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Flood disasters have occurred quite frequently in Malaysia and has been considered one 
of the most dangerous natural disasters. Meteorologists and hydrologist are having 
difficulty in predicting flooding due to the weather changes and are opting to deep 
learning techniques to predict flooding. This study compares the performance of deep 
learning techniques for flood prediction, namely Long Short-Term Memory (LSTM) 
network. Furthermore, the effect of using Synthetic Minority Oversampling Technique 
(SMOTE) as a ‘treatment’ to treat imbalanced data was also investigated to ensure all 
LSTM models were able to predict accurate flooding. The experimental results revealed 
the treated dataset had a positive impact in predicting flood with higher accuracy. 
Additionally, to increase the accuracy of deep learning methods, future researchers 
could use more hidden layers as well as different hyperparameter settings which could 
help create a better predicting LSTM model.  
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1. Introduction 
 

Floods, in comparison to other natural catastrophic events such as landslides, tsunamis, 
hurricanes, and haze, have been identified by Rahman and Dewsbury [1] as the most dangerous 
natural disasters in Malaysia. According to Saimi et al., [2], floods are generally described as bodies 
of water rising, swelling, and flooding land that has not been covered by water. Heavy rainfall, 
snowmelt, or coastal storm surges can cause floods. Flooding can occur when water levels rise and 
overwhelm drainage systems, rivers, and levees. Furthermore, there are several factors that 
contribute to flooding, including heavy rains, melting snow, and poor drainage systems. 

Devastating rainfall events, which are expected to occur in the future as a result of climate 
change, could result in alarming flooding levels as reviewed by Department of Irrigation and Drainage 
(DID) Malaysia [3]. Razi et al., [4], environmental scientists have noted that historical flooding events 
caused by torrential rain in several states of Peninsular Malaysia serve as a stark reminder of the 
possibility of catastrophic weather patterns brought about by climate change. Several types of floods 
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are recognized by the World Meteorological Organization (WMO) [5], including flash floods, fluvial 
floods, seasonal floods, urban floods, snowmelt floods, among others. 

A flash flood occurs when a large amount of heavy rainfall falls within a short period of time and 
in a confined area. According to IGI Global [6], flash floods are also called torrential floods, typically 
defined by roaring torrents that smash over riverbanks, metropolitan roadways, or mountain valleys, 
sweeping everything in their path. These floods, occurring within minutes to hours after heavy rain, 
are highly destructive natural disasters, impacting urban and rural areas alike [7]. Consequently, 
Demeritt et al., [8] described a flood prediction and monitoring tool are essential for mitigating flood-
induced damage. 

Flood prediction plays a significant role in land-use planning, urban design, and environmental 
management. Having the ability to accurately predict future floods is key to developing effective and 
sustainable flood mitigation strategies. Nevertheless, real-time flood onset and development are 
difficult to predict [9]. Forecasting real-time floods requires knowledge of geography and hydrology 
as well as accurate weather predictions. Additionally, it requires the ability to collect and analyze data 
in real time, which is a difficult task given the complexity of hydrological and meteorological systems. 

Due to the complexity of real-time flood prediction, scientists have developed models to predict 
future floods based on historical data. This approach facilitates more accurate and informed decision 
making about flood mitigation strategies by analyzing historical data and forecasting flood events 
using statistical procedures. For instance, previous studies by Goodman et al., [10] on flood disaster 
management and flood prediction systems have been conducted and developed using machine 
learning or deep learning. Through machine learning, computers are able to learn independently and 
improve predictions, classifications, and clustering by applying the practice. 

The use of deep learning models such as Artificial Neural Networks (ANN) is common in flood 
prediction as reviewed by Mosavi et al., [11], however, Long Short-Term Memory (LSTM) has become 
more popular for time-series flood forecasting as reviewed by Moishin et al., [12]. The LSTM is 
capable of learning from and predicting long-term dependencies, making it suitable for handling time 
series and sequence data. As a result, it is an attractive choice for flood prediction. The LSTM has 
been successfully applied to a number of flood-related scenarios [13]. 

The increase occurrences of flood raised awareness in researchers that aimed to fulfill 
environmental duty by creating models that could accurately predicts or forecasts floods as discussed 
by Danladi et al., [14]. Nurumal et al., [15] The comparison of LSTM models with different 
hyperparameter input and epoch numbers concluded that LSTM model has the best flood prediction 
performance. Flood occurrences were forecast for the year 2021 using the chosen accurate flood 
prediction model. 
 
2. Methodology  
 

In the methodology part, the methods and material used in the study will be discussed and 
explained in detail. 
 
2.1 Data Collection 
 

The study utilized data spanning 15 years, commencing from 1st January 2005 to 31st December 
2020, for Subang Jaya region. The meteorological information was sourced from The Malaysian 
Meteorological Department (MET Malaysia) and encompassed 5844 data points with eight distinct 
variables, including the year, month, day, daily maximum and minimum temperatures (°C), daily 
relative humidity (%), daily rainfall amount (mm), and daily mean sea level (MSL) pressure (hPa). 
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Additionally, the dataset encompassed Nino Oceanic Index and Southern Oscillation Index (SOI) data, 
obtained from an open-source platform. Notably, both the meteorological and index datasets 
covered the same 15-year timeframe as the Meteorological (MET) Malaysia data. 
 
2.2 Feature Engineering 
 

Feature engineering involves certain procedures such as data cleansing, data normalization, data 
transformation and feature creation [16]. In this research, data cleansing was done where missing 
data, outliers and duplicate values were checked. After data cleansing, feature creation is done to 
develop two new variables which are ‘rain intensity’ as classified using parameters set by MET 
Malaysia displayed in Table 1 and ‘flood occurrence’, classified using the parameters as stated in 
Table 2. Later, data normalization was done to the training set. Data normalization is done to treat 
all variables equally since some variables generally have larger values than others. For example, the 
variable MSL pressure is in thousands meanwhile temperature is in tenths. This can affect how a 
model identifies these values and gives more importance to one variable compared to the other. 
 

Table 1 
Categories of rainfall intensity according to its range [17] 
Category Minimum rainfall (mm) Maximum rainfall (mm) 

Slight Rain 0 10 
Moderate Rain 10 60 
Heavy Rain 60 150 
Extreme Rain 150 ∞ 

 
Table 2 
Classification of flood occurrence based on rain intensity 
Rain intensity Flood occurrence 

Slight rain No 

Moderate rain No 

Heavy rain Yes 

Extreme rain Yes 

 
2.3 Data Splitting 
 

Training and testing data were separated into two categories. 4383 data points from observations 
totaling 11 years' worth of rainfall are included in the training set. The 1460 data points from the 
latter four years were used as a testing set. The training set included the period from 1st January 
2005 to 31st December 2016, while the testing set covered the period from 1st January 2017 to 31st 
December 2020. This training and assessment set has a ratio of about 70:30. 
 
2.4 Data Balancing 
 

To 'treat' the unequal distribution between the minority and majority classes, data balancing is 
carried out. The machine's inability to predict minority groups accurately due to the uneven 
distribution of data leads to a variety of categorization errors. The Synthetic Minority Oversampling 
Technique (SMOTE), which creates synthetic data to balance the classes, was introduced to address 
the uneven distribution of unbalanced data [12]. Interpolation between neighboring minority classes 
is done using the SMOTE technique. SMOTE finds k-closer nearby data to provide synthetic data 
rather than just replicating the minority class [9]. SMOTE is therefore mentioned as a "treatment" for 
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uneven data. "Before treatment" refers to the model's usage of SMOTE to address the dataset's 
uneven distribution. Meanwhile, ‘after treatment’ means that SMOTE is implemented to produce 
synthetic data. 
 
2.5 Long Short-Term (LSTM) Memory 
 

The primary distinguishing feature of an LSTM network lies in its hidden layer, known as memory 
cells, which incorporate three essential gates, named: forget gate (𝑓𝑡), input gate (𝑖𝑡), and output gate 
(𝑂𝑡). 𝑓𝑡 assumes the responsibility of determining the information that should be excluded from the 
cell state. On the other hand, 𝑖𝑡 is tasked with identifying the information that ought to be 
incorporated into the cell state. Lastly, the output gate 𝑂𝑡 dictates which information from the cell 
state was utilized. 

An LSTM network is comprised of three primary layers: an input layer, one or more memory cell 
layers, and an output layer. The number of neurons in the input layer corresponds to the count of 
variables, which in this case is five. To manage computational complexity, this project opts for a two-
layer configuration, as additional layers can substantially increase computational demands. The 
rationale behind this choice is to strike a balance between model complexity and computational 
efficiency. Figure 1 showed the LSTM architecture, with one input layer, two hidden layers and one 
output layer. 

 

 
Fig. 1. LSTM architecture 

 
The operation of a memory cell commences with the extraction of information from the previous 

cell state, denoted as 𝑆𝑡−1 which is determined by the LSTM layer. At a given time, step 𝑡, the 𝑓𝑡 
activation value is computed using the present input, 𝑥𝑡, the previous memory cell output, ℎ𝑡−1, and 
the bias terms of the forget gates, 𝑏𝑓. The sigmoid function is employed to transform activation levels 

to a range between 0 and 1, signifying complete forgetting and full recollection, respectively. 
Subsequently, the LSTM layer identifies the information to be incorporated into the network's 

current cell state, 𝑆𝑡. This process involves calculating candidate values, 𝑆�̃� and determining the 
activation values of the input gates. 

Following this, new cell states, 𝑆𝑡 are computed by utilizing the insights obtained from the 
previous two steps. Finally, the output, ℎ𝑡 of the memory cell unit is obtained. The standard LSTM 
model employs specific hyperparameters, which encompass functions set to default values. These 
hyperparameters are detailed in Table 3 as taken from Keras documentation [18]. The activation 
function facilitates nonlinear transformations within the model. 
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The recurrent_activation function serves the recurrent step, while the optimizer is employed to 
minimize overall loss and enhance accuracy. In this particular model, the chosen optimizer is ‘Adam’, 
a stochastic gradient descent method that adapts to first and second-order moments. Loss, a crucial 
metric, determines the quality of predictions by quantifying the disparity between predicted and 
actual values. Godoy [19] explained that low loss values signify accurate predictions, while high values 
indicate less accurate ones. 
 

Table 3 
Hyperparameter setting for LSTM (2) model 
Hyperparameter Value 

Number of hidden layers 2 
activation Hyperbolic tangent (tanh) 
recurrent_activation sigmoid 
epoch 100 or 200 
batch Size 64 
dropout 0.2 
optimizer Stochastic Gradient Descent method (Adam) 
loss binary_crossentropy 

 
2.6 Model Performance 
 

The model performances were evaluated by a confusion matrix, since it provided information 
such as accuracy, precision, recall, F1-Score and the AUC for ROC curve [20]. Table 4 shows the 
framework for a confusion matrix. 
 

Table 4 
Confusion matrix 

  
Actual class 

Positive Negative 

Predicted class 
Positive True positive False positive 

Negative False negative True negative 

 
The equations used to calculate the Precision, Recall, F1-Score, Accuracy and Area Under the 

Curve (AUC) values are as following: 
 

Accuracy: A =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑡𝑛+𝐹𝑁
                                  (1) 

 

Precision: P =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                 (2) 

 

Recall: R =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                 (3) 

 

𝐹1-score: F =
(2⋅𝑃⋅𝑅)

(𝑃+𝑅)
                                 (4) 

 

𝐴𝑈𝐶 =
∑ 𝑇𝑃+∑ 𝑇𝑁

(𝑃+𝑁)
                                    (5) 
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3. Results  
3.1 Feature Engineering 
 

Several tasks are addressed under this subtopic, including managing missing data, detecting 
anomalies like outliers and duplicated dates, feature creation and data normalization. Notably, there 
were 10 instances of missing values in the daily relative humidity column. Given that these missing 
entries accounted for less than 5%, they are regarded as not significant. Therefore, imputation was 
done to rectify the missing values by substituting it with the column’s average daily relative humidity, 
amounting to 78.13%. In relation to this dataset, apart from missing values, no duplicate dates were 
discovered. Figure 2 depicts a boxplot constructed to check for outliers. 

 

    
Fig. 2. Boxplot for each variable 

Based on the five meteorological hyperparameters that was given by MET Malaysia, 3 variables 
exhibit outliers value, which are maximum temperature, humidity, and rainfall. Shifting focus to 
skewness, the minimum temperature variable exhibits a slight negative skew. Conversely, both the 
minimum temperature and rainfall variables skewed positively. In contrast, humidity, and mean sea 
level (MSL) pressure variables adhere to normal distribution patterns. However, given the inherent 
nature of meteorological data, encountering extreme values is a customary occurrence that it has 
been determined the presence of outliers is to be anticipated and need not be removed, as they fall 
within the bounds of normality [21]. Additionally, similar situation is said for Southern Oscillation 
Index (SOI) and Nino Oceanic Index (ONI). 

SOI is a standardized index based on the observed sea level pressure (SLP) differences between 
Tahiti and Darwin, Australia. The SOI is one measure of the large-scale fluctuations in air pressure 
occurring between the western and eastern tropical Pacific such as the state of the Southern 
Oscillation during El Niño and La Niña episodes [22]. The NINO3. 4 (ONI) index is defined as the 
average of SST anomalies over the region 5°N - 5°S and 170° - 120°W. The ONI is the rolling 3-month 
average temperature anomaly – difference from average – in the surface waters of the east-central 
tropical Pacific, near the International Dateline [23].  
 

3.2 Data Balancing 
 

In the absence of any corrective measures, the accuracy and precision values may appear to be 
high. However, the predictions suffer from a fundamental bias in terms of class representation. This 
bias becomes evident when observing Figure 3(a), which illustrates the class frequencies prior to any 
intervention. The depicted bar chart underscores the significant imbalance among the classes, 
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indicating the need for corrective action to ensure unbiased predictions. In this context, the label '1' 
signifies 'flooding,' while '0' signifies 'no flooding.' Moving to Figure 3(b), the subsequent bar chart 
showcases the results post-intervention. Through the implementation of Synthetic Minority Over-
sampling Technique (SMOTE), synthetic data has been generated to balance the classes. This 
rebalancing effort is particularly noticeable in the increased representation of '1' predictions. 
 

   
(a)       (b) 

Fig. 3. Bar chart of balance of class for flood occurrences (a) Before treatment (b) After treatment  

 
The study involves the deployment of prediction models utilizing both machine learning and deep 

learning techniques, both before and after the treatment process. This allows for a comparative 
analysis of accuracy. The observed discrepancy in accuracy levels provides insights into the efficacy 
of the treatment. 
 
3.3 Feature Engineering 
 

Several tasks are addressed under this subtopic, including managing missing data, detecting 
anomalies like outliers and duplicated dates, feature creation and data normalization. Notably, there 
were 10 instances of missing values in the daily relative humidity column. Given that these missing 
entries accounted for less than 5%, they are regarded as not significant. Therefore, imputation was 
done to rectify the missing values by substituting it with the column’s average daily relative humidity, 
amounting to 78.13%. In relation to this dataset, apart from missing values, no duplicate dates were 
discovered.  
 
3.4 Long Short-Term Memory (LSTM) Network 
 

This study encompasses two LSTM (2) models that incorporate different types of 
hyperparameters with the same target variable. The first four model, used meteorological variables 
such as minimum temperature, maximum temperature, humidity, rainfall and MSL pressure while 
the second LSTM (2) model used indices variables SOI and ONI.  Both of the models’ performances 
were compared before and after treatment, to understand the effect of SMOTE in predicting 
accuracy.  

Table 5 provides an overview of the results from the confusion matrix, with meteorological 
variables. Due to the maximum feasible AUC value, LSTM (2) with 200 epochs after treatment is the 
model that performs the best, as shown in Table 5. 
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  Table 5 
  Performance results for LSTM models of meteorological variables before and after treatment 

Epoch Treatment Precision Recall F1-Score Accuracy AUC 

Epoch = 100 
After 0.6169 0. 9668 0. 6724 0.9349 0.9668 
Before 0.7640 0. 9571 0. 8329 0.9822 0.9571 

Epoch = 200 
After 0.6466 0.9266 0.7106 0.9555 0.9752 
Before 0.7290 0.9040 0.7905 0.9774 0.9195 

*Bold values indicate best performing model 

Table 6 provides an overview of the performance results, with SOI and ONI indices variables. 
Coincidentally, the highest value of AUC shows a better performing model aside the rest, that is LSTM 
(2) with 200 epochs before treatment. 

 
  Table 6 
  Performance result for LSTM models of SOI and ONI indices variables before and after treatment 

Epoch Treatment Precision Recall F1-Score Accuracy AUC 

Epoch = 100 
After 0.5465 0.5000 0.4091 0.9167 0.5165 
Before 0.2713 0.5208 0.3567 0.8958 0.5035 

Epoch = 200 
After 0.5465 0.5000 0.4091 0.8958 0.5165 
Before 0.5661 0.5417 0.4550 0.8958 0.5252 

*Bold values indicate best performing model 

In comparison of Table 5 and Table 6, overall performance of LSTM (2) that uses SOI and ONI 
indices variables had values of AUC around 0.5 whilst LSTM (2) that uses meteorological variables 
had values of AUC around 0.9. This indicates that LSTM (2) with meteorological variables is the best 
performing model compared to LSTM (2) with SOI and ONI indices variables. Other than this, LSTM 
(2) with 200 epochs performed better than 100 epochs. This indicate that LSTM (2) with more epochs 
allows the model more opportunities to learn from the data. Each epoch provides an additional pass 
through the entire training dataset, refining the model's weights and biases. 

Other than that, Table 7 was formulated to facilitate a clearer examination of the percentage 
improvement in the performance of the top-performing LSTM (2) model before and after the 
treatment. The outcomes presented in Table 7 establish that applying the SMOTE treatment to the 
LSTM (2) model with 100 epochs has led to a reduction in its predictive capabilities. Specifically, the 
precision of the model has experienced a decline of 23.85%, moving from 0.7640 to 0.6169. Similarly, 
the accuracy has decreased from 0.9822 to 0.9349, indicating a deterioration of 5.06%. Interestingly, 
the AUC has demonstrated a slight increase of 1.00%, rising from 0.9571 to 0.9668. Overall, it can be 
deduced that the treatment has not significantly impacted the model's overall performance. 

 
Table 7 
Percentage of improvement LSTM (2) model using meteorological hyperparameters for 100 epochs 
before and after treatment 
Evaluation metrics Before treatment After treatment Percentage of improvement (%) 

Precision 0.7640 0.6169 -23.85 
Recall 0.9571 0.9668 1.00 
F1-Score 0.8329 0.6724 -23.87 
Accuracy 0.9822 0.9349 -5.06 
AUC 0.9571 0. 9668 1.00 
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Figure 4 graphs illustrate the connection between loss and accuracy for the developed LSTM (2) 
networks using meteorological hyperparameters both before and after treatment. In Figures 4(a) and 
4(b) that displayed loss and accuracy plots before treatment reveals a consistent and fluid 
relationship between them, suggesting a potential inclination towards overfitting.  
 

   
(a)       (b) 

   
(c)       (d) 

Fig. 4. Plot loss vs accuracy for LSTM (2) of different epochs before and after treatment using 
meteorological variables (a) Before = 100 (b) Before = 200 (c) After = 100 (d) After = 200 

Conversely, plots for after treatment in Figures 4(c) and 4(d), the visuals indicate that the loss and 
accuracy metrics have converged at a specific epoch before diverging towards their maximum values. 
This pattern signifies successful model training on the dataset, resulting in notably high accuracy 
levels. 

In comparison, Figure 5 graphs illustrate the connection between loss and accuracy for the 
developed networks using indices hyperparameters both before and after treatment. The 
performance of model in Figures 5(a) and 5(b), plots for before treatment showed a case of 
overfitting as the loss at the beginning is high and starts declining over time. Correspondingly, Figures 
5(c) and 5(d) that plotted after treatment hyper-parameters indicates similar case of overfitting. All 
the plots described a similar pattern where it could stem from unclean data and noise in it. 
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(a)                (b) 

   
(c)                 (d) 

Fig. 5. Plot loss vs accuracy for LSTM (2) of different epochs before and after treatment using SOI  
and ONI indices variables (a) Before = 100 (b) Before = 200 (c) After = 100 (d) After = 200 

 
In Figure 6, the ROC curves for LSTM (2) models with meteorological variables are depicted both 

before and after the treatment. Notably, all the ROC curves for different epochs of the LSTM (2) 
model exhibit commendable performance. Among these, the most exceptional performance is 
observed in the LSTM (2) model with 100 epochs after the treatment. This is evident from the 
steepness of its ROC curve, which nearly reaches the upper-left corner of the graph. This assertion is 
further substantiated by the AUC value of 0.9668, underscoring the superior performance of the 
LSTM (2) model with 100 epochs post-treatment. 

Figure 7 shows the ROC curves for LSTM (2) models with indices hyperparameters for before and 
after treatment. Distinctly, all ROC curves for different epochs demonstrate unsatisfactory 
performance, as all the models had an AUC value encompassing 0.5. However, in comparison of these 
four models, the top-performing model is LSTM (2) with 200 epochs before treatment. 
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(a)       (b) 

  
(c)      (d) 

Fig. 6. ROC for LSTM (2) using meteorological variables of different epochs before and after treatment  
(a) Before = 100 (b) After = 100 (c) Before = 200 (d) After = 200 

 

   
(a)       (b) 
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(c)       (d) 

Fig. 7. ROC for LSTM (2) using SOI and ONI indices of different epochs before and after treatment (a) 
Before = 100 (b) After = 100 (c) Before = 200 (d) After = 200 

 
4. Conclusions 
 

To conclude, the LSTM (2) model utilizing meteorological hyperparameters and trained for 100 
epochs post-treatment is regarded as the most effective flood monitoring model among all the LSTM 
(2) models. It would be the best choice to construct flood predicting model for Subang Jaya area. This 
is because the LSTM (2) models have number of epochs that is more optimal than the other, with 
data that is treated for a better result. Besides, the accuracy for the LSTM (2) model is 0.9668 which 
is exceptionally good. Using SMOTE as a treatment for imbalanced data has also shown a significantly 
better accuracy in the models. The models’ performances were evaluated by building the respective 
flood prediction models and constructing confusion matrices, ROC curve and AUC value.  

In the future, researchers would be able to consider the computational time and complexity of 
the model when wanting to predict flooding using meteorological data for Subang Jaya area. The 
positive impact of using SMOTE in this research would also help researchers establish a better flood 
prediction model in the future without any biased results. Future researchers could also use a 
combination of different hyperparameters values for the models to give a better accuracy. 
Furthermore, researchers could experiment with number of hidden layers and nodes in the layer 
when using LSTM, network to produce a better prediction. Higher epochs and batch size might also 
help to increase the accuracy of a neural network. 
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