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  ABSTRACT 

  

 

 

 

This paper presents a solution to the challenges encountered in the non-classical 
Optimal Control (OC) problems, where the final state variable is unknown, leading to a 
non-zero final shadow value. The main objective is to maximize the performance index, 
but the presence of a piecewise royalty function in the performance index makes it 
non-differentiable at certain time frames. Therefore, we adopted a continuous 
approach using the hyperbolic tangent (tanh) function to overcome this difficulty. To 
compute the unknown final state value, we employed a hybrid shooting method, which 
combines the Newton and Brent methods implemented in the C++ programming 
language. Since the final shadow value is non-zero, a new equation is mathematically 
required to continue the investigation. Thusly, we established a new natural boundary 
condition based on the fundamental theory proposed by previous researchers. At the 
same time, the validation process involved discretization methods such as Euler, 
Runge-Kutta, Trapezoidal and Hermite-Simpson approximations. The program was 
constructed in AMPL programming language with MINOS solver during the validation 
process. This study applied the proposed methods to fixed and three-stage piecewise 
royalty payments. The study expects the hybrid shooting method to produce a more 
accurate optimal result than the discretization method at the end of the investigation. 
This research highlights the significance of the fundamental theory in tackling real-
world problems. In addition, the technique used here can serve as a stepping stone for 
future researchers exploring new mathematical approaches in real-world problem-
solving. While at the same time, this ensures that the method remains up-to-date, 
making the academic field relevant for teaching and learning processes, especially in 
the domains of science and mathematics.  
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1. Introduction 
 

Optimal Control (OC) problems play a crucial role in various scientific and engineering 
applications, enabling us to determine the optimal trajectory of a system to achieve desired 
objectives. In recent years, the study of the OC problem has been fascinating to many researchers. 
Xiaobing et al., Error! Reference source not found. leverage efficient basis functions to efficiently 
handle the complexities arising in OC problems from fractional calculus. Meanwhile, Xie et al., Error! 
Reference source not found. presented a novel hybrid improved neural network algorithm that 
combines L2 regularization and dropout regularization techniques. The proposed approach aims to 
enhance the performance and generalization capabilities of neural networks in solving mathematical 
problems in engineering. By integrating these regularization techniques, the algorithm mitigates 
overfitting and improves the robustness of the neural network model. The study demonstrates the 
effectiveness of the hybrid algorithm through experiments and simulations, showcasing its potential 
to achieve more accurate and reliable results in various engineering applications.  

Huang et al., Error! Reference source not found. introduced a novel approach for solving 
nonlinear time-fractional OC problems using the space-time Chebyshev spectral collocation method. 
Effati and Skandari Error! Reference source not found. proposed an OC approach for solving linear 
Volterra integral equations. The technique leverages the principles of OC theory to efficiently handle 
the linear Volterra integral equations, which are prevalent in various engineering and scientific 
applications. By formulating the problem as an OC problem, the study aims to find an OC function 
that satisfies the integral equation constraints while minimizing an objective function. Skandari and 
Tohidi Error! Reference source not found. combined linearization and discretization techniques to 
efficiently handle the complexities of solving a class of nonlinear OC problems.  

Certain real-world OC scenarios present challenges that deviate from traditional OC problems. In 
particular, the non-classical OC problem arises when the final state variable is unknown, resulting in 
a non-zero final costate variable. These non-classical OC problems introduce complexities that 
demand innovative approaches for effective solutions. Within the realm of OC theory, the costate 
variable, alternatively referred to as the adjoint variable or shadow value, assumes a pivotal role 
Error! Reference source not found.,Error! Reference source not found.. It serves as a Lagrange 
multiplier, aiding in the resolution of OC problems that encompass differential equations and 
constraints. The terminology “costate” emerges from merging “cost,” which pertains to the objective 
function or performance index, and “state”, signifying the state variables characterizing the system. 

This study draws inspiration from Spence’s work in 1981 Error! Reference source not found., 
where an economic model incorporating variables such as demand, royalty payment structure, and 
discount factor was proposed. Building on this, Zinober and Kaivanto Error! Reference source not 
found. attempted to solve a similar economic model using matrix formulation for royalty payments. 
However, challenges emerged when dealing with changing levels of royalty payments, leading to 
computational difficulties arising from the non-differentiability of the model at certain timeframes. 
Further contributions in this realm include Cruz et al., Error! Reference source not found., addressing 
a non-classical OC problem featuring piecewise functions through nonlinear programming (NLP) 
methods like Runge-Kutta. More recently, Zinober and Sufahani Error! Reference source not found. 
introduced solutions for non-classical OC problems using hyperbolic tangent (tanh) modelling, a 
technique gaining traction in contemporary research. Al-Hawasy Error! Reference source not found. 
delved into continuous classical OC for nonlinear hyperbolic partial differential equations (PDEs), 
exploring the challenges posed by equality and inequality constraints. Al-Hawasy and Al-Rawdhanee 
Error! Reference source not found. presented a numerical approach merging the Galerkin finite 
element method with an implicit technique and the gradient projection method for solving classical 
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OC problems involving hyperbolic PDEs. Further expanding the toolbox, Al-Rawdanee and Al-Hawasy 
Error! Reference source not found. offered insights into employing mixed methods effectively for 
tackling classical OC problems governed by nonlinear hyperbolic equations. Al-Hawasy and Al-
Rawdhanee Error! Reference source not found. focused on resolving OC problems associated with 
variable coefficients in nonlinear hyperbolic boundary value problems. Continuing this trajectory, Al-
Hawasy and Al-Rawdhanee Error! Reference source not found. concentrated on solving nonlinear 
hyperbolic OC problems featuring state constraints. 

The primary objective of this study is to maximize a performance index while considering system 
dynamics, constraints and boundary conditions. Unfortunately, this performance index involves 
royalty payment which is in a piecewise function that leads to non-differentiability at specific time 
frames. Overcoming this challenge requires sophisticated techniques that can handle such non-
smooth conditions. 

This paper proposed a novel hybrid shooting approach with discretization validation to effectively 
navigate the intricate landscapes of the non-classical OC problems. The main idea behind our method 
is to combine the advantages of the hybrid Newton-Brent shooting method to achieve accurate and 
optimal solutions for the non-classical OC scenario. A continuous approach was introduced based on 
the hyperbolic tangent (tanh) function to address the issue of non-differentiability in the 
performance index. This allows us to handle the piecewise components smoothly and enables the 
application of well-established optimization techniques. 

Additionally, we incorporated the discretization method, which involves validating the 
continuous solution against discretized approximations using methods like Euler, Runge-Kutta, 
Trapezoidal and Hermite-Simpson. This step ensures the accuracy and reliability of the obtained 
optimal trajectories. 

The significance of this research lies in its ability to provide robust solutions to complex non-
classical OC problems, which are prevalent in real-world applications. By presenting a hybrid 
approach that integrates continuous and discretized methods, we aim to demonstrate the versatility 
and efficiency of our proposed technique in solving challenging OC problems. 

In the subsequent sections of this paper, we will provide a comprehensive explanation of the 
hybrid shooting approach, detailing its algorithm, implementation and validation process. Through 
numerical experiments on various non-classical OC scenarios, such as fixed royalty payment and 
three-stage piecewise royalty payment, we will demonstrate the effectiveness and superiority of our 
proposed method compared to traditional discretization approaches. 

 
2. Hybrid Shooting Approach 

 
The shooting method has found extensive application in solving OC problems. Zinober and 

Sufahani Error! Reference source not found. explored two distinct approaches to solving the non-
classical OC problem: the shooting algorithm and the NLP technique. By comparing and analyzing the 
outcomes of both methods, the study seeks to find an effective and accurate solution to the non-
classical OC problem encountered in economics. Abd Jalil and Roslan Error! Reference source not 
found. significantly contributed by combining the shooting method with automatic differentiation to 
tackle a singular heat transfer equation. They utilized the Taylor series expansion to compute the 
coefficients within the expansion and employed the shooting method to solve the boundary value 
problem (BVP) effectively. 

In this research, the shooting method was adapted and enhanced in order to compute the optimal 
solution for the non-classical OC problem. The program was developed using the C++ programming 
language. The hybrid Newton-Brent shooting method is an advanced numerical approach that 
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integrates elements of both the Newton and Brent methods within the shooting algorithm. Similar 
to the traditional shooting method, the hybrid shooting method begins with an initial guess for the 
unknown final state value and iteratively refines these values to meet the desired optimality 
conditions. The Brent method is employed to efficiently update the initial guess, leading to improved 
accuracy in the boundary value solution. The obtained values are then passed to the Newton iteration 
to compute the scalar function. During this phase, an Ordinary Differential Equation (ODE) solver is 
utilized to transform the BVP into an Initial Value Problem (IVP) by guessing an initial shadow value 
for one of the boundary conditions. Following the IVP solution, the final value of the state trajectory 
is compared to the desired optimality condition. If the final state value satisfies the optimality 
condition, the shooting process is successful, and the performance index will be computed. However, 
suppose the final state value does not meet the optimality condition. In that case, the initial guess 
for the final state value is adjusted, and the iterative process continues until the optimality condition 
is satisfied.  

As per Press et al., Error! Reference source not found., the Brent method falls under the category 
of minimization techniques. Consequently, when solving a maximization problem, the optimal 
performance index is multiplied by a negative one at the end of the computation. This adjustment 
allows the minimization algorithm, such as the Brent method, to effectively find the maximum value 
of the performance index. Figure 1 provides a concise overview of the working process of the hybrid 
shooting method, illustrating the flow of operations in the numerical approach. 

 

 
Fig. 1. Flowchart of hybrid shooting approach for calculation process 

 
3. Validation Process Via Discretization Method 

 
The validation process via the discretization method involved approximating the non-classical OC 

problem using discrete steps to derive an approximate solution. This numerical integration technique 
transformed the continuous OC problem into a sequence of discrete time points. 

The commonly used Euler approximation was applied, where the state and control variables were 
updated at each time step based on the derivatives of the governing differential equations. 
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Additionally, the widely used Runge-Kutta method, known for its higher accuracy Error! Reference 
source not found. was also employed, considering multiple intermediate steps within each time 
interval. Moreover, this validation process explored other sophisticated nonlinear NLP methods, such 
as Trapezoidal and Hermite-Simpson Error! Reference source not found.. The AMPL programming 
language was utilized to construct the program for this discretization process Error! Reference source 
not found.. An appropriate time step size was selected to achieve the right balance between accuracy 
and computational efficiency. Smaller time steps generally provided more accurate results but 
required greater computation time, while larger time steps reduced computational costs but might 
sacrifice accuracy Error! Reference source not found.. Step size refers to the magnitude of the 
interval or increment used in numerical methods or algorithms, especially in the context of 
discretization. Cruz et al., Error! Reference source not found. applied a 40 step size, while Zinober 
and Sufahani Error! Reference source not found. used a larger time step size equivalent to 450. For 
this paper, the step size was set to 50. 

After discretizing the OC problem, the MINOS solver was employed to find the state and control 
variables at each time step. These values were then used to calculate the performance index over 
the entire time interval. By comparing the results with the hybrid shooting approach, the validation 
process ensured the consistency and accuracy of the discretization method. Upon successful 
validation, the discretization method can be regarded as a reliable tool for solving non-classical OC 
and other related problems. 

 
4. Non-Classical Optimal Control Problem: Case Study for Royalty Payment Problem 

 
Spence Error! Reference source not found. focuses on the concept of learning curves and their 

relevance to competition within the field of economics. The study delves into how firms’ performance 
improves over time through experience, resulting in cost reductions as they acquire greater 
knowledge and expertise in their production processes. The researcher thoroughly examines the 
influence of learning curves on various market aspects, including dynamics, competition, and firm 
behaviour. By shedding light on the impact of learning effects, the study provides valuable insights 
into how they can shape market structure and pricing strategies and ultimately affect firms’ 
profitability. In this case, let us consider the following economic model where we wish to maximize 
the performance index J  Error! Reference source not found.. 

 

( ) ( ) ( )( ), ,

f

i

t

t

J u t g t y t u t dt=      (1) 

 
The integrand function, denoted as g , depends on time t , the state variable ( )y t  and the control 

variable ( )u t . This integrand function encompasses several components, including demand, royalty 

payment function and discount rate. 
 

( )( )1

0 0

y rtg au m c e u e − − −= − + +   (2) 

 
The performance index described by Eq. (1) is contingent upon the integrand expressed in Eq. (2)

. This integrand is governed by various factors, including a  representing the demand,   denoting 

the price elasticity of demand,   indicating the royalty function, 0m  representing the asymptote of 

the learning curve, 0c  reflecting the unit cost component affected by learning,   defining the 
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learning rate, r  accounting for the discount factor, ( )u t  representing the control variable, and ( )y t  

representing the state variable. 
Zinober and Kaivanto Error! Reference source not found. explored the optimization of 

production decisions while considering continuous royalty payment obligations that vary across 
different segments or stages. Their research aims to identify efficient production strategies that 
accommodate these specific royalty payment structures. They attempted to solve the economic 
model Eq. (1) and Eq. (2) using matrix formulation. In this scenario, the focus was on considering the 
ODE. 

 

( ) ( )y t u t =   (3) 

 
However, they encountered challenges in solving the problem when the level of stage payment 

increased, leading to non-differentiability at certain time frames. This difficulty served as motivation 
for the development of a new approach to address and solve the model. 

Zinober and Sufahani Error! Reference source not found. investigated a distinctive OC problem 
within the realm of economics. The problem is characterized by an unknown and unconstrained state 
value at the final time, while the Lagrangian integrand in the functional is a piecewise constant 
function dependent on this unknown value. As discussed in Section 1, dealing with an unknown final 
state results in a non-zero final shadow value. This necessitates the introduction of a new equation 
to proceed with the investigation mathematically. In addressing this issue, the works of Cruz et al., 
Error! Reference source not found. and Malinowska and Torres Error! Reference source not found. 
presented a novel boundary condition for handling the unknown final state. Building upon their 
contributions, this study will follow their approach to effectively overcome the challenge posed by 
the non-zero final shadow value.  

 
Example 1. Let us examine the fixed royalty payment that remains constant throughout the 

contract’s entire duration. 
 

( )( ) 10%y t =   (4) 

 
In the first example, the royalty function   equivalent to a constant value of 10% is applied in 

Eq. (2) to maximize the performance index Eq. (1). Figure 2 depicts the fixed amount of royalty 
payment made from the initial time to the contract’s end time. 
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Fig. 2. Fixed royalty payment 

 
With the given royalty payment value Eq. (4), the performance index that we aim to maximize is 

as follows: 
 

( ) ( )( )
10

1

0 0

0

0.1 y rtJ u t au m c e u e dt − − −= − + +      (5) 

 
Considering Eq. (1), Eq.(2) and Eq.(4), Eq. (5) emerges as the performance index targeted for 

maximization, with the initial time it  being set to zero while the final time ft  is ten. Notably, for 10% 

fixed royalty payments, the computed optimal final shadow value is equal to zero. The optimal results 
of the final state value, initial shadow value and performance index for both the hybrid shooting 
approach and the discretization method are presented in Table 1. 
 

  Table 1 
  Results of the shooting and discretization methods for fixed royalty payment 
Methods Final state value Initial shadow value Performance index 

Hybrid Newton-Brent shooting 0.794328 0.055411 0.954043 
Euler 0.788524 0.055631 0.958304 
Runge-Kutta 0.793436 0.055643 0.958404 
Trapezoidal 0.783348 0.055643 0.958404 
Hermite-Simpson 0.807736 0.055675 0.958699 

 
According to the data presented in Table 1, the hybrid Newton-Brent shooting method yields 

optimal solutions similar up to two decimal places for the final state value when compared with the 
Runge-Kutta method. Overall, the optimal final state values are comparable up to one decimal place 
for all methods except for the Hermite-Simpson approximation. Meanwhile, the optimal shadow 
values at the initial time are comparable up to three decimal places for all approaches. Additionally, 
the optimal performance index is comparable up to two decimal places for both the hybrid shooting 
and discretization methods. The results show that the performance is maximized up to 95% to meet 
the optimality condition of optimizing the state, costate and control variables. This observation 
suggests that a fixed amount of royalty payment can be categorized as a classical OC problem since 
the final shadow value is equal to zero. 
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Figure 3 illustrates the plots for the optimal state, shadow value, control, and performance index 

obtained for 0it =  and 10ft = . In conclusion, all the methods yield nearly similar values during the 

iteration process. 
However, the rigidity of a fixed royalty payment presents various disadvantages. Firstly, it does 

not adapt to changing market conditions or business performance, potentially resulting in 
overpayment or underpayment based on actual sales or revenue. Secondly, fixed payments may not 
incentivize licensees or partners to invest in marketing, sales efforts, or product improvements, as 
the payment remains constant, leading to a lack of motivation for maximizing sales or enhancing 
product quality. 

Additionally, fixed royalty payments can adversely affect profit margins for licensees or 
franchisees, especially during periods of low sales, as the fixed cost may become burdensome during 
business downturns. Over time, if the fixed payment rate becomes unfavourable for the licensee, it 
may create tension and dissatisfaction in long-term partnerships, causing the licensee to perceive the 
initial agreement terms as no longer fair or competitive. 

From the licensor’s perspective, a fixed royalty payment might not adequately compensate for 
potential risks or fluctuations in the market. This could lead to missed opportunities for additional 
revenue if the licensed product or service experiences significant success. Furthermore, fixed royalty 
payments might not align with the licensee’s actual performance or promotional efforts, creating a 
disconnect between the licensee’s actions and the reward they receive. 
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Fig. 3. Plot for the state, shadow value, control and performance index for fixed 
royalty payment (NB=hybrid Newton-Brent shooting; EU=Euler; RK=Runge-Kutta; 
TR=Trapezoidal; HS=Hermite-Simpson) 

 
Despite the initial ease of setting up a fixed royalty payment structure, it could lead to legal or 

contractual disputes in the future if the involved parties disagree on the appropriateness of the fixed 
amount. As a result, considering more dynamic royalty structures that address these shortcomings 
and align incentives between licensors and licensees becomes crucial for fostering successful and 
mutually beneficial business partnerships. 

To mitigate these drawbacks, we explore a more dynamic approach by testing the method with 
percentage-based royalties linked to sales or revenue. This adjustment aims to better align both 
parties’ incentives and accommodate market conditions fluctuations. The royalty payment function 
can be structured in various stages. For instance, let us consider Example 2, a three-stage piecewise 
royalty function, to illustrate the application of this dynamic approach. 

 
Example 2. Let us examine the following three-stage piecewise function representing a 

decreasing trend of royalty payment. 
 

( )( )

( )

( )

( )

50% for 0 0.2

40% for 0.2 0.8

10% for 0.8

y t z

y t z y t z

z y t z



 


=  


 

  (6) 

 
Figure 4 presents the three-stage piecewise function Eq. (6) for the royalty payment, illustrating 

its discontinuous form. 
 

 
Fig. 4. Three-stage royalty payment 

 
As mentioned in previous research, difficulties arise when dealing with increasing levels of stage 

payment, making the royalty payment in conditions Eq. (6) non-differentiable at certain time frames 
Error! Reference source not found.. Later, Zinober and Sufahani Error! Reference source not found. 
investigated a continuous approximation of the piecewise constant integrand function to address 
this complexity. Consequently, the royalty function ( )y  can be transformed into the hyperbolic 

tangent (tanh) function. 
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( ) ( )( ) ( )( )0.7 0.05 tanh 0.2 0.15 tanh 0.8y k y z k y z = − − − −  (7) 

 
Skandari Error! Reference source not found. primary focus lies on the space of hyperbolic tangent 

(tanh) functions, and the author successfully demonstrated its universal approximator property. The 
findings contributed to the field of stabilizer control design for nonlinear dynamical systems by 
utilizing these functions effectively. Skandari, Ghaznavi and Abedian Error! Reference source not 
found. contributed to a novel methodology for designing stabilizer control in nonlinear systems by 
employing hyperbolic modelling. The authors successfully demonstrated that the hyperbolic model 
can be formulated as a state-space model, proving its efficacy in stabilizing intricate nonlinear control 
systems. One significant advantage of their proposed approach is that it does not depend on fuzzy 
concepts or expert experience, making it more accessible and easier to implement. Additionally, the 
model parameters required for the approach can be readily obtained, further enhancing its 
practicality and effectiveness in designing stabilizer control for nonlinear systems. 

The hyperbolic model can be designed as a state-space model, allowing for easy implementation 
and analysis Error! Reference source not found.. Furthermore, the hyperbolic model can be utilized 
for complex nonlinear control systems, making it applicable to a wide range of systems Error! 
Reference source not found.. The proposed approach does not rely on fuzzy concepts or expert 
experience, making it applicable to complex nonlinear control systems without the need for linguistic 
information or fuzzy rule-based systems Error! Reference source not found.. Moreover, the model 
parameters can be easily obtained by solving an NLP problem, simplifying the parameter 
identification process Error! Reference source not found.. According to previous findings, Skandari 
Error! Reference source not found., the stabilizer control designed based on the hyperbolic model is 
bounded and can effectively stabilize the original nonlinear system. In other words, the hyperbolic 
model can approach the original system at any desired accuracy near the equilibrium system Error! 
Reference source not found.. Overall, the use of hyperbolic modelling provides a flexible and efficient 
approach for stabilizer control in nonlinear systems Error! Reference source not found.,Error! 
Reference source not found..  

Taking into account the benefits of hyperbolic modelling, we proceeded to solve Example 2 by 
approximating the three-stage piecewise royalty payment Eq. (6) with the continuous hyperbolic 
tangent (tanh) function Eq. (7). Two k  values were selected for this study, namely 50 and 250. The 
smoothing value k  plays a crucial role in determining the step size during iteration. Figure 5 reveals 
that an increase in the value of k  results in a smoother plot for the royalty payment. 
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(a) (b) 

Fig. 5. Royalty payment function in continuous hyperbolic tangent (tanh) approximation 
for smoothing values k  equal to (a) 50 and (b) 250 

 
Let us now proceed to maximize the performance index considering Eq. (1), Eq. (2) and Eq. (7) as 

follows. 
 

( )
( )( )

( )( )

10

1

0 0 0

0.7 0.05 tanh 0.2
Maximize 

0.15 tanh 0.8

rt

y

k y z
J u t au u e dt

k y z m c e





− −

−

  − −
  = −     − − + +  
  (8) 

 
subject to smoothing value k  is equal to 50. The optimal final shadow value equals -0.119813 when 
the smoothing value k  equals 50. 

Based on Table 2, the optimal final state values obtained from all methods are comparable up to 
one decimal place. Additionally, the optimal initial shadow value and performance index generated 
by the hybrid Newton-Brent shooting method are similar up to two decimal places. Overall, the 
performance is maximized up to 71%, satisfying the optimality condition for optimizing the state, 
shadow value and control variables. 
 

 Table 2 
 Results of the shooting and discretization methods with 50k =  
Methods Final state value Initial shadow value Performance index 

Hybrid Newton-Brent shooting 0.430334 0.119221 0.710674 
Euler 0.426435 0.119783 0.713131 
Runge-Kutta 0.428299 0.119410 0.713225 
Trapezoidal 0.424676 0.119741 0.713829 
Hermite-Simpson 0.435671 0.117956 0.713312 

Figure 6 illustrates that the optimal plot for the shadow value follows the pattern of the royalty 
payment function. When the smoothing value k  is set to 250 for maximizing the performance index 
Eq. (8), the optimal final shadow value is approximately -0.119701, which is quite close to the value 
obtained with the smoothing value k  equal to 50. 
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Fig. 6. Plot of the optimal state, shadow value, control and performance index for 
three-stage royalty payment when the smoothing value k  equals 50 (NB=hybrid 
Newton-Brent shooting; EU=Euler; RK=Runge-Kutta; TR=Trapezoidal; HS=Hermite-
Simpson) 

 
Based on the findings in Table 3, the optimal values of the final state, initial shadow value, and 

performance index exhibit noteworthy distinctions for the hybrid Newton-Brent shooting method 
when compared with the discretization techniques. The hybrid shooting method yields a similar final 
state value, only up to one decimal place, compared to the results from the discretization technique. 
Similarly, the optimal initial shadow value obtained through the hybrid shooting method is 
comparable up to one decimal place when contrasted with the discretization results. However, at the 
final time, the optimal performance index shows consistent results with a similarity of up to two 
decimal places for all approaches. Overall, the performance is maximized up to 71% while fulfilling 
the optimality condition for optimizing the components of the state, shadow value, and control in 
the context of continuous royalty payment mode. 
 
 
 
 
 

  Table 3 
  Results of the shooting and discretization methods with 250k =  

Methods Final state value Initial shadow value Performance index 

Hybrid Newton-Brent shooting 0.430452 0.119115 0.710601 
Euler 0.427219 0.115111 0.71312 
Runge-Kutta 0.429520 0.112206 0.713221 
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Trapezoidal 0.426555 0.109614 0.713774 
Hermite-Simpson 0.436957 0.110323 0.713313 

 
Based on Figure 6 and Figure 7, all the methods exhibit similar plots, with the exception of the 

discretization plot for the shadow value and control variable. This discrepancy could potentially be 
attributed to discretization errors that might have occurred during the process, as discussed in 
previous works Error! Reference source not found.,Error! Reference source not found.. To conclude, 
the optimal performance is maximized at the same rate for both chosen smoothing values—however, 
the higher smoothing value results in a smoother plot, displaying more transparent values during 
iteration. Due to the non-zero final shadow value, the royalty payment, which occurs in stages, 
adheres to the non-classical OC formulation. 

 
 

 
Fig. 7. Plot of the optimal state, shadow value, control and performance index for three-stage 
royalty payment when the smoothing value k  equals 250 (NB=hybrid Newton-Brent shooting; 
EU=Euler; RK=Runge-Kutta; TR=Trapezoidal; HS=Hermite-Simpson) 

 
 

 
5. Discussion and Future Research Directions 

 
Through a thorough comparative analysis, it is evident that in Example 1, the discretization 

method yields an optimal solution similar up to four decimal places for the initial shadow value in 
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comparison to the shooting result. Moreover, when considering the optimal performance index, the 
results from the discretization approach display a similarity of up to three decimal places compared 
to the shooting method’s outcomes. Notably, the plots depicting the optimal state, costate, control, 
and performance index while incorporating fixed royalty payments consistently align for both the 
shooting and discretization methods. 

In the case of Example 2, where the royalty payment follows a piecewise function and the 
program is developed with two distinct smoothing values, notable observations arise. For the first 
smoothing value set at 50, the discretization results generate an optimal solution that consistently 
matches up to two decimal places, with the exception of the Hermite-Simpson approximation. 
Additionally, the performance index’s optimal solution for the discretization approach is consistent 
up to three decimal places. Nevertheless, the shooting method appears to exhibit a higher level of 
consistency throughout the iteration process when compared to the discretization computation. This 
distinction is illustrated in Figure 6, wherein the control variable plot highlights potential 
discretization errors that might occur during the iterative stages. 

For a smoothing value equal to 250, the discretization method similarly provides a consistent 
optimal solution up to two decimal places, except for the Hermite-Simpson approximation for the 
final state value. Correspondingly, the optimal performance index maintains a consistency of up to 
three decimal places when compared with the shooting method’s results. However, the shooting 
method showcases enhanced consistency during the iteration process, as evidenced by Figure 7. 
Notably, the shooting plot exhibits smoother behaviour than the discretization method, particularly 
evident in the costate and control variable plots. 

Promising directions for future research will build the foundation that has been established. 
Other successful research such as Goh [30] and Syed Abdul Nasir, Ab Wahab and Nasir [31] can be a 
guideline to further the research towards advance application. Consideration is given to the proposal 
of investigations that extend, refine, or complement the work. Some potential avenues that could be 
suggested include: 

 
i. Further refinement and optimization of the hybrid shooting approach by replacing 

Newton methods such as the Galerkin method. 
ii. Exploration of the applicability of the method to different problem domains or industry 

sectors. 
iii. Investigation into the impact of varying model parameters on the performance of the 

hybrid approach. 
iv. Comparison of the hybrid approach with other cutting-edge optimization techniques. 
v. Integration of real-world data to enhance the accuracy and applicability of the method. 

vi. Application of the methodology to more complex or multi-dimensional non-classical 
optimal control problems. 

 
6. Conclusion  

 
In conclusion, this paper has presented the effective hybrid Newton-Brent shooting approach 

with discretization validation to address the challenges posed by the non-classical OC problem. The 
non-classical OC problem, characterized by an unknown final state variable and a non-differentiable 
performance index, has been shown to demand innovative techniques for accurate and efficient 
solutions. The hybrid shooting approach has proven valuable in handling the non-classical OC 
problem with an unknown final state. By iteratively adjusting initial conditions and leveraging 
boundary value solvers, this method efficiently computes the unknown final state variable, 
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overcoming one of the key challenges in the non-classical OC problem. We introduced a continuous 
approach based on the hyperbolic tangent (tanh) function to handle non-differentiability in the 
performance index. This approach smoothly runs piecewise components, allowing for the application 
of optimization techniques, and ultimately contributes to improved accuracy in obtaining optimal 
solutions. Moreover, incorporating discretization methods such as Euler, Runge-Kutta, Trapezoidal 
and Hermite-Simpson approximations further enhances the results’ reliability. By validating the 
continuous solution against discretized approximations, we ensure the accuracy and robustness of 
our proposed approach. Our approach has demonstrated its effectiveness and superiority over 
traditional discretization methods through extensive numerical experiments on various OC scenarios, 
such as fixed royalty payment and three-stage piecewise royalty function. The results have 
showcased the efficiency and accuracy of the hybrid shooting approach with discretization validation 
in navigating complex OC problems. This research highlights the significance of fundamental theory 
in solving real-world control problems and emphasizes the importance of innovative mathematical 
approaches. The proposed method served as a valuable contribution to non-classical OC, enabling 
researchers to tackle challenging OC problems in practical applications. Furthermore, the versatility 
of our approach opens up new possibilities for future researchers to explore and develop advanced 
mathematical techniques for OC problem-solving. As the academic field continuously evolves, the 
hybrid shooting approach with discretization validation ensures that the methods employed remain 
current and relevant for teaching and learning, particularly in the domain of science and 
mathematics. 
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