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HOBT-Higher Order Beam Theory is the developing theory in the Finite Element 
Method (FEM), which considers the higher-order variation of transverse shear strain; 
therefore, the shear correction factor is not required. This paper uses beam elements 
and implements them to higher order beam theory developed by Vo et al., with two 
independent variables of bending and shear displacement, using third-order 
polynomial functions. This paper shows the contribution of the shear strain part as one 
of the independent variables. Static analyses are presented to obtain a comparative 
result with the First Order Beam Theory (FOBT) application on the imposition of 
different boundary conditions to ensure reliable results. 
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1. Introduction 
 

Nowadays, advanced technology use Functionally Graded Materials (FGMs), whose structural 
properties are varied along their volume to meet an expected function and have been applied in the 
structural industry [1-3]; however, there is a challenge for FGM (Functionally Graded Material) as 
structural components in extremely high-temperature environments to eliminate the shear stress 
concentrations both upper and bottom of the element with the simplicity of the element 
consideration [4,5]. In FEA (Finite Element Analysis), the simulation solution depends on the number 
of degrees of freedom (DOF) of the system to be analysed as the minimum number of independent 
coordinates that can specify the position of the system completely [10]. The simplest model in FEA is 
Classical Beam Theory (CBT). CBT delivers satisfactory results of static and free vibration analysis for 
thin beams, on the other hand for thick beams where the transverse shear effect exists. When it 
implements to thick beam the static result is undervalued and natural frequency is overestimated. 
First Order Beam Theory (FOBT) which also known as Timoshenko beam theory take into account the 
effects of shear deformation, Timoshenko proposed a further improvement of the beam theory to 
accommodate the thick beam analysis, but this theory suffers from a phenomenon called shear 
locking when analysing thin beams. Timoshenko theory needs special treatment to prevent shear 
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locking problem [4-6]. Another FOBT theory as modification of Timoshenko Beam Theory using 
unified integrated (UI) approach has been proposed in reference [7-10]. UI approach has been 
developed by Katili, who presented the development of a beam element without shear locking 
problem called UI (Unified and Integrated) method using the C2 Hermite polynomial expansion of 
the 5th degree for bending displacement [11-13]. Based on this, Katili developed a more efficient 
FOBT with two-node 3 DOFs FGM beam element as a simplification of previous studies [14]. Both UI 

Method and UI Simplified use shear correction factor .  

The studies on the higher-order beam theory and its application to FGM, have received much 
research attention over recent years which are taken from previous studies [17-24]. Higher-Order 
Beam Theory (HOBT) have been proposed to avoid the use of a shear correction factor and have a 
better prediction of response of FGM beams. The Higher Order theory developed by Vo et al., [21] 
provides two independent variables assumption of the bending and shear displacement variables, 
where the shear displacement does not depend on the derivative of the bending displacement 
formulation. This study uses the following assumptions:  

 
i. axial and transverse displacements are divided into bending and shear components 

ii. the axial displacement bending components are similar to those given by CBT (Classical 
Beam Theory 

iii. the shear component obtained from higher order theoretical calculations given by Reddy 
with reference [25-29].  

 
In this paper, those three are developed with Reddy assumption of constant transverse 

displacement and higher order axial displacement through the depth of the beam.  The elements in 
this study use Finite Element Method with third-degree of polynomial Hermitian functions for the 
bending and shear displacement contribution, then for slope displacement and are the 
first derivative of and , This research assumes the unlinking of the two bending and shear 
variables and develops a formulation from Vo, et al., [21]. The proposed theories satisfy condition 
where shear stress will be at a maximum value at the centre of the beam and will be zero at the top 
and bottom of the beam, thus a shear correction factor is not required. Furthermore, Comparison 
several numerical results of different boundary conditions and implementation of others two UI 
theories to provide validation of the static analysis results.   

The organization of the paper is as follows. After the introduction, the Higher-Order Beam Theory 
for FGM beam and First-Order Beam Theory are presented in Section 2. Section 3 presents the 
numerical results of Static Analysis and the comparison with another method and followed by 
conclusions in Section 4. 
 
2. FGM Beam Theory 

 
Consider a beam with length  and rectangular cross-section , with  as the width and  

being the height. The x-, y-, and z-coordinates are taken along the length, width, and height of the 
beam. The formulation is limited to linear elastic material behaviour.  
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Fig. 1. Geometry and Coordinate systems of FGM Beam 

 
2.1 Higher Order Beam Theory  

 
Considering the arbitrary displacement field is given by the following expression: 

 

          (1) 

 
              (2) 

 
           (3) 

 
Where  is the axial displacement in mid of the beam, and are the bending and shear 

components of transversal displacement in the centre of the beam.  is a shape function 
expression of transverse shear stress distribution along the thickness of the beam based on Reddy's 
assumption [25], which is expressed in the following equation: 
 

           (4) 

 
By substituting Eq. (4) to Eq. (1), The normal strain is: 

 

               (5) 

 
The normal stress-normal strain relationship is: 

 
              (6) 

 

          (7)    

 
The transverse shear strain along the beam is:  
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         (8) 

 
The shear modulus and the shear stress-shear strain relationship is: 

 

             (9) 

 

                      (10) 

 
Where is the young elastic modulus, is the shear modulus, and which is Poisson's 

ratio along the thickness.  
Hamilton Principle is used for the equation of motion. The analytical form of the equation is given 

by: 
 

                      (11) 

 

                     (12) 

 

                      (13) 

 
is the virtual variation of strain energy, is the virtual variation of potential energy and 

 is the virtual variation of Kinetic Energy. This paper only considers the static analysis therefore
   

The variation of strain energy is expressed in:  
 

                      (14) 

 
The axial strain of the beam axis and curvature  at any point x along the beam, transverse 

shear strain , bending rotation and shear rotation are given by: 
 

                       (15) 

 

                       (16) 
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                       (17) 

 

                       (18) 

 

                               (19) 

 

                        (20) 

 
FGM, in this theory, is composite material graded from ceramic to metal. The material properties 

of the FGM beam are assumed to vary along the thickness of the beam based on the power law from 
reference [21]. 
 

                      (21) 
 

                      (22) 
 

                      (23) 

 
Where denotes the effectiveness of material properties such as young modulus , Poisson's 

ratio , and mass density . Subscripts m and c indicate the type of material metal and ceramic 
respectively; and  is the powerlaw index for volume fraction gradation identification. Figure 2 
illustrates the variation of along the beam thickness with different p. A value of  indicates 
full ceramic, and is full metal.  
 

 
Fig. 2. variation along the thickness of the beam 
with different powerlaw index 

 
After substitution of Eq. (4) to Eq. (10) to Eq. (12), then stress resultant expression are given by:  
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                     (24) 
 

                       (25) 

 

                       (26) 

 

 
Stress resultant Bending Moment: 

 

                    (27) 
 

                      (28) 

 

                      (29) 

 
Stress resultant of shear force: 

 
                        (30) 

 

                                   (31) 

 
Stress resultant Shear Moment: 
 

                      (32) 
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                                  (35) 

 
By integrating Eq. (37) to Eq. (42), The classical principle of strain energy takes the form:  

 
                      (36) 

 
Where: 
Axial Energy : 

 

                       (37) 

 
Bending Energy :   

 

                    (38) 

 
Shear Energy : 

 

                       (39) 

 
Axial-Bending Coupling Energy: 

 

                    (40) 

 
Axial-Shear Coupling Energy: 

 

                    (41) 

 
Bending-Shear Coupling Energy: 
 

                    (42) 
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2.2 HOBT Element  
 
Figure 3 shown the 2-node beam is formulated in 5 DOFs ( ), so there are 10 DOFs 

in one element. There are two unknown variables in the HOBT element equation. Those are the 
bending deformation which is defined by a 3rd-degree polynomial expansion, and the shear 
displacement which is approximated with the same 3rd-degree polynomial equation. The rotation 
function is the first derivative of its deformation. The bending displacement and bending slope 

 must be continuous across the elements in order to have a conforming finite element method, 
the cubic shape function are required. 
 

 
Fig. 3. Degree of Freedom Beam Element 

 
3rd degree Polynomial based shape function is used: 

 

                     (43) 

 
                       (44) 

 
                        (45) 

 

Where  
Substituting Eq. (43) to Eq. (19) and Eq. (20), we obtain the bending and shear rotation as follows: 
 

                     (46) 
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By using the standard procedure of the finite element method, the shape function for the HOBT 
element in Figure 4 is: 

 

                   (49) 

 

                      (50) 

 

                      

(51) 
 

                      (52) 

 
So, the graph of shape function becomes:  

 

 
Fig. 4. Shape Function Bending and Shear of HOBT element 

 
Then, by substituting Eq. (45) to Eq. (48) to Eq. (43) we obtain the bending and shear displacement 

with below formula.  
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                   (54) 

 
Linear Polynomial is chosen for axial displacement, and the shape function of axial displacement 

is expressed below: 
 

                      (55) 

 

                     (56) 

 
Substituting Eq. (55) to Eq. (17), we obtain the axial strain : 

 
;                            (57) 

 
Where the axial strain matrix is: 

 

                   (58) 

 
Substituting Eq. (53) to Eq. (15) gives curvature: 

 
                        (59) 

 
Where the bending strain matrix is: 
 

     (60) 

 
Substituting Eq. (54) to Eq. (18) gives the shear strain: 

 
                  (61) 

 
Where the shear strain matrix  is: 
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By substituting Eq. (57) to Eq. (62) to Eq. (36), gives:  
Axial Energy : 

 

                      (63) 

 
Bending Energy :   

 

                      (64) 

 
Shear Energy : 

 

                      (65) 

 
Axial-Bending Coupling Energy: 

 

                      (66) 

 
Axial-Shear Coupling Energy: 

 

                      (67) 

 
Bending-Shear Coupling Energy: 

 

                      (68) 

 
From above formulation Eq. (63) to Eq. (68), calculations are made and obtained axial stiffness, 

bending stiffness, shear stiffness and coupling stiffness, respectively: 
 
Global  Stiffness :                           (69) 

 
In Eq. (69), indexes a, b, s, as, ab, and bs contribute axial, bending, shear, coupling axial-shear, 
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The component of axial stiffness element can be expressed by:  
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Shear Stiffness element 
 

                  (71) 

 
Bending Stiffness Element  

 

                  (72) 

 

                  (73) 

 
Axial Bending Coupling Stiffness element:  

 

                  (74) 

 
Axial Shear Coupling Stiffness element:  

 

                  (75) 

 
Bending Shear Coupling Stiffness element:  

 

                  (76) 

 
And the global stiffness FGM is as follows:  
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  (77) 

 
The external energy in implementation with uniformly distributed load  can be expressed: 

 
                  (78) 

 

                  (79) 

 
The equivalent nodal force vector uniformly distributed load is given by:  

 

               (80) 

 
3. Static Analysis Results and Comparison 

 
At this stage, some examples of various boundaries are performed for static analysis. Different 

boundary condition for these supports is presented in Figure 5. The HOBT [21] method will be 
compared to FOBT for the formulation validity test. 

 

 
Fig. 5. Typical of Beam Support and Boundary Condition 
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FGM Material Properties to validate the good performance of the HOBT method are as follow: 
 ,  where  is the young modulus Aluminium (Al) on the bottom of the 

beam and ,    where  is the young modulus of ceramic Zirconia(ZnO2) on top 
of the beam. Shear correction factor 5/6 is used and, two length-to-height ratios and 

are applied to the number of powerlaw index (p=0, 0.2, 0.5, 1, 2, 5,10, ∞). a uniformly 
distributed load  are applied.  

For convenience, the following dimensionless forms is used: 
 

                                   (81) 

 
Table 1 shows that the increasing powerlaw index will increase the deflection. It also represents 

the convergence of the normalized centre displacements after comparing with UI simplified results. 
Those results are found similar with the reference [14]. As can be seen in Table 1. the maximum 
displacements result of hinge-roll support, clamped-free support, clamped–clamped support. and 
clamped-hinged support of the beam from the proposed element are match with the finite element 
solutions based on reference [14]. No comparison is shown for HOBT and UI Simplified methods 
which means the result are reliable. Those two-result different from UI Method [13], UI Method uses 
5th Degree Polynomial; therefore, one element is already enough to get exact displacement. UI 
Simplified and HOBT, which use 3rd Degree Polynomial, need a minimum of 2 elements for a good 
result, except Clamped-Free supported, which only needs one element to give a good result. 
However, the present method (HOBT) is a faster formulation than the other two and simpler 
boundary condition formulation. 

 
Table 1 
Non-Dimensional deflections of FGM Beams (Al/) ZnO2) under uniform load 

L/h Reference NELT p = 0 p = 0.2 p = 0.5 p = 1 p = 2 p = 5 p = 10 p = ∞ 
  Hinge-Roll 
16 FOBT Vo  16 4.6017 5.3559 6.3005 7.3826 8.3962 9.2750 10.0266 13.1471 

UI Simplified 16 4.6017 5.3559 6.3005 7.3826 8.3962 9.2750 10.0266 13.1478 
UI Method 16 4.6017 5.3559 6.3005 7.3826 8.3962 9.2750 10.0266 13.1478 
HOBT 16 4.6017 5.3557 6.3005 7.3810 8.3940 9.2733 10.0266 13.1478 

4 FOBT Vo  16 5.2682 6.1034 7.1514 8.3699 9.5724 10.7293 11.6559 15.0521 
UI Simplified 16 5.2682 6.1034 7.1514 8.3699 9.5724 10.7293 11.6559 15.0521 
UI Method 16 5.2682 6.1034 7.1514 8.3699 9.5724 10.7293 11.6559 15.0521 
HOBT 16 5.2682 6.1032 7.1514 8.3684 9.5702 10.7270 11.6559 15.0521 

Clamped-Free 
16 FOBT Vo  16 43.9275 51.1375 60.1714 70.5050 80.1675 88.5001 95.6475 125.5075 

UI Simplified 16 43.9275 51.1375 60.1714 70.5050 80.1675 88.5001 95.6475 125.5075 
UI Method 16 43.9275 51.1375 60.1714 70.5050 80.1675 88.5001 95.6475 125.5075 
HOBT  16 43.9280 51.1375 60.1714 70.4990 80.1580 88.4920 95.6475 125.5100 

4 FOBT Vo  16 46.5938 54.1275 63.5748 74.4550 84.8713 94.3163 102.1650 133.1250 
UI Simplified 16 46.5938 54.1275 63.5748 74.4550 84.8713 94.3163 102.1650 133.1250 
UI Method 16 46.5938 54.1275 63.5748 74.4550 84.8713 94.3163 102.1650 133.1250 
HOBT  16 46.5938 54.1275 63.5748 74.4490 84.8630 94.3090 102.1600 133.1300 

Clamped-Clamped 
16 FOBT Vo  16 0.9559 1.1110 1.3049 1.5289 1.7416 1.9323 2.0921 2.7311 

UI Simplified 16 0.9559 1.1110 1.3049 1.5289 1.7416 1.9323 2.0921 2.7311 
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UI Method 16 0.9559 1.1110 1.3049 1.5289 1.7416 1.9323 2.0921 2.7311 
HOBT  16 0.9559 1.1110 1.3049 1.5278 1.7394 1.9323 2.0921 2.7311 

4 FOBT Vo  16 1.6224 1.8585 2.1558 2.5164 2.9178 3.3865 3.7213 4.6354 
UI Simplified 16 1.6224 1.8585 2.1558 2.5164 2.9178 3.3865 3.7213 4.6354 
UI Method 16 1.6224 1.8585 2.1558 2.5164 2.9178 3.3865 3.7213 4.6354 
HOBT  16 1.6224 1.8585 2.1558 2.5164 2.9156 3.3865 3.7213 4.6354 

Clamped-Hinged 
16 FOBT Vo  16 1.8757 2.1788 2.5519 2.9723 3.3706 3.7477 4.0754 5.3590 

UI Simplified 16 1.8757 2.1788 2.5519 2.9723 3.3706 3.7477 4.0754 5.3590 
UI Method 16 1.8757 2.1788 2.5519 2.9723 3.3706 3.7477 4.0754 5.3590 
HOBT  16 1.8674 2.1688 2.5410 2.9617 3.3703 3.7409 4.0555 5.3339 

4 FOBT Vo  16 2.6610 3.0591 3.5518 4.1288 4.7446 5.4494 5.9873 7.6027 
UI Simplified 16 2.6610 3.0591 3.5518 4.1288 4.7446 5.4494 5.9873 7.6027 
UI Method 16 2.6610 3.0591 3.5518 4.1288 4.7446 5.4494 5.9873 7.6027 
HOBT  16 2.5339 2.9170 3.3567 4.1288 4.7446 5.2829 5.7643 7.5180 

 
4. Conclusions 

 
The comparison studies verify the good performance of the Higher Order Beam Theories. The 

displacement fields of the proposed theories are chosen based on the assumption of two unlinking 
displacements (bending displacement and shear displacement) through the depth of the beam with 
3rddegree polynomial approximation. Equations of motion are derived from Hamilton’s energy 
principle. Numerical Solution are conducted for various types supported beams. The following points 
can be outlined from the present study:  

 
i. The proposed beam theory gives a high specific stiffness formulation. It satisfies the 

stress-free boundary conditions on the top and bottom surfaces of the beam and gives 
convergence results for displacement.  

ii. Euler Bernoulli bending is a special case and this present formulation will be free from 
shear locking. This proposed method could be implemented both thick and thin beam 
cases.  

iii. The results are reliable because the proposed beam theories are match with the others 
method results and agree well with the existing solutions.  

iv. The unlinking shear displacement gives good results for total displacement contribution. 
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