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 ABSTRACT 

 
Optomechanical lenses can experience varying levels of stress, which can have a notable 
impact on optical parametric systems. To ensure proper alignment, positioning, and 
location of lens components within design tolerances, it is crucial to have a robust 
support structure in place for optical systems. The primary load on lens assemblies 
typically comes from their own weight in different gravity orientations. This study 
employs an analytical approach to examine the effects of stress resulting from lens 
mounting on the wave front passing through the lens, which can alter the optical path. 
Additionally, when an elastomer-mounted lens bears weight, the elastomer can bend, 
causing the lens to move and the optical axis to become de-centred. Through the use of 
these analytical methods, designers can identify potential issues with optical elements 
and mounting conditions, allowing them to take steps to minimize stress. The study's 
findings underscore the substantial differences in optical path and self-weight 
deflection between analytical and ideal methods.   
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1. Introduction 
 

The increasing use of opto-mechanical systems in modern technology has motivated the 
analytical method presented in this paper. These systems often comprise multiple components, 
including elastomers, glasses, and metals, which are intentionally combined to achieve unique 
performance characteristics not possessed by any individual component. These systems are exposed 
to various environmental conditions that can result in issues such as stress, deformation, and bond 
failure, which frequently play a significant or even primary role. Although existing computer 
programs that utilize direct numerical methods can provide solutions to such problems, there are 
benefits to using analytical manipulation. The asymptotic solutions presented in this paper allow for 
the analysis and grouping of multiple physical variables into a few significant parameters, which can 
be useful for analytical studies of lens mounts. 
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Several articles discuss lens mounts for use in space applications, and earlier studies on optical 
path difference and self-weight deflection in lens mounts are summarized in several books [1-8]. The 
primary focus of lens assembly design, as of 1994, has been on three key areas: maintaining lens 
position and alignment within the barrel, minimizing stress to prevent lens fracture, and minimizing 
mechanical deformations that cause distortion in the optical wave front [9-11]. Lens decentring and 
spacing errors, as well as mechanical deformations, are significant contributors to performance 
degradation in optical systems. These references provide a comprehensive overview of the current 
state of lens assembly design. 

This study proposes an analytical approach to determine stress birefringence, a phenomenon that 
changes the index of refraction of an optically isotropic material due to applied stress. Stress 
birefringence causes general image degradation and alters the polarization of the incident wave 
front, making the lens act as a varying retarder. To achieve accurate results, various computational 
methods were employed and compared based on lens deflection and optical path difference for 
different lens approaches. The ideal design requires minimal assembly tolerances and optimized 
location, position, and alignment of each lens to withstand adverse environments. However, 
achieving such conditions can be challenging, especially with increasing performance demands. 

 
2. Lens Assembly Design 

 
The schematic in Figure 1. Depicts a simple and effective technique for mounting lenses in a 

barrel. This serves as an excellent example for analysing optomechanical assemblies that include both 
lenses and a barrel. The mounting structure in this technique uses epoxy adhesive bonding to fix each 
lens securely in place. 
 

 
Fig. 1. Lens mounting configuration 

 
Lens 1 is a double-convex lens made of N-SF11 glass, which has a high index of refraction and a 

good stress optical coefficient. Similarly, Lens 2 is bi-convex and made of N-K5 glass, which has a 
decreased index of refraction but a good stress optical coefficient. Both lenses have two surfaces 
with positive spherical contours, and in either design, the edge thickness is always less than the 
centre thickness (refer to Figure 2).  
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(a)  (b) 

Fig. 2. Description parameters for lenses; a) Lens 1 and b) Lens 2 

 
The rims of the lenses are spherical, ground to minimize the risk of failure upon insertion into a 

barrel. Table 1 presents the design parameters of the assembly. 
          

Table 1 
Design parameters for configuration in Figure 1 
Parameter Lens 1 Lens2 

Lens Shape Double-convex Double-convex 
Substrate material N-SF11 N-K5 
Diameter, D 50mm 40mm 
Radius of curvature, r 74.78mm 207.93mm 

 
Elastic materials, including elastomers, are commonly employed for suspending lens mounts, 

resulting in athermal assemblies in the radial direction that resist stress build-up caused by 
differential expansion or contraction. The ideal thickness of the athermal radial elastomer can be 
determined using the Bayar equation [12-14]: 
 

hr,Bayar = roptic
∝m−∝optic

∝G−∝m
                                                                                                                                               (1) 

 
Where: 
       − 𝑟𝑜𝑝𝑡𝑖𝑐 , is the lens ratio in mm 

       − 𝛼𝑜𝑝𝑡𝑖𝑐 , is the thermal expansion coefficient of the lens (ppm/°C) 

−𝛼𝑚 , is the thermal expansion coefficient of the barrel (ppm/°C) 
− 𝛼𝐺 , is the thermal expansion coefficient of the glue pad (ppm/°C) 
 
The Bayar equation neglects the impact of Poisson's ratio and elastomer confinement, both of 

which become more significant as the thickness-to-length ratio of the elastomer bond increases. As 
such, Eq. (1) is merely an approximation that is suitable for initial analysis. It is also useful for creating 
discrete bond pads or a series of non-continuous bonds around the lens where the elastomer is not 
confined. 

Deluzio [15,16] presents an equation to athermal size adhesive bonds expressed in Eq. (2). 
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hr,Deluzio = roptic
1−νG

1+νG
. [

αm−αoptic

(αG−αoptic)−
(7−6νG).(αm−αoptic)

4.(1+νG)

]                                                                                            (2) 

 
When assembling a lens, it is essential to consider the acceleration forces caused by gravity, and 

the axial position of the lens within the mount must be held constant during such exposure. To 
achieve this, the axial force exerted by the retainer must be constrained by an axial preload, P, as 
determined by the following equation [17]: 
 
𝑃 = 9.81. 𝑊. 𝐴                                                                                                                                                                (3) 

 
where: 
− P, is in Newtons (N) 
− W, is the weight of lens component in Kg 
−A, is maximum imposed acceleration factor 

 
To calculate the weight of the lens, begin by determining its volume. This can be achieved by 

calculating the volume of the primitive shapes, such as the convex shape for surface 1, cylindrical 
shape for the main part of the lens, and convex shape for surface 2. The volume of the spherical 
surfaces 1 and 2 can be determined as follows: 
 

𝑉𝑂𝐿1 = 𝜋. 𝑆𝐴𝐺1
2 (𝑟1 −

𝑆𝐴𝐺1

3
)                                                                                                                                           (4) 

 

𝑉𝑂𝐿2 = 𝜋. 𝑆𝐴𝐺2
2 (𝑟2 −

𝑆𝐴𝐺2

3
)                                                                                                                                          (5) 

 
where: 
− SAG1 , The sagittal thickness of the surface 1 in mm 
− SAG2 , The sagittal thickness of the surface 2 in mm 
− r1 , Lens radius of curvature, surface 1 in mm 
− r2 , Lens radius of curvature, surface 2 in mm 

 
The Sag or Sagitta of a lens is the distance from the centre of its surface to the mounting flat along 

the optical axis. The thickness of the two surfaces in the sagittal direction can be calculated using the 
following equation: 
 

𝑆𝐴𝐺1 = 𝑟1
2 − √𝑟1

2 − (
𝐷

2
)

2

                                                                                                                                                 (6) 

 

𝑆𝐴𝐺2 = 𝑟2
2 − √𝑟2

2 − (
𝐷

2
)

2

                                                                                                                                                (7) 

 
where: D, is lens diameter in mm. The volume of the cylindrical section of the lens is given by: 
 

𝑉𝑂𝐿𝐶𝐸 = 𝜋. 𝐻.
𝐷2

4
                                                                                                                                                               (8) 

 
where: H, is the edge thickness of the lens in mm 
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𝐻 = ℎ − 𝑆𝐴𝐺2 + 𝑆𝐴𝐺1                                                                                                                                      (9) 
 

where: h, is axial thickness of lens in mm. The exact weight of the lens is then: 
 
𝑊 = 𝜌. (𝑉𝑂𝐿𝐶𝐸 − 𝑉𝑂𝐿1 + 𝑉𝑂𝐿2)                                                                                                                   (10) 

 
where: ρ, is mass density of the lens (Kg/m3). By utilizing the geometry depicted in Figure 1 and data 
extracted from Table 1 and Table 2, we can calculate the ideal radial thickness of adhesive required 
for athermalizing the lens (as shown in Table 3).  

 
  Table 2 
  Parameters defining the materials [18-21] 

Part Barrel Glue Pad Lens 1 Lens 2 

Material Aluminium Epoxy N-SF11 N-K5 
Young’s Modulus E(MPa) 69000 72.44 92000 71000 
Shear Modulus G (MPa) 28750 25.054 36595 29003 

Poisson’s Ration  0.2 0.39 0.257 0.224 

Coefficient of Thermal Expansion α (10-6 (/K)) 0.23 102 8.5 8.2 
Stress-optic Coefficient, Ks (10-6(MPa-1)) - - 1.33 3.03 

Mass Density,  (Kg/m3) 2801 1260 3220 2590 

 
Table 3 
The optimum radial thickness of the adhesive to athermalize the 
lens  

 Optimum Radial thickness of adhesive, hr (mm) 

Lens 1 Lens 2 

Equation. Bayar 2.0315 1.5663 
Equation. Deluzio 0.9166 0.7063 

 
This information is then used to compute the total preload and volume of primitive shapes, 

enabling us to determine the weight of the lens. According to Table 4, the weight of lens 1 is found 
to be 0.1011 Kg, while the weight of lens 2 is 0.0260 Kg. 
 

Table 4 
The preload force on the lens 
 Lens 1 Lens 2 

The Sagittal Thickness of the lens SAG (mm) 

Surface 1 4.3027 0.9640 
Surface 2 4.3027 0.9640 

- The volume of the Spherical of the lens Vol (mm3) 

Surface 1 4263.72 605.922 
Surface 2 4263.72 605.922 
The volume of cylindrical of the lens Vol CE (mm3) 31400 10048 
The edge thickness of the lens H (mm) 16 8 
The weight of the lens W(Kg) 0.1011 0.0260 
The preload force on the lens P(N) 3.9675 1.0212 
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3. Analytical Solution  
3.1 Self-Weight Deflection 

 
Optomechanics is a field within optical engineering that aims to identify environmental 

conditions that may impact the performance of an optical system, as per specific requirements. 
Temperature, pressure, vibration, and shock are among the most important conditions that can exert 
static or dynamic forces on hardware components, potentially leading to deflections or dimensional 
changes. Such effects can result in misalignment, adverse internal stresses, birefringence, optic 
breakage, or mechanical deformation. When a lens is vertically mounted, for instance, its own weight 
may cause deformations, referred to as self-weight deflection, which may compromise performance. 
A structure exhibiting self-weight deflection that is less than the alignment tolerance is considered 
stiff, while a structure whose self-weight deflection exceeds the alignment tolerance is compliant. 
Additionally, under radial acceleration, a lens surrounded by an elastomer can displace radially, with 
the radial self-weight deflection of the lens (de-centre) are taken from the previous studies [17,22-
24]: 
 

δ =
W.9,81

[
π

2
.D.

h

hr
.(

EGlue

1−νGlue
2 +GGlue)]

                                                                                                                                           (11) 

 
This formula enables a swift estimation of a lens' self-weight deflection when mounted vertically, 

accounting for its weight. The formula's accuracy is dependent on the optimal athermal radial 
thickness of adhesive. Table 5 provides the self-weight deflection, measured in micrometres, for each 
lens element using two different radial thicknesses of adhesive as per the Bayar and Deluzio equation. 

 
Table 5 
Self-weight deflection for each element ‘lenses’ 
in meter 
Glasses Lens 1 Lens 2 

Deflection (µm) 
hr, Bayar 1.49 0.737 

hr, Deluzio 0.670 0.332 

 
In this assembly, the elastic deformation of the elastomer under normal gravity and acceleration 

causes radial de-centres in the lenses' elements. The Bayar equation is used with radial thicknesses 
of 2.0315mm and 1.5663mm for lens 1 and 2, respectively, to determine the radial de-centres. By 
using the Deluzio equation, the optimal athermal bonds are found to be 1.5663mm and 0.7063mm 
for lens 1 and 2, respectively. It can be concluded that the worst-case self-weight decentration of 
either of the two lenses in this assembly will not exceed 2µm, which is significantly smaller than the 
corresponding decentration tolerance of 10µm. 

The self-weight deflection falls comfortably below the tolerance even for a high-performance 
lens. The findings indicate that athermal bonds created using compliant adhesives are highly 
susceptible to changes in bond thickness. However, radial de-centre does not appear to be a concern. 
 
3.2 Optical Path Difference 

 
The optical path difference (OPD) that occurs when two perpendicularly polarized wave fronts 

pass through stressed glass arises from the material's stress optic coefficients. The total magnitude 
of the OPD is what matters, and this is determined by summing the two stress optic coefficients to 
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obtain a single coefficient, known as Ks. Ks is typically measured in inverse megapascals (1/MPa) and 
varies from 1.33.10-6 MPa-1 for glass N-SF11 to 3.03.10-6 MPa-1 for glass N-K5. For a given glass 
thickness (h) and stress level (σ) [6,7,25], the OPD resulting from the stress optic effect can be 
calculated using the following formula: 

 
OPD = Ks. h. σ                                                                                                                                                             (12) 

 
The stress induced at the interface between the lens and mount is highly localized and does not 

extend far into the clear aperture. As a worst-case analysis, the stresses in the lens are root-sum-
squared and applied at the thickest part of the lens to determine the maximum stress optic OPD [6]: 
 

OPDmax = ks. h. (∑ σi
2N

i=1 )
1/2

                                                                                                                                (13) 

 

Where OPD max is the maximum stress optic OPD, h is the axial thickness of lens, i is the 
individual stress, and N is the number of stresses [17]. 
 

σi = (σAB
2 + σc1

2 + σc2
2 + σR

2 )1/2                                                                                                                         (14) 
 
σc1: The contact stress in the lens due to a tangential retainer of surface 1. 

 

σc1 = 0.798. [

P

2.π.y.2.r1,lens

(
1−νlens

2

Elens
)+(

1−νbarrel
2

Ebarrel
)

]

0.5

                                                                                                        (14.1) 

 
σc2: The contact stress in the lens due to a tangential retainer of surface 2. 

 

σc2 = 0.798. [

P

2.π.y.2.r2,lens

(
1−νlens

2

Elens
)+(

1−νbarrel
2

Ebarrel
)

]

0.5

                                                                                                               (14.2) 

 
𝜎𝑅:  The radial wall stress in the lens due to temperature drop. 

 

𝜎𝑅 =
𝐾𝑅.(𝛼𝑏𝑎𝑟𝑟𝑒𝑙−𝛼𝑙𝑒𝑛𝑠).Δ𝑇

1

𝐸𝑙𝑒𝑛𝑠
+

𝐷𝑙𝑒𝑛𝑠
2.𝐸𝑏𝑎𝑟𝑟𝑒𝑙.ℎ𝑚

                                           

𝐾𝑅 = 1 −
Δ𝑟

𝐷𝑙𝑒𝑛𝑠
2

.Δ𝑇.(𝛼𝑏𝑎𝑟𝑟𝑒𝑙−𝛼𝑙𝑒𝑛𝑠)
                                                                                                                         (14.3)  

 
𝜎𝐴𝐵: Axial stress due to temperature drop, Bayer’s method.                

 

𝜎𝐴𝐵 =
(𝛼𝑏𝑎𝑟𝑟𝑎𝑙−𝛼𝑙𝑒𝑛𝑠).𝐸𝑏𝑎𝑟𝑟𝑒𝑙.𝐸𝑙𝑒𝑛𝑠.Δ𝑇

𝐸𝑏𝑎𝑟𝑟𝑒𝑙+𝐸𝑙𝑒𝑛𝑠
                                                                                                                   (14.4) 

 
𝜎𝐴𝑌: Axial stress due to temperature drop, Yoder’s method. 
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𝜎𝐴𝑌 =
𝐸𝑙𝑒𝑛𝑠.𝐸𝑏𝑎𝑟𝑟𝑒𝑙.𝐴𝑚.(𝛼𝑏𝑎𝑟𝑟𝑒𝑙−𝛼𝑙𝑒𝑛𝑠).Δ𝑇

2.(
𝐸𝑙𝑒𝑛𝑠.𝐴𝐺

2
+𝐸𝑏𝑎𝑟𝑟𝑒𝑙.𝐴𝑚)

                                  

𝐴𝐺 = 2. 𝜋. 𝑦. 𝑡𝐸     𝐴𝑚 = 2. 𝜋. ℎ𝑚. (
𝐷𝑙𝑒𝑛𝑠+2Δ𝑟

2
+

ℎ𝑚

2
)                                                                                     (14.5) 

 
𝑂𝑃𝐷𝐵: OPD using results from Bayar’s method. 

 

𝑂𝑃𝐷𝐵 = 𝑘𝑠. ℎ. (𝜎𝐴𝐵
2 + 𝜎𝑐1

2 + 𝜎𝑐2
2 + 𝜎𝑅

2)1/2                                                                                                         (15) 
 
𝑂𝑃𝐷𝑌: OPD using results from Yoder’s method. 

 

𝑂𝑃𝐷𝑌 = 𝑘𝑠. ℎ. (𝜎𝐴𝑌
2 + 𝜎𝑐1

2 + 𝜎𝑐2
2 + 𝜎𝑅

2)1/2                                                                                                         (16) 
 
The unit of optical path difference is meter for the two states of polarized light (perpendicular 

and parallel) due to a given amount of mechanical stress at a given temperature (Table 6).  
 

Table 6 
The values of the OPD for each element lenses in 
meter 

Method used 
Optical path difference 

Lens 1 Lens 2 

OPD_Bayar’s Method 3.46 e-7 3.42 e-7 
OPD_Yoder’s Method 3.52 e-7 3.38 e-7 
OPD (m)/ h_Deluzio Equation 7.18 e-7 8.06 e-7 

 
We compute birefringence in the region of the lens and then the total maximum OPD associated 

with this stress (Table 7). 
 

Table 7 
The maximum stress optic OPD 

Method used 
Permissible OPD/cm Glass path (nm/cm) 

Lens 1 Lens 2 

OPD_Bayar’s Method 3.46 3.42 
OPD_Yoder’s Method 3.52 3.38 
OPD (m)/ h_Deluzio Equation 7.18 8.06 

 
The findings presented in the above table indicate that the maximum optical path difference 

(OPD) is directly proportional to the stress optic coefficient of the optomechanical system. 
Additionally, the OPD values for both lenses exhibit a significant reduction and fall well below the 
normal quarter tolerance [6] for diffraction-limited systems.  

Tolerances for birefringence are typically defined in terms of the acceptable optical path 
difference (OPD) and the polarization states of transmitted light at a specific wavelength. In their 
work, Kimmel and Parks [26,27] found that components for precision instruments such as 
photolithography optics and astronomical telescopes have a birefringence tolerance of 5nm/cm. 
Camera, visual telescope, and microscope objectives have a tolerance of 10nm/cm, while eyepieces 
and viewfinders have a tolerance of 20nm/cm. For condenser lenses and illumination systems with 
less stringent requirements, lower quality materials may be used. 
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Based on the temperature conditions of 20°C and -30°C, the desired birefringence for the lens 
assembly is less than 10nm/cm to maintain the projected performance. However, this level of optical 
path difference (OPD) would only be marginally acceptable.  
 
4. Comparison and Discussion 

 
We compared two types of mounting designs and identified the design shown here. The thickness 

of the bonds was calculated using the Bayar and Deluzio equation (Eq. (1) – Eq. (2)). To assess the 
performance of the lens mounting relative to the conventional design, we compared Figures 3 to 4, 
specifically views (a) to (d). The optical path difference (OPD) was calculated using different equations 
(Eq. (12) to Eq. (16)) and plotted in Figure 3. Meanwhile, the surface deflection was obtained from 
two different equations (Eq. (11)) and plotted in Figure 4. 
  

  

 
(a) Lens 1 (b) Lens 2 

Fig. 3. Optical path difference curve as a function the lens axial thickness 

 
Figures 3 and 4 illustrate that surface deformation and optical path difference distribution at the 

axial thickness of the lens from 1mm to 16 mm for lens 1 and 1mm to 8 mm for lens 2 are more 
significant in lens 1 than in lens 2. Both lenses exhibit an increase in optical path difference as the 
axial thickness increases, regardless of the equation used (Bayar, Yoder, or Deluzio). Similarly, the de-
centre decreases as the axial thickness of the lens increases, regardless of the radial thickness of the 
athermal bond used (Bayar or Deluzio). The deflection distribution is more pronounced at higher 
levels for both lenses and depends on the weight and mechanical properties of the adhesive. Because 
adhesives have some elasticity, they tend to restore the lens to its original location and orientation 
when the acceleration force is removed. 
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(c) Lens 1 (d) Lens 2 

Fig. 4. Deflection curve as a function the lens axial thickness 

 
Figures 5 and 6 demonstrate that for lens 1 with an axial thickness of 1mm to 16 mm and lens 2 

with an axial thickness of 1 mm to 8 mm, the OPD resulting from self-weight deflection is 
approximately 0.2 µm and 1.37 µm, respectively. The plots also show that as the optical path 
difference increases, the surface deflection decreases. Therefore, this mounting lens produces a 
surface deflection that is mostly free of non-attendance cracks and significantly increases the optical 
path difference at the lens surface. The study suggests that bonding on a convex glass surface can be 
considered successful and acceptable. 

 

  
(a) Lens 1 (b) Lens 2 

Fig. 5. Plots of the surface deflections and resulting OPDs_Bayar Equation and various the lens 
axial thickness 
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(c) Lens 1 (d) Lens 2 

Fig. 6. Plots of the surface deflections and resulting OPDs_Deluzio equation and various the lens 
axial thickness 

 
5. Conclusions 

 
The paper's overly optimistic general conclusion should be approached with caution. However, 

the study demonstrates the importance of minimizing stress levels in the design of lens mounts to 
minimize the effects of stress birefringence, which is expressed in terms of optical path difference 
(OPD). The radial elastomeric approach, specifically the Deluzio methodology, is capable of providing 
an "ideal" lens mount, although performance may be limited.  

This research study addresses the analysis of the optical path difference while has led designers 
to consider the minimization of stress levels to be of prime importance in the design of lens mounts. 
The conclusion reached by Bayar, Yoder and Deluzio is that stress levels should be minimized in 
assembly to avoid the effects of stress birefringence which expressed in terms of optical path 
difference (OPD). Designs that address stress minimization are the radial elastomeric and their 
deflection produced as a result of the force exerted on the lens, a methodology to calculate the 
deflection values and OPD for various axial lens thickness configuration is presented. These analytic 
predictions are generated in graphical form by entering the de-centre and OPD data into an available 
spreadsheet program. lenses mounted in this article have been shown to exhibit very low deflection 
and birefringence even regardless approach analytic proposed by Bayar, Yoder and Deluzio. 

From an opto-mechanical standpoint, the stresses that could potentially fracture or deform the 
lens are of primary concern, and closed-form analytical solutions can readily provide these quantities. 
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