in the development of the proposed conceptual 
model to improve current flood forecasting within Malaysia's geographic boundaries. It is also meant 
to explain current MAS implementation in flood forecast areas and provide guidance for the next 
system implementation steps. Our overall contribution is the creation of a new model for the 
adoption and implementation of MADRL for flood forecasting, which is virtually non-existent in the 
literature. There have been a few theories proposed and models developed related to MAS-based 
flood forecasting, but this is the first to integrate the components of MAS and Deep Reinforcement 
Learning in a distributed forecasting system. 

Uncertainty is one of the most challenging issues in current NaFFWS implementation due to the 
modelling tools and not to mention some cases in MAS modelling. Flood forecasting is one of the 
challenging decision-making issues with vast high-dimensional data [12,13,17] and uncertainty, 
hence an approach combining the multi-agent actor-critic algorithm with the deep deterministic 
policy gradient algorithm is suggested. 

Multi-agent deep reinforcement learning (MADRL) is the learning technique of numerous agents 
attempting to maximise their projected total discounted reward while coexisting in a Markov game 
environment with transition and reward models that are typically uncertain or noisy. Formally, agents 
estimate their action values using neural networks with a large number of layers as a function 
approximator. In MADRL, an agent's optimal policy depends not just on the environment but also on 
the policies of other agents. Therefore, it minimizes the uncertainty factors that may occur during 
the agent decision making process [38-40].  
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Fig. 7. MAFFWS Conceptual Model with Enlarge DRL Agent Algorithm 

 
5. Conclusion 

 
This idea is the first stage in the creation of an integrated system that can provide help and 

support during catastrophic weather occurrences, such as flooding. This concept arose from a desire 
to address the increasingly regular and severe problem of flood inundation. In light of this, we believe 
that artificial intelligence in general could provide a rapid and effective response to aid people in 
managing crises of this scale. We feel the success of the combination of multi-agent paradigms and 
Deep Reinforcement Learning could be the proposal's greatest strength.  

Designing agents so that they can work efficiently and synergistically is crucial. This demands the 
identification of defined responsibilities for each agent, as well as the abstraction and formalisation 
of the multiagent system's organisational structure. In the future, we plan to develop each 
component of the suggested system in depth, especially the phase of forecast decision making into 
logical rules and the phase of flood warning distribution. We would also wish to integrate the system 
with external sources via APIs for data retrieval. 
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