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The television spectrum can contain unused frequencies or channels called white 
spaces. The white spaces can be managed to provide internet access in coordination 
with surrounding TV channels to avoid interference. Geo-location databases are helpful 
for dynamically shared frequencies when updated and complete. In real life, the 
spectrum availability for a secondary user lacks numerous information; hence, it is 
sparse. This paper aims to forecast wireless coverage and frequency availability in such 
sparse geolocation databases. Spatiotemporal models are formulated in this paper to 
forecast wireless coverage and frequency availability in sparse geo-location spectrum 
databases. Eight channels are explored by this study, and the data used are gathered 
from TV program guides sourced online and to the best knowledge of the researcher. 
The forecasting models are evaluated using accuracy, precision, recall, and F1 score. 
Spatiotemporal logistic models had a decent accuracy of at least 84%. The linear VAR 
models have a decent accuracy except for predicting time. The formulated 
spatiotemporal logistic VAR model attained the highest accuracy of at least 94%.  
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1. Introduction 
 

Television (TV) broadcast is characterized by transmitting audio and video through 
electromagnetic (EM) waves. Carrying information on EM waves occupies a part of the EM spectrum. 
The spectrum can be divided into parts called channels. The unused portions of the EM spectrum are 
called white spaces. 

The white space can be utilized for non-broadcasting purposes such as internet services and 
emergency communications. Due to the rise of network usage demand and the need for 
communication access in remote areas, white space usage has been researched. Television white 
space (TVWS) is a growing technology that allows the dynamic use of frequency spectrum, which can 
benefit the rural and underserved areas of developing countries. In other words, rural areas are left 
out. TVWS can serve as a super-high-speed Wi-Fi called Wi-Fi 2.0, which can help provide 
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communication access to rural and underserved areas. The applications of TVWS include but are not 
limited to emergency tracking and environment monitoring. 

The frequency spectrum is dynamically shared across space and time. The disadvantage is that 
TVWS is not protected from interference, especially from primary incumbents like TV stations. A way 
to coordinate the white space devices must be conceived. One method is spectrum sensing, where 
the device listens and determines unoccupied frequencies. However, its design and performance are 
challenging according to the tests conducted by the Federal Communications Committee (FCC) [1]. A 
better option is to use a geo-location database that contains what frequencies are occupied at a given 
place and time together with other information. A white space device (WSD) can query the database 
and receive information such as frequency availability from the geo-location database. However, 
geo-location databases are sparse, and forecasting using sparse TVWS geo-location databases has 
not been undertaken. 

Different studies have investigated this research topic. Studies have explored forecasting using 
geolocation databases, such as using deep learning [2]. Other studies have used time series and 
vector autoregression models for forecasting. However, there are no studies that have explored 
incorporating sparsity in forecasting, especially using a geolocation database. The study aims to 
forecast wireless coverage and frequency availability given sparse geolocation spectrum databases. 
In particular, the study formulated a sparse forecasting model that predicts wireless coverage and 
frequency availability, implemented programs for the forecasting model, and evaluated the 
predictive accuracy of the model. 

 
1.1 Literature Review 

 
Several studies have explored different methods of spectrum management to achieve dynamic 

spectrum sharing between primary and secondary users. Moreover, some studies dealt with the 
TVWS geo-location database. Shawel et al., [2] used deep learning methods for making predictions 
using a geo-location database. The spectrum can also be managed through the real-time secondary 
spectrum market (RTSSM) and game theory [3]. The General Enhanced Detection Algorithm (GEDA) 
was conceived by Martin et al., [4] as an enhancement for the detection of primary users and 
optimization of the secondary user’s Quality-of-Service (QoS). In addition, studies have explored 
predictions using models in specific applications such as an Artificial Neural Network (ANN) on 
predicting bubble pressure on Sudanese oil field [5], a tNavigator model to predict gas coning [6], 
and Anand’s model to predict solder inelasticity [7]. In addition, a study utilized the “You Only Look 
Once” (YOLO) algorithm to detect Personal Protective Equipment workplace violations [8]. However, 
sparse geo-location data was not explored by any studies. 

Different studies have touched on the concept of sparsity. A study made a comparison of various 
sparsity measures [9]. Benarabi et al., [10] sparsity measure takes the ratio of the number of non-
zero elements to the total number of elements. Goswami et al., [11] examined the sparsity of a 
network graph using the Gini index. There has been no exploration of the integration of sparsity in 
predictive analytics yet. 

Time series models were some of the forecasting models used. The Adversarial Sparse Transform 
(AST) was derived from Generative Adversarial Networks (GANs), as referred by the study of Guerra-
Montenegro et al., [12]. The study of Ardia et al., [13] predicts high-dimensional data from computed 
textual sentiment using time series aggregation. Moreover, spatiotemporal methods, such as 
predicting crimes in real time [14] or urban traffic flow [15], were applied to forecasting. In addition, 
vector autoregression (VAR) models are also used for forecasting. A VAR model is typically applied in 
forecasting economics since it captures interactions between multiple time series. For instance, 
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COVID-19 infections in the United Arab Emirates (UAE), Saudi Arabia, and Kuwait were modelled 
based on VAR. The predictions are accurate enough with a very low Mean Absolute Percentage Error 
(MAPE) [16]. Katris [17] used a modified VAR model to see the impact of COVID-19 on the 
unemployment rate in Greece. They compared it with Autoregressive Integrated Moving Average 
(ARIMA) and Artificial Neural Network (ANN) univariate models. The study shows that the VAR and 
ARIMA models perform better than ANN. However, no studies examine sparse forecasting 
capabilities for geo-location databases, contributing to this study. 

 
2. TV White Space 

 
A television traditionally uses an antenna to pick up signals embedded in EM waves transmitted 

by broadcasters, referred to as primary users (PU) in this context. These PUs transmit signals in the 
air at specific frequencies. A television tuned to that frequency picks up that signal and extracts the 
information present. Primary users occupy a tiny portion of the wide frequency spectrum. This 
situation leaves most of the spectrum unused, which could be an opportunity for communication. 
Those unoccupied frequencies are called white spaces. 

Regulators worldwide have considered the unlicensed use of TVWS. The FCC was the first to 
recommend this utilization for more effective use of TV spectrum resources. They designated two 
types of devices: fixed devices and portable devices. Afterward, other countries around the globe 
followed, from Europe to Asia and the Pacific. Ofcom in the UK issued WSD specifications in 2009. 
Europe’s Electronic Communications Committee (ECC) released technical and operational 
requirements in 2011. Infocomm Development Authority (IDA) in Singapore established the white 
space pilot group (SWSPG) in 2012. Radio Spectrum Management of New Zealand settled on creating 
a licensing scheme that allowed the usage of TVWS devices. White space specifications, such as 
frequencies, power limits, bandwidth, device type, and seeking method, depend on regulators 
worldwide. 

In the Philippines, the Department of Information and Communication Technology (DICT), 
through its attached agency, the National Telecommunications Commission (NTC), released a 
memorandum circular that regulates the unused TV broadcast channels for the utilization of TVWS 
technology [18]. TVWS pilot testing was done in Bohol and Leyte, Philippines, in 2014, which proved 
beneficial for communications and services of disaster and relief efforts after the Bohol earthquake 
and super typhoon Yolanda [19]. Moreover, companies that specialize in TVWS were set up around 
the world. Whizpace Pte. Ltd offers white space technology such as Whizmesh and Whizrange [20]. 
Carlson Wireless Technologies, Inc. in California, USA, offers RuralConnect Gen3TM systems such as 
the Trailblazer and LongHaul Time Division Multiplexing (TDM) [21]. 

In addition, there are several bodies developed for TVWS. IEEE 802.22 is the approved ISO 
standard for Cognitive Based Wireless Regional Area Networks that use beaconing as interference 
protection. Data rates vary from 22 to 29 Mbps per TV channel without using multiple-input multiple-
output (MIMO). IEEE 802.11af is a standard conceived from 802.11ac and operates on 6, 7, or 8 MHz 
bands or multiples. 

An application of TVWS is Super Wi-Fi, as it has a more extended range than traditional Wi-Fi. 
Super Wi-Fi uses the TV broadcast spectrum as Wi-Fi instead of 2.4 GHz or 5 GHz and can penetrate 
through walls, making it feasible for remote areas. Moreover, Super Wi-Fi is easy to deploy cable-
free in different environments and has variable and high data rates of up to 54 Mbps. Figure 1 
compares data rates between traditional Wi-Fi and Super Wi-Fi. It shows that TVWS Super Wi-Fi 
covers many kilometres, consequentially increasing bandwidth, lowering network costs, and 
reducing power consumption. 
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Fig. 1. Comparison of data rates between traditional Wi-Fi and Super Wi-Fi [22] 

 
The dynamic spectrum sharing of TVWS means that WSDs and PUs take turns in using the channel. 

WSDs can use the channel when it is available. This availability opens the potential for internet access 
and smart monitoring, especially in rural and remote areas. 
 

Table 1 
TVWS Standardization Bodies and Working Groups 
Standardization Body Working Group 
IEEE 802 802.22 (Wi-FAR) 
 802.11af (Wi-Fi) 
 802.15.4m (ZigBee, Wi-SUN) 
IEEE DySPAN Standards Committee 1900.7 
 1900.4a 
 1900.4.1 

 
3. Service Contour 

 
Service contours are a geographical limit where the median electric field strength reaches a 

particular value. That value depends on the type of contour. The two types commonly used are Grade 
A and Grade B. A sample map of Grade A and Grade B service contours is shown in Figure 2. 
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Fig. 2. Grade A and Grade B contours predicted for KNXT, Channel 2, 
Los Angeles, CA [23] 

 
The grade A value is defined as "ambient median field strength existing 30 feet above ground 

which is deemed to be sufficiently strong, in the absence of interference from other stations, but 
with due consideration given to man-made noise typical of urban areas, to provide a picture which 
the median observer would classify as of ‘acceptable’ quality, assuming a receiving installation 
considered to be typical of suburban or not too distant areas." [23]. On the other hand, the Grade B 
value is defined as "ambient median field strength existing 30 feet above ground which is deemed to 
be sufficiently strong, in the absence of man-made noise or interference from other stations, to 
provide a picture which the median observer would classify as of ‘acceptable’ quality, assuming a 
receiving installation considered to be typical of outlying or near-fringe areas." [23]. These studies 
are referred by Bhattarai, Park and Lehr [24]. Simply put, the signal has sufficient strength to provide 
a picture at least 90% of the time at the best 70% of receiving locations for Grade A and at the best 
50% of receiving locations for Grade B. Hence, Grade A service contours are the geographical limits 
where the medial field strength is at least the Grade A value, while Grade B service contours are the 
geographical limits where the medial field strength is at least the Grade B value. These service 
contours are derived from 𝐹(50, 50). Table 2 lists the service contours expressed in decibels (dB) 
above 1 μV/m (dBu). 
 

Table 2 
Service Contours defined by the Code 
of Federal Regulations (CFR) [25] 
Channels Grade A (dBu) Grade B (dBu) 
2-6 68 47 
7-13 71 56 
14-69 74 64 

 
Service contours are not the limits of actual service. TV stations can be received well outside the 

contour, where chances of interference-free reception decrease at further distances. Service 
contours define the areas where interference is protected by the FCC [26]. 
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4. Databases 
 
A database is an organized collection of logically related information or data usually stored in a 

computer and controlled by a Database Management System (DMS). Databases are accessed 
electronically from a computer system. They should be accessible, managed, and updated. The 
database studied in this research is a TVWS geo-location database. It coordinates white space devices 
to avoid interference with protected primary users as it holds the location and available frequencies. 
The TVWS geo-location database has several interfaces, such as incumbent, system administrator, 
regulator, geography, white space devices, operator, other data sources, and other TVWS databases. 

In general, a protocol was followed enforcing interference avoidance with primary users. This 
avoidance is done by designating three zones: Exclusion, Restriction, and Protection [27]. A WSD 
should be able to communicate with a geo-location database in which their location is being sent, 
and the geo-location database sends the operating frequency and power level. Pakzad et al., [28] 
used a database containing primary user information such as the company name, channel, lower and 
upper frequencies, frequency of transmission, location (descriptive), longitude, latitude, site 
elevation, structure height, transmission power, and effective radiated power (ERP). 

This study gathered updated data for the primary user information. Channel availabilities are 
surveyed from different websites based on a daily schedule from 00:00H (12:00 AM) to 23:59H (11:59 
PM) in 30-minute intervals. Available channels are represented by a value of 1, and unavailable 
channels are represented by a 0. The study discarded channels with incomplete information. This 
database information was then packaged and summarized. 

 
5. Vector Autoregression 

 
Vector Autoregression (VAR) models assess the dynamic relationships between variables that 

interact with one another. It is a multivariate time series model that relates current observations of 
a variable with the past observations of itself or other variables and is usually used in econometric 
predictions. VAR models are multiple time series generalizations of autoregressive models applied in 
forecasting. A univariate autoregression uses a linear model in which the current value of a variable 
is explained by its own lagged values. A VAR, on the other hand, uses 𝑛 equations in 𝑛 variables in 
which each variable is explained by its own lagged values, plus current and past values of the 
remaining 𝑛 − 1 variables. Furthermore, VAR models have three classifications: reduced-form, 
recursive, and structural [29]. This study uses reduced-form VAR models in predicting channel 
availability and coverage. Sometimes, predictor variables are included in the VAR model. These 
predictors are called exogenous variables. A VAR(𝑝) model with exogenous variables is often 
denoted as VARX(𝑝). The VARX(𝑝) model has a form shown in Eq. )1( . 
 
𝒚! = 𝒄" +𝚽#𝒚!$# +⋯+𝚽%𝒚!$% + 𝚩𝒙! + 𝜺!          (1) 

 
In the VAR model, 𝒚! ∈ ℝ& is the response at time 𝑡, 𝒙! ∈ ℝ'  are the predictors at time 𝑡 

(exogenous data), and 𝜺! ∈ ℝ& are the uncorrelated serial errors. The predictor parameters are 
denoted by the 𝑁 × 𝐾 matrix 𝚩, and the autoregressive parameters for each of the lagged values are 
denoted by the 𝑁 × 𝑁 matrices 𝚽#, 𝚽(, …, 𝚽%. 
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6. Methodology 
 
Given such sparse and limited information, the study has postulated forecasting models to predict 

channel availability. The model determines the channel availability, which can be available or 
unavailable. The model also predicts whether a secondary user at a specific location can broadcast 
on a particular channel. It does this by consulting the geo-location database, if using such a channel 
would cause interference with a primary user. This process is summarized in Figure 3. For this study, 
the white space device has fixed properties. The forecasts from the models are then evaluated. 

 

 
Fig. 3. Diagram of input, process, and output 

 
6.1 Data Gathering and Pre-Processing 

 
The TVWS Geo-location database contains information about the primary users, such as the 

frequency spectrum (channel), location (latitude and longitude), and transmission. The study 
explored eight channels, which are 4, 5, 7, 9, 11, 13, 27, and 37. It consists of two tables. The 
information table holds primary user information that is constant across time, while the availability 
table contains the channel availability through time. The availability table serves as the temporal 
data. The information table dictates the channels in the availability table. The channels were 
examined from 12:00 AM to 11:59 PM for their availability. In addition, the database was updated to 
the current state of the channels based on TV program guides gathered from online sources and to 
the best knowledge of the researcher, such as the exclusion of Channel 2 since it was closed. Because 
the TV program guides determine the channel availability, it is safe to assume that there is no missing 
data. 

The days of the week are categorical and are pre-processed through dummy variables. Dummy 
variable encoding is like one-hot encoding; the categories are encoded as binary. In dummy variable 
encoding, the baseline variable is not included. This study's baseline day is Monday, although that 
depends on the implementing program. In addition, time is expressed in hours past 12 AM (00:00H). 
For example, 0.5 denotes 12:30 AM or 00:30H. Table 3 summarizes the features of the information 
table, while Table 4 summarizes the features of the availability table. 
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Table 3 
Features Of TVWS Database Information Table 

Feature Description 
CHANNEL Channel number (CH + number) 
COMPANY_NAME Name of the company 
DIGITAL Indicator if it is using digital transmission (0 or 1) 
CALLSIGN Company callsign 
LATITUDE Location of the user; latitude in degrees 
LONGITUDE Location of the user; longitude in degrees 
LOWER_BAND Lower limit of the frequency (MHz) 
UPPER_BAND Upper limit of the frequency (MHz) 
TX_FREQ Transmission frequency (MHz) 
ERP Effective Radiated Power (kW) 
TX_PWR Transmission Power (kW) 
SITE_ELEV Site Elevation (m) 
STRUCTURE_HEIGHT Height of the antenna structure (m) 

 
Table 4 
Features Of the TVWS Database Availability Table 
Feature Description 
DAY Day of the week 
TIME Time in 24-hour format 
CHX Availability of channel X; denoted as 1 when available and 0 when unavailable 

 
Moreover, the secondary user in a specific location must know if it can use a particular channel 

without interfering with the primary users. The spatial broadcast data is generated using service 
contours computed by the Longley-Rice model. The service contours of the primary and secondary 
users are approximated using radials drawn from the transmitter location. Eight is the typical number 
of radials used. An intersection of the primary user and secondary user contour indicates an 
interference, and the secondary user cannot broadcast on that channel. A value of 1 denotes if a 
secondary user can broadcast; otherwise, 0. Secondary user locations are sampled for generating 
spatial broadcast data. One hundred locations were selected for spatial broadcast availability, which 
was then incorporated into the database along with temporal availability. 

 
6.2 Forecasting Models 

 
A dynamic and sparse database makes forecasting difficult when relying solely on patterns. 

Hence, the study uses models to predict whether a channel is available or unavailable and whether 
the secondary user can use a specific channel in a particular location. The sparsity of the data is 
measured prior to model training. Sparsity could refer to either having a small amount of information 
or a small number of coefficients containing a large proportion of energy [3]. As sparsity is an abstract 
concept, there are different measures of sparsity, such as ℓ" norm, Hoyer index, and Gini index. 
Spatiotemporal logistic models are explored to predict channel availability and coverage. A logistic 
model is a generalized linear model used when the response uses discrete values [3]. Logistic 
regression is done using maximum likelihood. The model relates the log-odds of the probability of 
desirable outcome to a linear combination of inputs, as indicated in Eq. )2( , where 𝑿 ∈ ℝ&×('+#) is 
the predictor matrix with 𝐾 predictors  and 𝜷 ∈ ℝ'+# are the coefficients. 
 
logit(𝜋-) = (𝑿𝜷)-               (2) 
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The inputs of the spatiotemporal logistic model are the day of the week, time of day, latitude, 
and longitude, which also serve as regression parameters. Moreover, a penalized spatiotemporal 
logistic model that incorporated lasso (ℓ# norm) and elastic net (ℓ# and ℓ( norms) is formulated. 

In addition, the study formulated the spatiotemporal logistic VAR, a combination of the logistic 
and VAR models. This is done by replacing the response variable with the log odds of the probability. 
The logistic VAR model is expressed in Eq. )3( , where 𝒚! ∈ ℝ& is the response data (channel 
availability data), 𝚽% ∈ ℝ&×& are the autoregressive coefficients at 𝑝 previous time points, 𝒙! ∈ ℝ'  
is the exogenous data, 𝚩 ∈ ℝ&×'  are the coefficients for the exogenous data, 𝜋!,-  represents the 
probability of success (availability of a channel), and 𝜀!,-  are the uncorrelated serial errors. When 
classifying, probabilities at or above 0.5 are deemed available, while those below 0.5 are deemed 
unavailable. 
 
logitI𝜋!,-J = 𝑐",- + (𝚽#𝒚!$#)- +⋯+ I𝚽%𝒚!$%J- + (𝚩𝒙!)- + 𝜀!,-         (3) 

 
Furthermore, a spatiotemporal linear VAR model (linear VAR) was explored for predicting channel 

availability and spatial broadcast coverage. The data set is transformed to suit the linear VAR model. 
Responses with a 1 are replaced with the input (day, time, and location). Thus, the linear VAR consists 
of nine components: six dummy-variable encoded days, time, latitude, and longitude. The study 
opted for thresholding the predicted value for classification. A thresholding coefficient 𝜂, where 0 ≤
𝜂 ≤ 1, is defined to determine the threshold of classification 𝑦/01. 

Values below 𝑦/01 are classified as 0. Otherwise, it is classified as 1. In Eq. )4( , the minimum non-
zero response value determines the classification threshold. The forecasting models were 
implemented by computer programs using MATLAB. Comma Separated Values (CSV) files were used 
to host the databases. 
 

𝑦/01,! = O 𝜂𝑦! , 𝑦! > 0
𝜂𝑦234, 𝑦! = 0             (4) 

 
6.3 Evaluation 

 
A portion of the data set is used to evaluate the models. A typical partition of the data sets is 80% 

for training and 20% for testing. Data points for training and testing are randomly selected. The 
metrics used to evaluate the forecast are accuracy, precision, and recall. 

A hit or true positive (TP) is defined when a channel was forecasted as available and was observed 
as available according to the test data. A miss or false negative (FN) is when a channel was predicted 
as unavailable but was observed as available. A false alarm or false positive (FP) is when a channel is 
predicted as available when observed as unavailable. Lastly, a correct rejection or true negative (TN) 
is when a channel is predicted as unavailable and is observed as unavailable. Correct predictions 
include hits and correct rejections. 

Accuracy is defined as the number of correct rejections over the total samples in the test data as 
mathematically defined in Eq. )5( . Both temporal and spatiotemporal models are evaluated using this 
metric. 
 
Accuracy = 56+76

56+76+74+54
             (5) 
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Precision (Eq. )6( ) is the ratio of true positives to true positives and false positives. In other words, 
the precision tells how many channels are available compared to all channels predicted to be 
available. 
 
Precision = 56

56+76
              (6) 

 
Recall (Eq. )7( ) is the ratio of true positives to true positives and false negatives. In other words, 

the recall tells how many available channels are predicted as available. 
 
Recall = 56

56+74
              (7) 

 
The F1 score (Eq. )8( ) combines precision and recall through the harmonic mean. The F1 score is 

preferred for imbalanced data. If both precision and recall are high, the F1 score is high. 
 
F1 = 2 × 6189:;:<=×>89?@@

6189:;:<=+>89?@@
             (8) 

 
7. Results and Discussion 
7.1 Forecasting Models 

 
This study formulated spatiotemporal forecasting models to predict channel availability and 

coverage. These models predict the availability of a channel and whether the secondary user at a 
specific time and location can broadcast on a channel. The data is binary in nature, as channel 
availability is either available or unavailable. Hence, the study formulated logistic models. Lasso and 
elastic net are added to the logistic models to account for sparsity. Because prediction was done on 
both spatial and temporal aspects, both linear and logistic VAR models were formulated. The logistic 
VAR without exogenous data was considered, but the researcher found that including exogenous 
data (logistic VARX) had better training and performance. Logistic models and logistic VAR models 
work on all data. Linear VAR models, however, do not work on channels with continuous broadcasts 
and few available slots. In other words, the linear VAR model does not forecast on channels 7, 9, and 
37. Channels 7 and 9 continuously broadcast, and channel 37 has high sparsity. 

 
7.2 Forecasting Evaluation Results 

 
Before discussing results regarding spatiotemporal predictions, there are notations to discuss 

first. PUACHX denotes temporal channel availability, and SBCHX denotes, where X is the channel 
number. The sparsities of the data are measured using the density of zeros (ℓ" norm-based), Hoyer 
Index, and Gini Index. 

The sparsity measures for the temporal and spatial data are shown in Figure 4. For temporal 
availability, channels that broadcast all the time have a 100% sparsity, as the data are composed of 
zeros, and channels with fewer off-air times have higher sparsity measures. For spatial availability, 
fewer available locations meant a higher sparsity measure. The Gini Index is closer to the density of 
zeros than the Hoyer index. 
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(a) 

 
(b) 

Fig. 4. Sparsity Measures of Temporal Data (a) and Spatial Data (b) 
 
The study first explored unregularized and regularized spatiotemporal models, whose 

performances were evaluated using accuracy, precision, recall, and F1 score. The parameters for the 
lasso and elastic net models were automatically generated, and the optimal one was selected by 
cross-validation. The implementing program performs this process automatically. The researcher 
settled on using the penalty parameter one standard error (1SE) away from the optimal. Figure 5 and 
Figure 6 compare the accuracy, precision, recall, and F1 score of the spatiotemporal logistic models 
in temporal and spatial aspects, respectively. The unregularized and regularized spatiotemporal 
logistic models have an accuracy of at least 84% for both the temporal and spatial predictions. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Performances of Spatiotemporal Unregularized (a) and Regularized Logistic Models (b and c) in 
Temporal Predictions 
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(a) 

 
(b) 

 
(c) 

Fig. 6. Performances of Spatiotemporal Unregularized (a) and Regularized Logistic Models (b and c) in 
Spatial Predictions 

 
The study then explored spatiotemporal linear VAR models because both spatial and temporal 

predictions were made simultaneously. The models’ performances were evaluated using the same 
metrics. The study considered both linear VAR with and without exogenous variables (linear VARX) 
and found that adding exogenous variables makes better predictions. The predictions of the linear 
VARX model were graphed together with test data, resulting in the one shown in Figure 7.  
 

 
Fig. 7. Linear VARX(4) predictions (orange) and test data (blue) 
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One and four lags were examined. The linear VARX model predicts well except for time, as shown 
in Figure 8. The predictions could be a result of the linear VARX model not being appropriate for the 
given nature of data. 

 

 
Fig. 8. Performance of the Linear VARX(4) model for Channel 11 (blue) 

 
Hence, the study formulated spatiotemporal logistic VAR models, which were then implemented. 

One and four lags were considered, and models with and without exogenous data were explored. 
However, the model with exogenous data (logistic VARX) had better training with improved accuracy, 
precision, recall, and F1 score. The performances of the logistic VARX models are summarized in 
Figure 9. The logistic VARX models improved the spatial forecasting accuracy from at least 84% to at 
least 99% compared to spatiotemporal logistic and linear VARX models. The precision, recall, and F1 
score of the spatiotemporal logistic VARX models are all at least 99% for spatial availability. Temporal 
prediction accuracy for the spatiotemporal logistic VARX model improved from at least 84% to at 
least 94%, and the F1 score is at least 84%. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Performances of the Logistic VARX Models 
 
Comparisons were made between the spatiotemporal logistic models, spatiotemporal logistic 

VARX models, and supervised learning models. The study considered shallow and deep neural 
networks for supervised learning models. The shallow neural network has one hidden layer, while 
the deep neural network has three hidden layers. These comparisons are summarized in Table 5, 
Table 6, Table 7 and Table 8. 
 

Table 5 
Comparison of Accuracies for the Forecasting Models   

Accuracy (%) 
Model CH4 CH5 CH7 CH9 CH11 CH13 CH27 CH37 
Spatiotemporal Logit Temporal 95.58 92.26 100.00 100.00 100.00 84.21 99.35 96.21 

Spatial 96.19 96.19 93.41 92.20 91.44 92.20 91.49 91.49 
Spatiotemporal Lasso Temporal 95.21 92.32 100.00 100.00 100.00 86.68 99.78 96.52 

Spatial 95.65 95.65 94.11 93.11 93.01 93.11 92.13 92.13 
Spatiotemporal Elastic Net Temporal 95.21 92.62 100.00 100.00 100.00 86.68 99.78 96.52 

Spatial 95.65 95.65 94.11 92.10 90.68 93.11 90.09 90.09 
Shallow NN Temporal 75.71 99.17 100.00 100.00 76.15 70.10 99.35 100.00 

Spatial 100.00 94.36 87.32 97.69 85.36 86.34 83.38 83.38 
Deep NN Temporal 75.71 99.33 100.00 100.00 76.15 59.17 78.82 96.21 

Spatial 98.14 98.05 90.37 92.10 97.99 91.29 83.38 83.38 
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Table 6 
Comparison of Precisions for the Forecasting Models   

Precision (%) 
Model CH4 CH5 CH7 CH9 CH11 CH13 CH27 CH37 
Spatiotemporal 
Logit 

Temporal 91.64 78.68 0.00 0.00 100.00 86.10 97.98 0.00 
Spatial 100.00 100.00 87.52 87.17 87.52 87.17 100.00 100.00 

Spatiotemporal 
Lasso 

Temporal 91.79 80.55 0.00 0.00 100.00 92.81 100.00 0.00 
Spatial 100.00 100.00 88.27 100.00 100.00 100.00 100.00 100.00 

Spatiotemporal 
Elastic Net 

Temporal 91.79 80.88 0.00 0.00 100.00 92.81 100.00 0.00 
Spatial 100.00 100.00 88.27 100.00 100.00 100.00 100.00 100.00 

Shallow NN Temporal 0.00 97.79 0.00 0.00 0.00 99.73 97.98 100.00 
Spatial 100.00 0.00 0.00 93.40 0.00 0.00 0.00 0.00 

Deep NN Temporal 0.00 98.06 0.00 0.00 0.00 0.00 0.00 0.00 
Spatial 82.23 100.00 100.00 85.25 95.40 76.73 0.00 0.00 

 
Table 7 
Comparison of Recalls for the Forecasting Models   

Recall (%) 
Model CH4 CH5 CH7 CH9 CH11 CH13 CH27 CH37 
Spatiotemporal Logit Temporal 90.01 76.82 0.00 0.00 100.00 73.14 98.95 0.00 

Spatial 32.45 32.45 55.99 50.33 48.48 50.33 48.79 48.79 
Spatiotemporal Lasso Temporal 88.07 75.62 0.00 0.00 100.00 72.86 98.96 0.00 

Spatial 19.34 19.34 59.63 47.39 50.99 47.39 51.15 51.15 
Spatiotemporal Elastic Net Temporal 88.07 77.27 0.00 0.00 100.00 72.86 98.96 0.00 

Spatial 19.34 19.34 59.63 39.66 34.72 47.39 38.50 38.50 
Shallow NN Temporal 0.00 97.46 0.00 0.00 0.00 26.86 98.95 100.00 

Spatial 100.00 0.00 0.00 89.43 0.00 0.00 0.00 0.00 
Deep NN Temporal 0.00 98.14 0.00 0.00 0.00 0.00 0.00 0.00 

Spatial 85.49 65.44 24.06 50.98 90.65 52.07 0.00 0.00 
 

Table 8 
Comparison of F1 Scores for the Forecasting Models   

F1 Score (%) 
Model CH4 CH5 CH7 CH9 CH11 CH13 CH27 CH37 
Spatiotemporal Logit Temporal 90.82 77.74 0.00 0.00 100.00 79.09 98.46 0.00 

Spatial 49.00 49.00 68.29 63.81 62.39 63.81 65.58 65.58 
Spatiotemporal Lasso Temporal 89.89 78.01 0.00 0.00 100.00 81.63 99.48 0.00 

Spatial 89.89 78.01 0.00 0.00 100.00 81.63 99.48 0.00 
Spatiotemporal Elastic Net Temporal 89.89 79.04 0.00 0.00 100.00 81.63 99.48 0.00 

Spatial 32.41 32.41 71.18 56.79 51.55 64.30 55.60 55.60 
Shallow NN Temporal 0.00 97.63 0.00 0.00 0.00 42.32 98.46 100.00 

Spatial 100.00 0.00 0.00 91.37 0.00 0.00 0.00 0.00 
Deep NN Temporal 0.00 98.10 0.00 0.00 0.00 0.00 0.00 0.00 

Spatial 83.83 79.11 38.79 63.80 92.97 62.04 0.00 0.00 
 
8. Conclusion 

 
The study used sparse geo-location databases to forecast wireless coverage and frequency by 

formulating spatiotemporal forecasting models. The spatiotemporal models include unregularized 
and regularized logistic models, linear VARX models, and logistic VARX models. The models' 
predictions were at least 70% accurate, except for only one under linear VARX. The spatiotemporal 
unregularized and regularized logistic models, as well as the spatiotemporal logistic VARX, performed 
better than the shallow NN and deep NN. The spatiotemporal logistic VARX models had the best 
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accuracy, prediction, recall, and F1 score among all the spatiotemporal models. This study considered 
white space devices with fixed properties like transmission power. This study recommends having 
secondary users with varying properties and using different thresholding, data transform, or a 
different model to account for the low accuracy of the spatiotemporal linear VAR. The work could be 
extended to cover primary users beyond the Greater Manila Area. 
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