
 

Journal of Advanced Research in Applied Sciences and Engineering Technology 59, Issue 2 (2026) 20-29 
 

20 
 

 

Journal of Advanced Research in Applied 

Sciences and Engineering Technology 

 

Journal homepage: 
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index 

ISSN: 2462-1943 

 

A New Approach on Solving One-Mass Model of Vocal Cord using Hybrid 
Cubic B-Spline Collocation Method 

 

Nur Fatin Amirah Mohd Rodzi1, Shazalina Mat Zin1,*, Syatirah Mat Zin2, Muhammad Abbas3  

  
1 

2 

3 

Institute of Engineering Mathematics, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia 
Department of Dental Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia 
Department of Mathematics, University of Sargodha, PAF Road, 40100 Sargodha, Pakistan 

  

 ABSTRACT 

 
The vocal cords, also known as vocal folds, are responsible for producing sound and 
creating the voice. In this work, hybrid cubic B-spline collocation method (HCBs) and 
ode45 built-in solver in MATLAB were applied to solve one-mass model of vocal cord 
numerically. From the model, displacements were generated by analysing the voice 
recording samples of 109 healthy participants. Based on the recordings, the frequency 
of each sample was accumulated and utilized in displacements calculation. In order to 
verify the value of displacements, absolute error and maximum error were calculated. 
The numerical results were indicated that HCBs generate closer displacement with 
ode45. The error was shown that HCBs could be reliable method and produce accurate 
displacement of one-mass model of vocal cord.  
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1. Introduction 
 

Speech production is made possible by the vocal cords, which are located in the larynx, or voice 
box. As air is expelled from the lungs and travels upwards through the trachea, it passes over the 
vocal cords, causing them to vibrate. This vibration creates sound, which is then modulated by the 
tongue, lips, and other articulators, allowing human to produce a wide range of speech sounds. The 
vocal cords play a crucial role in this process, as their ability to rapidly and accurately vibrate 
determines the quality and clarity of spoken words. The first model of vocal cord is one-mass model 
of vocal cord by Flanagan and Landgraf in 1968 [1] which then evolved to two-mass model by Ishizaka 
and Flanagan [2] and Guasch et al., [3]. Two-mass model consider both vocal cord by two equation 
that represented both measurements. Further years later, Titze produced a model with 16 mass [4,5] 
and three-mass model was also investigated by other authors in 1993 [6,7]. The wide spread of vocal 
cord model has increased the study of vocal cord characteristics such as vibrations [8,9], collisions 
[10,11], self-oscillation [12,13] and aerodynamics [14]. 
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Numerical method studies began to develop from one-dimensional model [15] to three-
dimensional model [16] of mechanical model and commonly solved by using finite element method 
[17]. These models also heavily aided in the analysis of vocal cord by using numerical and analytical 
method. Finite element is one of the numerical methods that are usually utilized in solving vocal cord 
model other than analytical method. Analytical method was less utilized as the method consumed 
more time than numerical method and sometimes fails to maintain its pace with large or complex 
value. Some authors that investigated vocal cord model by using finite element were Gunter [18], 
Vampola et al., [7] and Hermant et al., [19]. Throughout previous years, many works have been done 
exploring B-spline, trigonometric B-spline and hybrid B-spline for solving initial and boundary value 
problem of a differential equations numerically [20-24]. Since the ability of those methods have been 
proven, HCBs will be proposed to solve an initial value problem of one-mass model of vocal cord.  

In this work, the 109 recording samples of healthy participant gathered from Walden [25] were 
used to approximate the displacement of vocal cord. From each sample, the frequencies will be 
generated by Origin software, which is a software that could analysed the real voices recording. 
Average of the frequencies has been calculated and applied to solve one-mass model of vocal cord. 
The aim of this work is to generate displacement of one-mass mechanical model of vocal cord using 
HCBs and ode45 numerically. Then, the generated displacements will be compared and discussed  

 
1.1 One-Mass Model of Vocal Cord 

 
In this section, one-mass model proposed of vocal cord will be introduced. This model considered 

vocal cord as a spring-mass-damper system which is visually depict in Figure 1. Mathematically, the 
model is given by   

 
mx bx kx F + + =   (1) 

 
where m is mass, b is viscous damping, k is spring constant, F is forcing function of the system and x 
represent displacement of the mass at time t. The value of b and k are calculated by 

 

2b mk=  and ( )
22

04k m f=                        (2) 

 

where 0f  is fundamental frequency. In order to solve Eq. (1), the following initial conditions are 

considered  
 

( )0  x t =  and ( )0x t  =   (3) 

     
where   and   are constant values. The forcing function of the system is depending on time and 

can be written as   
 

( ) ( )( )1 2

1

2
F t P P ld= +   (4) 

 

with l and d are the vocal cord length and thickness, respectively. The 1P  and 2P  are the inlet and 

outlet of glottal orifice of vocal cord which is given by  
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( )1 1.37  s BP P P= −  and 2 0.50 BP P= −   (5) 

 

where sP  represented subglottal pressure while BP  represent the value of Bernoulli pressure, 

2 21
.

2
B g gP U A −=  In Bernoulli pressure equation,   represent the air density, gA  is the area of glottal 

orifice and gU  is the acoustic volume velocity through the glottal orifice. 

 

 
Fig. 1. Mechanical model of vocal cords [1,15] 

 
2. Methodology  
2.1 Hybrid Cubic B-Spline Collocation Method (HCBs) 

 
In this section, the methodology to solve Eq. (1) using HCBs is discussed. The approximate solution 

of one-mass model of vocal cord is defined as  
 

1
4

3

( ) ( )
n

j j j

j

x t C H t
−

=−

=    (6) 

 

with jC  is unknown to be determined and 4 ( )jH t  is HCBs basis function which given by 

 

( )4 4 4( ) ( ) (1 ) ( )j j jH t B t T t = + −   (7) 

 

where  0 1.  The 4( )jB t  and 4( )jT t  are represented as 

 
3

1

3 2 2 3

1 1 1 1 24

3 3 2 2 3

3 3 3 2 3

3

4 3 4

( ) ,

3 ( ) 3 ( ) 3( ) ,1
( )

6 3 ( ) 3 ( ) 3( ) ,

( )
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,

,

,

j j j

j j j j j

j

j j j j j

j j j
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B t
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+

+ + + + +

+ + + + +

+ + +

 −   

 + + − − −   
=

 + − + − − −   

 






−   




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 (8) 

 
and 
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3
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 (9) 

 

respectively, where 
( )

( ) sin ,
2

j

jt
t t


−

=
( )

( ) sin ,
2

j

j

t
t

t


−
=  and ( )

3
sin sin sin .

2 2

h h
h

   
=    

   
 Eq. (7) 

become cubic B-spline and trigonometric cubic B-spline when 1 =  and 0, =  respectively. 

There are only three nonzero basis function; 4 4
3 2( ),  ( )j j j jH t H t− −  and 4

1( ),j jH t−  are included over 

subinterval 1,j jt t +
   . By considering those nonzero basis functions, Eq. (6) and its derivatives can be 

simplified and returned as 
 

( )

( )

( )

1 3 2 2 1 1

3 3 3 1

4 3 5 2 4 1

,

,

j j j j

j j j

j j j j
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x t D C D C
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= + +
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 = + +

  (10) 

 

with ( )  = + −1  i i iD  for 1,2, ,5i =  where  =1

1
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 and ( )=4 .sin 2k h   

In order to solve Eq. (1), Eq. (10) is then substituted into the equation to produce a matrix system 

of order ( )  1n+  equation with ( )  3n+  unknown. Two equations are needed to generate a unique 

solution. Further, initial condition which given in Eq. (3) is approximated and represented as  
 

( )

( )

0 1 3 2 2 1 1

0 3 3 3 1

,

.

j j j

j j

x t D C D C D C

x t D C D C





− − −

− −

= + + =

 = − =
  (11) 

 
Eq. (11) is added to the system and become  
 

 
( ) ( )

 
( )

 
( )3 3 3 1 1 3

.
n n n n+  + +   +

=A C R   (12) 
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where
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F
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 
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F with 

( ) ( ) ( )1 4 3 1 ,m D b D k D = + +  ( ) ( )2 5 2m D k D = + and ( ) ( ) ( )3 4 3 1 .m D b D k D = + − +  By solving the 

matrix system, C  is generated and substituted into Eq. (6) to obtain the approximate solution of Eq. 
(1) or also known as approximate displacement of vocal cord. 

 
2.2 Ode45 Built-in Solver 

 
By using the same parameter as HCBS, Eq. (1) is also solved by using a build-in solver in MATLAB 

called ode45 as follows: 
 

f = @(t,x) [x(2); (F-r*x(2)-k*x(1))/m];  
tspan=t0:(0.05-0)/(n):tN; 
ts = zeros(1,n); xs = zeros(1,n); 
[ts,xs] = ode45(f,tspan,[0;0]); 

 
3. Results and Discussion 

 
In this section, the generated displacements of vocal cord by using HCBs and ode45 are analysed 

and compared. Two values of   for HCBs are considered as .0 30 =  and . .0 99 =  The parameters 

used are shown in Table 1. The frequency value, 0 ,f  is chosen from the average frequency of voice 

recording samples. Otherwise, the parameters are mostly referred from Flanagan and Landgraf [1] 
and Cataldo et al., [15]. 

 
  Table 1 
  Parameters value used in solving Eq. (1) 

Parameter  Value  

m  0.240×10-3 kg 

b  0.667 Ns/m 

k  4.925×105 Ns/m 
t  0.050 s 

0sP  783 Pa 
ρ  1.300×103 kg/m3 

l  1.800×10-2 m 
d  0.300×10-3 m 

0f  228 Hz 

h 1.000×10-4 
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3.1 HCBs ( )0 30 = .  and Ode45 

 
In this subsection, the generated displacement by HCBs ( 0.30 = ) and ode45 is displayed and 

tabulated. Figure 2 shows graph of generated displacement by HCBs ( 0.30 = ) and ode45.  

 

 
(a)       (b) 

Fig. 2. Generated displacements by a) HCBs with 0.30 = and b) ode45 

 
Meanwhile, the numerical data of both method within 0.05 s is listed and compared in Table 2. 

The data shows that the generated displacement by HCBs agreed well with the generated 
displacement by ode45. 

 
  Table 2 
  Generated displacement solved by ode45 ( x -ode45) and HCBs ( x - 
  hybrid) with 0.30 = within 0.050 s 

Time (s) x -ode45 (cm) x -hybrid (cm) 

0.010 3.5399×10-4 3.6302×10-4 
0.015 4.7113×10-4 4.7732×10-4 
0.020 4.6581×10-4 4.6291×10-4 
0.025 3.8562×10-4 3.7531×10-4 
0.030 3.0445×10-4 3.9434×10-4 
0.035 2.6992×10-4 2.6679×10-4 
0.040 2.8515×10-4 2.8999×10-4 
0.045 3.2317×10-4 3.3141×10-4 
0.050 3.5357×10-4 3.5926×10-4 

 

3.2 HCBs ( )0.99 =  and Ode45  

 
The generated displacement by HCBs with .0 99 =  and ode45 are presented in Figure 3.  
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(a)        (b) 

Fig. 3. Generated displacements by a) HCBs with 0.99 = and b) ode45 

 
Table 3 tabulates the generated displacement of both method within 0.050 s. Based on the 

results, it can be seen that the HCBs of .0 99 =  could also performed well compared to HCBs of 

0.30 = . 

 
  Table 3 
  Generated displacement solved by ode45 ( x -ode45) and HCBs ( x - 
  hybrid) with 0.99 =  within 0.050 s 

Time (s) x-ode45 (cm) x -hybrid (cm) 

0.010 3.5399×10-4 3.6302×10-4 
0.015 4.7113×10-4 4.7732×10-4 
0.020 4.6581×10-4 4.6291×10-4 
0.025 3.8562×10-4 3.7531×10-4 
0.030 3.0445×10-4 2.9433×10-4 
0.035 2.6992×10-4 2.6679×10-4 
0.040 2.8515×10-4 2.8999×10-4 
0.045 3.2317×10-4 3.3141×10-4 
0.050 3.5357×10-4 3.5929×10-4 

 
In order to compare the displacements of HCBs of 0.30 =  and .0 99 = , the maximum 

displacement from Table 2 and Table 3 are gathered in Table 4. It can be observed that maximum 
displacement is at 0.015 t s=  which is presented in Table 4. The obtained displacements in Table 4 
also shows that .0 99 =  has slightly lower maximum displacement than 0.30 = . Since ode45 has 

the maximum displacement of 4.7113×10-4 cm, this interprets that .0 99 =  has closer value of 

maximum displacement to ode45 than 0.30. =  

 
  Table 4 
  Maximum displacement ( x -max) generated by HCBs  
  with 0.30 =  and 0.99 =  
  Time (s) x -max (cm) 

0.30 0.015 4.77324816×10-4 
0.99 0.015 4.77324815×10-4 
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3.3 Absolute Error Obtained by HCBs Compared to Ode45 
 
This subsection calculates the absolute error and maximum error by comparing the generated 

displacement by HCBs and ode45. The formula is considered as the following equations: 
 

 ,i iAbsolute error x x= −   (13) 

 

  ,i iMaximum error L max x x= = −   (14) 

 

where ix  is generated displacements by ode45 and ix  generated displacements by HCBs. 

Table 5 list the absolute errors within 0.050 s. Meanwhile the maximum error obtained by HCBs 
with .0 30 =  and .0 99 =  is tabulated in Table 6. Based on Table 5, it can be seen that .0 99 =  

obtained smaller error than . .0 30 =   

 
Table 5 
Absolute errors obtained by HCBs with 0.30 =  and 0.99 =  

within 0.050 s  
Time (s) Absolute error 

.0 30 =  .0 99 =  

0.010 9.0351910×10-6 9.0351889×10-6 
0.015 6.1986152×10-6 6.1986139×10-6 
0.020 2.8956127×10-6 2.8956117×10-6 
0.025 1.0312675×10-5 1.0312673×10-5 
0.030 1.0117635×10-5 1.0117632×10-5 
0.035 3.1378975×10-6 3.1378972×10-6 
0.040 4.8454254×10-6 4.8454240×10-6 
0.045 8.2377835×10-6 8.2377816×10-6 
0.050 5.6899366×10-6 5.6899355×10-6 

 
From Table 6, it can be observed that .0 99 =  has obtained smaller maximum error than 

.0 30 = . Overall, the numerical data of Table 5 and 6 suggest that .0 99 =  generate closer 

displacement to ode45 in solving one-mass model of vocal cord than . .0 30 =  

 
   Table 6 
   Maximum error obtained by HCBs with 0.30 =  and 0.99 =  
  Time (s) Maximum error  

0.30 0.025 1.0312675×10-5 
0.99 0.025 1.0312673×10-5 

 
4. Conclusions 

 
In conclusion, one-mass model of vocal cord has successfully solved by using HCBs collocation 

method. The numerical results indicate that HCBs has generated displacement with closer value to 
ode45. The calculated errors shown that HCBs produce accurate displacement of vocal cord could be 
reliable numerical method in solving one-mass model of vocal cord. 
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