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ABSTRACT

The outbreak of SARS-CoV-1 in 2002 followed by SARS-CoV-2 in 2019 resulted in a
global health crisis, emphasizing the need to understand the molecular basis of the
viral infection. This study aimed to investigate transcriptional pattern in SARS-CoV-1
through clustering analysis, using the Gene Expression Omnibus microarray data set.
By applying integrated hierarchical clustering and k-medoid methods, we sought to
elucidate the transcriptional patterns associated with SARS-CoV-1 infection and draw
significant conclusions regarding viral pathogenesis. Our analysis revealed distinct
clusters of genes with similar expression patterns, providing insights into the host's
response to SARS-CoV-1 infection. Notably, key genes involved in viral replication,
immune response, and host-pathogen interactions exhibited significant alterations in
expression levels. Additionally, the clustering analysis unveiled subgroups within the
infected samples, implying potential variations in the host response or viral strain
differences. In light of these findings, we conclude that gene expression profiling with
clustering analysis, offers valuable insights into the molecular dynamics of the SARS-
CoV-1 outbreak. The identified transcriptional patterns enhance our understanding of
the virus-host interaction and may pave the way for the identification of potential
therapeutic targets. Ultimately, this research contributes to a comprehensive
understanding of the pathogenesis of SARS-CoV-1 and provides a basis for future
investigations into effective intervention strategies such as gene ranking and gene
selection toward SARS-CoV-2.
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1. Introduction

The severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 epidemics
that occurred in recent years have highlighted the necessity to understand the molecular
mechanisms behind viral illnesses. Significant changes in host gene expression patterns can result
from viral infections, indicating the complex interplay between the virus and the host cellular
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response hybridized with clustering analysis. This approach allows us to decipher the transcriptional
changes associated with viral infections and uncover crucial insights into viral pathogenesis.

The previous research studies demonstrate the degree of similarity between various diseases, is
crucial for understanding and appreciating disease biology that allowed us to conduct this research.
The research [1] focused on identifying distinct transcriptional patterns associated with SARS-CoV-1
infection using clustering analysis. Researchers identified a several clusters with various expression
patterns by evaluating gene expression data from patient samples using hierarchical clustering.
Functional analysis revealed enrichment of genes involved in immune response, cytokines signaling,
and viral replication. The findings suggested heterogeneity in host responses and provided insights
into potential therapeutic targets. Thair et al., [2] investigated the dynamic transcriptional changes
during SARS-CoV-1 infection in macrophages. The research utilized RNA sequencing to identify
differentially expressed genes at different time points after infection. Clustering analysis uncovered
distinct expression profiles associated with various immune response pathways, such as
inflammation and antiviral defense. It is revealed important new information on the host-virus
interaction in macrophages and demonstrated the dynamic nature of gene expression during SARS-
CoV-1 infection [2]. Even more recent investigations, such as Ramesh et al., [3], made use of the
same data set to determine the host immune response to the pathogenic corona-virus, which in
turn lowers mortality. In the near future, an immunological intervention for COVID-19 might be
developed that would lower the death rate, according to this study article's novel perspectives [3].

By examining the changes in gene expression, transcriptional patterns, and host responses over
the course of infection, this research advances our understanding of the SARS-CoV-1 infection.
These studies investigate the SARS-CoV-1 transcriptional patterns using cluster analysis and offer
insightful information. One of the most popular unsupervised learning techniques is clustering,
which divides data into groups depending on how similar the examples are to one another [4].
While clustering method is a valuable tool for grouping genes based on their expression patterns,
enabling the identification of co-regulated genes and uncovering biological insights [5]. In this study,
we employed hybrid hierarchical clustering and partitional clustering methods to identify distinct
clusters of genes with similar expression profiles. These clustering approaches can reveal
transcriptional patterns associated with viral infection, shedding light on key biological processes
and pathways involved in SARS-CoV-1 pathogenesis [6]. By characterizing the transcriptional
patterns associated with viral infection, we aim to unravel the molecular mechanisms driving SARS-
CoV-1 pathogenesis and gain insights that have implications for combating other corona viruses.

The aim of the research paper is to investigate gene expression in SARS-CoV-1-infected samples
using the Gene Expression Omnibus dataset GSE1739, which comprises microarray data specifically
related to this viral infection. By analyzing the expression levels of thousands of genes
simultaneously, we can identify transcriptional patterns that are indicative of the host response to
SARS-CoV-1 infection. Hereby, hierarchical clustering known as agglomerative clustering is a type of
clustering algorithm that follows a bottom-up approach. It starts by considering each data point as
an individual cluster and iteratively merges the most similar clusters until all data points belong to a
single cluster or until a specified number of clusters (k) is reached [7].

Partitional clustering is a type of clustering algorithm that aims to partition the dataset into a
predetermined number of non-overlapping clusters [8]. Unlike hierarchical clustering, partitional
clustering directly assigns each data point to a specific cluster based on certain criteria. Therefore,
in this research, hybridizing hierarchical and partitional clustering, also known as hybrid clustering,
is a combination of both hierarchical and partitional clustering methods. This approach seeks to
leverage the strengths of both techniques to overcome their respective limitations and improve the
interpretability of gene profiling results. Table 1 shows the difference between the categories of
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clustering techniques and provides information on convergence rate, scalability, time complexity,
and computing efficiency. Therefore, the idea behind gene clustering for this research is to utilize
the power of both partition and agglomerative clustering methods.

Table 1
Different clustering techniques
Categories Scalability Time complexity Convergence rate Efficiency
Hierarchical High High Low High
Partitional Low Low Low High

The remainder of this article is organized as follows: Section 2 describes the materials and
methods, including data preprocessing, and the implementation of hierarchical agglomerative
clustering (HAC) and k-Medoids clustering. In Section 3, we present the results of our clustering
analysis and discuss the biological significance of the identified gene expression patterns. Finally,
Section 4 summarizes the study with a summary of this research and future research. Beyond SARS-
CoV-1, the conclusions of this investigation have a broader impact. The research will provide
valuable insights into the molecular mechanisms of similar corona viruses and infectious diseases,
such as SARS-CoV-2. The understanding acquired by researching SARS-CoV-1 gene expression
profiling can assist in improving diagnostic procedures, and help us be more prepared for viral
epidemics in the future.

2. Methodology
2.1 Understanding Microarray Dataset

The microarray gene expression data set, GSE1739, were retrieved from the Gene Expression
Omnibus (GEO) database of NCBI (https://www.ncbi.nlm.nih.gov/geo/). Table 2 indicates the
information of GSE1739. GSE1739 is a gene expression dataset identifier in the Gene Expression
Omnibus (GEO) database. The data set was generated using the GPL201 Affymetrix Human
HGFocus Target Array platform. It consists of gene expression data obtained from 14 samples,
including 10 peripheral blood samples from adult patients with SARS and 4 control samples. The
data set aims to explore gene expression differences between patients with SARS and healthy
controls, likely to gain insights into the molecular mechanisms and gene expression changes
associated with SARS infection.

Table 2
GSE1739’s information
No. of controls 4
No. of patients 10

The gene expression analysis between the test and control samples were analyzed using an
online analysis tool which is GEO2R for the mentioned data, GSE1739. Figure 1 shows that each
point on the plot represents an individual data point of gene. Based on Figure 1, the clusters of
points that appear close together on the UMAP plot represent groups of data points with similar
features or attributes. Each cluster might correspond to a distinct subgroup or category within the
data set.



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 59, Issue 1 (2026) 1-11

4

Fig. 1. UMAP plot of GSE1739

Figure 2 shows the differentially expressed genes value distribution of datasets GSE1739. The
analysis of GSE1739 of the samples respectively with a set cut-off criterion ∣logFC∣≥1.0 and p < 0 .05.

Fig. 2. Boxplot of GSE1739

2.2 Research Process

Figure 3 shows the general methodology of this research article. As it can be seen, the data
collected and pre-processed initially, then, gene manipulation approach will be implemented on the
collected GSE1739 in order to identify transcriptional patterns that are indicative of the host
response to SARS-CoV-1 infection.

Fig. 3.Methodology of the research
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The partitional clustering that will be utilized in this research is k-medoid. Figure 4 shows the
pseudo code for the developed integrated hierarchical and k-medoid clustering algorithm. The
pseudo code integrates the HAC with k-medoid clustering to effectively group genes based on their
expression patterns. It iteratively merges clusters in a way that optimizes the overall similarity
within clusters and dissimilarity between clusters. The final result is the best clustering
configuration that reveals underlying patterns in the gene expression data, helping to better
understand gene interactions and potential biological implications. In addition, using these
clustering methods, you can identify the groups of genes that exhibit similar expression patterns,
functional characteristics, or other shared features. It is important to note that the effectiveness of
clustering depends on the choice of distance metrics, linkage criteria (for hierarchical clustering),
and the number of clusters (k) in k-medoid clustering, whereby, for this research, the choice were
Euclidean distance, average linkage, and two clusters.

Initialize the nodes list with individual data points as clusters.
Calculate the distance between all pairs of nodes and store them in a list.
While the number of clusters is more than the desired outcome clusters:

Find the two closest nodes from the distance list.
Merge the two closest nodes into a new cluster.
Update the distance list with the distances to the new cluster.

Perform k-medoid clustering on the obtained clusters.
Calculate the silhouette score for each k-medoid clustering configuration.
Save the best clustering configuration with its medoids and labels.
Fig. 4. Pseudo code of integrated hierarchical and k-medoid clustering

To discuss further, there are a certain drawback to depend only on a single method, such as
HAC or k-medoid clustering. While HAC may create a hierarchical gene cluster structure that shows
different similarity levels, it may be difficult to identify the key representatives within each cluster.
Similar to HAC, utilizing k-medoid clustering alone can reveal unique gene profiles for each cluster
but may fall short in capturing the full hierarchical linkages across clusters. The hybrid clustering
strategy created in this study, however, turns out to be the best option. It addresses the drawbacks
of each individual technique by combining the advantages of both HAC and k-medoid clustering.
This hybrid approach explicitly identifies important representatives within clusters in addition to
revealing hierarchical gene relationships. Consequently, the hybrid clustering technique emerges as
the preferable and most useful choice when attempting to get a comprehensive knowledge of gene
expression patterns. The importance of employing a HAC, k-medoid, or hybrid technique in a given
situation relies on the objectives of the study and the nature of the data.

Table 3 shows a brief overview of the three clustering methods, emphasizing the mathematical
perspective, implementation, aim and drawbacks of each clustering methods. It shows that
selecting the most appropriate approach depends on a number of variables, including the data's
structure, the amount of information sought in clustering, and the findings. Each approach has
advantages and disadvantages. Therefore, a hybrid method is crucial for our research since the
genes offer complicated information about SARS-CoV-1 infection.
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Table 3
Comparison between singular and hybrid clustering methods
Characteristics HAC k-medoid Hybrid
Mathematical
perspective

Average linkage
between these pseudo-
nodes and other gene
measurements is
calculated. This process is
repeated until only one
node remains. The distance
is using Euclidean distance.

Calculate the distance
between the pair of
genes using the similarity
measures using
Euclidean distance.
Assign the nearest
medoids and obtain the
cluster results.

Refer to Figure 4 for
the mathematical
perspective.

Implementation Create initial clusters, n,
each containing a data
point, then iteratively
combine the closest
clusters.

Partition the data into k
clusters, then utilize k-
medoid to get the
medoid for each cluster.

Utilize the k-medoid
to discover the
medoid for each
cluster after applying
HAC to k levels to
produce k clusters.

Aim Hierarchical relationships
between genes.

Central gene’s
representations.

Hybridization
between hierarchical
structure and medoid
representation for
clustering.

Limitations Unable to identify the
central points within each
cluster.

Ignores the hierarchical
relationships between
genes

Complex approach
due to its hybrid
nature between
hierarchical and
partitional clustering
methods

3. Results

Analyzing the transcriptional patterns using the developed method provides valuable insights
into the interactions between SARS-CoV-1 and the host cells, as demonstrated with the GSE1739
data resulting in two distinct clusters. The first cluster, obtained through hierarchical and k-medoid
clustering, reveals a diverse set of genes involved in various cellular functions. Notably, it includes
ribosomal proteins essential for protein synthesis, indicating potential increased protein production
during viral infection. Moreover, the presence of genes related to RNA processing and splicing
suggests active regulation of gene expression in response to the viral challenge. The cluster also
contains genes associated with the immune response and anti-oxidative stress response, indicating
the host's efforts to counteract viral infection and minimize cellular damage. Additionally, the genes
involved in cellular homeostasis, vesicular trafficking, and endosomal functions may play roles in
viral entry and replication processes. By studying the transcriptional patterns of these genes in the
context of SARS-CoV-1 infection, we can gain insights into how the virus may hijack or alter these
cellular processes to promote its replication and evade the host's immune response. In order to
understand, the transcriptional patterns of the genes. The genes have been clusteres into two
clusters using the developed integrated hierarchical and k-medoid clustering algorithm. Figure 5
shows the excerpts of results of first and second cluster.
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(a)

(b)
Fig. 5. (a) Excerpt result of first cluster (b) Excerpt result of second cluster

First cluster demonstrates strong effects of the virus on host cellular processes and is
anticipated to hold important information regarding SARS-CoV-1 and its consequences. For instance,
the virus interacts with genes including RPL14, RPL19, and RPS11 to regulate the host's ribosomes
for viral protein production [9]. The host may suffer serious repercussions as a result of this
disturbance of regular cellular processes including protein synthesis. Additionally, it has been
discovered that SARS-CoV-1 alters gene expression by focusing on genes like YY1 and HNRNPC,
promoting its replication and thwarting the host's immune response, as demonstrated with GDI2
and PRPF8 [10]. In addition, the virus causes endoplasmic reticulum stress as a result of viral
protein buildup, a process that involves genes including XBP1 and HSPA1A. Moreover, SARS-CoV-1
manipulates cellular processes like cell adhesion, facilitated by genes like ACTN4 and CLTC, to aid in
viral entry and replication [11]. The disruption of cell cycle and DNA repair mechanisms caused by
SARS-CoV-1, as evidenced by the effects on genes such as TSG101 and CDC45, leads to genomic
instability that may contribute to the development of diseases, including cancer [12-14].
Understanding these disruptions is critical in devising effective strategies to combat SARS-CoV-1
and related viruses, ultimately safeguarding human health. The effect of SARS-CoV-1 on human
health can be lessened by developing prospective therapeutics and preventative measures by
targeting key genes involved in viral replication, immune evasion, and cellular manipulation.
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Figure 5 shows the heat map of first clustered genes. Each row in the heat map corresponds to
a specific gene, and each column represents a sample or condition in which the gene expression
was measured. The color intensity in each cell of the heat map indicates the level of gene
expression, with brighter colors indicating higher expression and darker colors representing lower
expression. Since the second cluster contains a diverse set of genes involved in various cellular
functions, the heat map shows patterns of gene expression across different samples or conditions.
Genes with similar expression patterns has been grouped together within the heat map. For
example, ribosomal proteins show a distinct pattern of high expression across multiple samples,
while other genes involved in RNA processing or splicing exhibit different expression patterns.

The second gene cluster was found by the study to be connected to several biological activities.
Several ribosomal proteins found in it, such as RPL35, RPL28, RPL11, RPL21, RPL24, and RPS27A, are
crucial for protein synthesis and have a significant impact on metabolism and cell function [9, 15,
16]. Additionally, SNORA27, SNORD102, SNORD14B, SNORD16, SNORD18A, SNORD18B, and
SNORD18C, small nucleolar RNAs involved in RNA processing and modification. This suggests that
active regulation of gene expression occurs in response to environmental factors, which may
include viral infections like SARS-CoV-1 [17]. The presence of genes encoding RNA-binding proteins
and translation initiation factors including EIF3F, EIF3D, and TARDBP in this cluster further suggests
possible interactions with viral genetic material during translation [18]. The genes PSMB2, RNPS1,
and DDX5, which are involved in RNA processing, splicing, and mRNA export, respectively [19, 20].
Viral infections may alter these processes, which are essential for gene expression and may have an
effect on the cellular functions of the host. While Figure 6 displays the heat map of the second gene
cluster. However, more experimental research is needed to confirm these genes' functional
importance during viral infection in order to establish a clear and precise validation between these
genes and SARS-CoV-1. In order to evaluate the clustered genes, the Silhouette Score has been
used. The silhouette score is a measure used to assess the quality of clustering results [21]. It
quantifies how well each gene that will fit into its assigned cluster compared to other clusters. For
the given silhouette score of 0.5899, it suggests that the clustered genes are reasonably well-
grouped, and the clustering has some level of separation between clusters.

Fig. 5. Heat map of clustered genes-1
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Fig. 6. Heat map of clustered genes-2

4. Conclusions

The study identified distinct clusters of genes with similar expression patterns, shedding light on
the host's response to SARS-CoV-1 infection. Key genes involved in viral replication, immune
response, and host-pathogen interactions showed significant alterations in expression levels,
indicating their importance in the viral pathogenesis. The presence of subgroups within the infected
samples suggests potential variations in the host response or viral strain differences. Overall, the
research contributes to a comprehensive understanding of the virus-host interaction during the
SARS-CoV-1 outbreak, and the identified transcriptional patterns may hold the potential for
identifying therapeutic targets. Additionally, SARS-CoV-1 alters the cell cycle, DNA repair processes,
and causes genomic instability, all of which may aid in the emergence of illnesses like cancer. For
the purpose of developing effective ways to fight SARS-CoV-1 and similar viruses such as SARS-CoV-
2, eventually protecting human health, a thorough knowledge of these disturbances is essential.
Looking ahead, the utilization of clustering algorithms, akin to the approach outlined in this
research [22], holds promise for the development of frameworks tailored to unsupervised
technique in gene detection. Additional investigation and study of the discovered genes, including
DDR1, MIR4640, RFC2, HSPA6, PAX8, and others, can help in the development of specific
medications for viral infections and related disorders and offer useful insights into possible
therapeutic targets and can be implemented within the framework.
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