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ARTICLE INFO ABSTRACT 

 
Attenuation due to rain becomes significantly dominant at frequencies above 10 GHz, 
thereby posing a challenge for planning fifth-generation (5G) wireless networks that 
rely on short-range millimetre-wave links. While several prediction models exist, these 
were developed primarily based on long-range links and exhibit decreased accuracy 
when applied to tropical regions. This paper introduces a novel method for predicting 
rain attenuation of 5G links, utilizing scaling of long-range link measurements with 
available prediction models. The predictions are then evaluated against long-term 
statistics of measurements collected at tropical sites. 
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1. Introduction 
 

5G wireless mesh networks, currently under development, will heavily employ short-range 
millimetre-waves for backhaul links [1]. Several models can be used to predict the effect of rain 
attenuation on wireless terrestrial links, as discussed in previous works [2-7]. However, these models, 
developed mainly based on measurements collected with links longer than 1 km, are expected to be 
less accurate when applied to short links. On the other hand, available long link measurements can 
be exploited by using path length and or frequency scaling methods. 

The available models predict rain attenuation from rain intensity statistics; some rely on the full 
rainfall rate distribution, while others utilize the rain rate exceeded for 0.01% of the year. 
Nonetheless, if rain attenuation measurements are available, they can be scaled to links with 
different lengths and or frequencies by inverting the models mentioned above. Some previous work 
discussed and applied such scaling methods [8-12], but used measurements collected in temperate 
areas. This paper extends these methods by focusing on tropical sites where more rain attenuation 
is expected and most of the known models severely underestimate the induced attenuation [13-18].  
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This paper is organized as follows: some widely used prediction models are introduced in Section 
2, Section 3 presents the measurement setup and describes the methods used, while the path-length 
and frequency scaling models are presented and discussed in Section 4 Finally, conclusions are 
presented in Section 5. 

 
2. Rain Attenuation Prediction Models  

 
Rain attenuation affecting a terrestrial link is usually calculated as the product of specific 

attenuation (dB/km), R, and the effective path length (km), 𝑑𝑒𝑓𝑓 : 

 
𝐴 = 𝛾𝑅 . 𝑑𝑒𝑓𝑓 (dB)              (1) 

 
The effective path length consists of the real path length and the path adjustment factor, which 

is introduced to consider the inhomogeneity of the rainfall along the path. Various models describe 
this inhomogeneity using different factors to describe the variability of rainfall in space properly [5].  

The ITU-R P.530-17 model [2] is the most widely used. Besides the electrical and geometrical 
features of the link, this model utilizes information on the rain rate exceeded 0.01% of the time, 
𝑅0.01(mm/h), as input the attenuation exceeded for 0.01 % of the time, 𝐴0.01, can then be calculated 
as: 
 
𝐴0.01 = 𝛾𝑅 . 𝑑𝑒𝑓𝑓 = k. 𝑅0.01

𝛼  . 𝑑. 𝑟            (2) 

 
where d (km) is the path length, k and α are frequency and polarization dependent empirical 
coefficients, respectively, and r is the adjustment factor. An extrapolation formula is then used to 
calculate Ap, the attenuation exceeded for other percentages of time, p (parameters C1; C2 and C3 
are described in [2]): 
 

𝐴𝑝 = 𝐶1. 𝑝−(𝐶2+𝐶3𝑙𝑜𝑔10𝑝). 𝐴0.01                 (3) 

 
While the ITU-R model depends just on  𝑅0.01 to predict rain attenuation, other methods depend 

on the full rainfall rate distribution by defining a relationship between Rp and Ap (the rain rate and 
the rain attenuation exceeded for p% of the time, respectively); this is the case in the model 
presented by Mello [4], which also introduces the concept of effective rain rate. Ap, can then be 
calculated using: 
 

𝐴𝑝 = 𝑘. [1.763. 𝑅𝑝

0.753+
0.197

𝑑 ]𝛼 .
𝑑

1+𝑑/(119.𝑅𝑝
−0.244)

          (4) 

   
The work in [5] presents a physically-based model developed by considering results from a 

simulation of the interaction between terrestrial links and synthetic rain maps generated by 
MultiEXCELL [19], according to this model, the rain attenuation exceeded in an average year with 
probability p% is calculated as: 

 

 𝐴𝑝 = 𝑘. 𝑅𝑝
𝛼 . 𝑑. (𝑎. 𝑒−𝑏.𝑅𝑝+𝑐)                                                                                                                             (5) 

 
where the coefficients a; b, and c, which are functions of d and Rp, are defined in [4]. 
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3. Measurement Setup and Scaling Methods 
 
Rain attenuation data were collected for two consecutive years using three parallel links installed 

at Universiti Teknologi Malaysia: two short links (d = 301:32 m) operate at 38 GHz and 26 GHz [20-
22], while the third link operates at 26 GHz with path length d = 1:3 km [13]. The Ericsson E-mini link 
CN 500 was used in the installation and measurements were collected every second via the data 
acquisition system. The automatic gain control output in volts, AGCV, was converted to the received 
signal level, RSL in dBm, using the following mathematical expression defined by the manufacturer 
[13]: 
 
𝑅𝑆𝐿(𝑑𝐵𝑚) = 40 . 𝐴𝐺𝐶𝑉120               (6) 

 
The link antennas were covered with radomes. However, the losses due to the wet surfaces of 

the radomes can be significant at millimetre-wave frequencies [23] and can severely limit the 
accuracy in measuring rain attenuation. In general, the measured path attenuation Am (dB) can then 
be defined as: 
 
𝐴𝑚 = 𝐴𝑝 + 𝐴𝑤𝑎              (7) 

 
where Ap is the rain attenuation along the path (dB), and Awa is the attenuation induced by the wet 
antenna. The procedure to extract Awa from Am typically requires the knowledge of the 
antenna/radome characteristics under rainy conditions. These were assessed by carrying out a 
simulated rain attenuation experiment, as described in detail in [24], and the results were used to 
estimate and remove the attenuation due to the wetness of the antennas using a method based on 
dual-frequency measurements proposed by [25]. This method assumes that the ratio between the 
rain attenuation at the two frequencies is known and is equal to predictions using the ITU-R 
frequency scaling method from the ITU-R P.530-17 recommendation [2]. 

Along with the rain attenuation data, 1-minute rain intensity were also collected over the two 
years using a Casella rain gauge of 0.5 mm sensitivity installed on the receiver side. Figure 1. shows 
the complementary cumulative distribution functions (CCDFs) of the attenuation due to rain and the 
CCDF of the 1-minute integrated rain intensities measured at the same location. The rain rate 
exceeded for 0.01% of the time is 116 mm/h, which was used as input to the ITU-R prediction model 
[2]. 
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Fig. 1. Measured rain attenuation and rain rate CCDFs 

 
The measured rain attenuation time series are used as input to the inverse equations of the 

above-mentioned models to compute the effective rain intensity values. These values are then used 
to predict the attenuation time series (and the attenuation statistics) of the link characterized by the 
new path length and/or frequency. As an example, for the ITU-R model, this can be achieved using 
the closed-form Eq. (8), which is derived from Eq. (2): 
 

𝐴2 = 𝐾2. [
𝐴1

𝑘1𝑑1𝑟1
]

[
𝛼1
𝛼2

]
. 𝑑2. 𝑟2               (8) 

 
where subscripts 1 and 2 refer to the link providing measurements and the hypothetical link for which 
predictions are required, respectively. Eq. (2) relates 𝐴0.01, and 𝑅0.01; however, for short links, the 
distance factor r turns out to be always limited to 2.5, as indicated in [2]. 

The value of Rp as a function of Ap for the other models, can be numerically approximated using 
Eq. (4) and Eq. (5).  

Section 4 reports the results of the tests of the proposed rain attenuation scaling methods; the 
dataset collected by the three links was used as both input and reference. As a further source of 
comparison, we have also applied the methodology from recommendation P.530-17 [2], included 
here as in Eq. (9), (valid for frequencies between 7-50 GHz), that relies on long-term rain attenuation 
statistics and frequency used: 

 

𝐴2 = 𝐴1 (
𝛷2

𝛷1
)

1−(1.12∗10−3(
𝛷2
𝛷1

)
0.5

(𝛷1.𝐴1)0.55

              (9) 

 
In Eq. (9) 𝞥 is a function of frequency f and is defined as: 
 

𝛷 =
𝑓2

1+10−4.𝑓2                         (10) 
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4. Results and Discussion 
 
 In this section, we introduce a method for scaling rain attenuation time series and statistics 

between mmWave links with varying physical parameters, such as length and frequency. This link 
scaling approach ensures that the scaled values are consistently derived from actual measurements, 
utilizing the chosen rain attenuation prediction model. We then contrast the scaled attenuation 
distributions with the theoretical CCDF based on long-term statistics generated from these models. 
Building upon the concept of link scaling,  by promoting link scaling, our study offers a methodology 
to characterize millimetre-wave link behaviours with arbitrary parameters, grounded in real-world 
measurements. 
 
4.1 Path Length Upscaling and Method Assessment 

 
Since all the models mentioned above are valid for path lengths longer than 1 km, the attenuation 

time series of the shorter 301-m link operating at 26 GHz was first upscaled to 1.3 km and compared 
with the measurements obtained from the link with the same path length. Figure 2 compares the 
results from direct application of the model (using input rain intensities extracted from the measured 
rain rate CCDF) and estimates using the scaling approach. 

 

 
Fig. 2. CCDF of rain attenuation at 26 GHz (d = 1:3 
km): Measurements, direct predictions, and 
scaling 

 
Figure 2 indicates quite good prediction accuracy for all the models, but all are outperformed by 

the scaling approach. This is likely because of the additional information embedded in the time series 
of the rain attenuation measured along the shorter path. The results reported in Table 1 confirm this. 
Table 1 additionally provides a more comprehensive assessment of the prediction accuracy by 
reporting the following error value: 

 

𝜺 = 100.
𝐴𝑝−𝐴𝑚

𝐴𝑚
                            (11) 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 60, Issue 2 (2026) 82-90 

87 
 

where Am is the measured attenuation value exceeded p% of the time, and Ap is the value extracted 
from calculated/scaled CCDFs exceeded p% of the time. 
 

Table 1 
Overall Performance of Prediction Methods:𝜺 
Mean, 𝜺 Rms And 𝜺 Std of The Prediction Error 

 Calculated Scaled 
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h
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n

i 

𝜀mean 8.4 -2.1 -10.9 -4.3 11.7 -1.6 
𝜀 Rms 14.9 11.1 12.2 5.1 13.2 7.8 
𝜀 Std 13.5 11.9 6.1 2.9 6.8 8.3 

 
4.2 Path Length Downscaling 

 
Millimetre-wave links to be employed in future 5G systems are expected to be limited to 200 m 

for radio access and to some hundreds of meters for backhauling [1]. This section presents tests of 
the accuracy of path-length scaling methods, specifically of Eq. (8), in predicting rain attenuation of 
short links starting from measurements collected along longer Links. Figure 3 presents the results for 
both frequencies, 26 GHz, and 38 GHz, considering two reference path lengths: d = 100 m and d = 
200 m. 
 

 
Fig. 3. CCDFs of rain attenuation at 26 GHz and 
38 GHz: Measurements and down-scaled 
curves using Eq. (8) 

 
Results in Figure 3 indicate a significant amount of rain attenuation affecting even links with path 

lengths shorter than 300 m. This highlights the importance of accurate predictions. 
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4.3 Frequency Scaling 
 
When measurements at a lower frequency are available, recommendation ITU-R P.530-17 

recommends using frequency scaling techniques (rather than prediction models) for better accuracy 
[2]. Figure 4 presents the rain attenuation CCDFs for some of the candidate 5G frequencies (26, 38 
and 50 GHz) scaled using both the proposed approach and the model included in recommendation 
P.530-17; these are compared against measured data, when available. Both methodologies provide 
similar satisfactory results corroborating the use of Eq. (8) for both path-length and frequency scaling. 
Results again indicate significant amounts of rain attenuation affecting short terrestrial links in 
tropical sites. 
 

 
Fig. 4. Rain attenuation frequency scaling: 
CCDFs at 26, 38 and 50 GHz 

 
More detail is included in Table 2, which uses Eq. (8) to list the estimated fade margin for a 200-

m link for various 5G candidate frequencies and guaranteed link availabilities of 99.99%, 99.95% and 
99.9%. As expected, the fade margin increases with the frequency and the availability requirement. 
 

 Table 2 
 Predicted rain fade margin for a 200-m link with horizontal polarization, to   
 guarantee link availability of 99.99%, 99.95% and 99.9% 
Availability 

Frequency (GHz) 99.90%  99.95% 99.99% 

20 1.5 3.3 3.6 
25 2.9 5.0 6.0 
30 4.4 6.8 8.5 
35 5.3 8.3 10.3 
40 6.8 9.9 12.4 
45 
50 
68 
73 
86 

8.1 
8.0 
10.0 
11.3 
12.7 

11.3 
12.0 
13.3 
16.0 
18.0 

14.3 
14.7 
16.7 
18.7 
20.0 
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5. Conclusion 
 
The combined methodologies for rain attenuation frequency and path-length scaling presented 

in this paper are an accurate tool to predict the effects of precipitation on future 5G millimetre-wave 
links. Results from tests of the accuracy of these methodologies indicate a very satisfactory prediction 
accuracy (for both path-length and frequency scaling methods). Moreover, results show that a 
significant amount of rain attenuation is expected to affect even very short links (d < 300 m), and this 
needs to be duly considered in the design of 5G systems in tropical regions. Further work could test 
these methodologies with similar measurements collected in equatorial or other tropical sites. The 
results obtained here can help in the design of future 5G networks, as well as provide a better 
expectation of tropical rain effects.  
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