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 ABSTRACT 

 

 

 

Ensuring precise water conditions is essential for the economic viability and 
preservation of aquatic resources in aquaculture, necessitating effective water quality 
monitoring systems. This research work investigates and reviews water quality 
monitoring systems for freshwater aquaculture, focusing on electronic sensor-based 
and spectroscopy-based methods through a comparative analysis. The review 
categorizes and evaluates machine learning (ML)-based sensor and spectroscopy 
methods, emphasizing the performance of sensitive spectral bands linked to diverse 
water quality parameters. Furthermore, the research examines the efficiency and 
accuracy of water quality parameters in ML-based water quality monitoring systems 
for freshwater aquaculture. Comparative findings indicate that ML-based sensor 
methods exhibit superior quality, versatility, and performance, capitalizing on their 
ability to exploit unique spectral features. The discussion encompasses challenges and 
issues faced by ML-based water quality monitoring systems in freshwater aquaculture, 
providing insights into their future perspectives. This comprehensive investigation 
contributes valuable insights into the intricate relationship between sensing 
technologies, machine learning, and water quality monitoring in the context of 
freshwater aquaculture. It serves as a resource for stakeholders, researchers, and 
policymakers navigating the challenges of improving aquaculture practices while 
addressing environmental considerations.   
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1. Introduction 
 

Freshwater aquaculture, the controlled cultivation of aquatic life, has become an indispensable 
facet of global food production, significantly contributing to the mitigation of worldwide protein 
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shortages [1]. With a remarkable annual growth rate of 5.8% over the past decade, aquaculture 
stands as the fastest-expanding sector in food production [2]. In recent years, inland aquaculture has 
played a pivotal role, contributing 62.5% to the food sector and yielding an impressive 51.3 million 
tons valued at $263.6 billion [3]. The diversification of global aquaculture, encompassing a wide array 
of species such as lobsters, sea grass, carp, mussels, and tilapia, has led to a substantial threefold 
increase in total live weight. This expansion extends to marine species such as fish and crabs, 
reflecting the economic importance of this period. The benefits of lobster farming include:  

 
i. high sales and supply values 

ii. profitability of aquaculture globally [4].  
 

Notably, the cultivation of species like freshwater lobster, known for its lucrative nature, high 
protein content, and rapid commercial growth cycle, underscores the significance of freshwater 
aquaculture [5]. Ensuring the success of freshwater aquaculture, particularly with species like 
freshwater lobster, is contingent upon the continuous monitoring of crucial water quality 
parameters. Parameters such as pH, electrical conductivity (EC), total dissolved solids (TDS), dissolved 
oxygen (DO), temperature, turbidity, and nitrogen compounds must be meticulously controlled 
within specific ranges to optimize freshwater aquacultural growth. This meticulous monitoring is 
particularly critical during key stages like hatching, breeding, and harvesting, as it significantly 
influences the commercial value and overall health of aquatic species [6]. In the contemporary era of 
intensive freshwater farming, technological advancements have given rise to sophisticated systems 
for water quality monitoring. Among these systems, two primary approaches have emerged: sensor-
based systems and spectroscopy-based systems. These technologies, often integrated with the 
Internet of Things (IoT) and machine learning, play a pivotal role in enhancing the precision and 
effectiveness of water quality monitoring in freshwater aquaculture [7]. 

This review seeks to provide a comprehensive and consolidated overview of sensor-based and 
spectroscopy-based smart water quality monitoring systems for freshwater aquaculture. To the best 
of our knowledge, no review was found that presents and is based upon the comparison analysis of 
full sensor-based and spectroscopy-based smart water quality monitoring systems, addressing their 
various vital parameters in a systematic way. By delving into the latest technological advancements, 
categorizing spectroscopy systems, exploring their applications in machine learning, and discussing 
the current state of the art, open challenges, and prospects, this review aims to contribute to the 
development of intelligent monitoring systems. These systems, combining the strengths of sensor-
based and spectroscopy-based approaches, hold the potential to ensure high yields, safe breeding, 
and environmental conservation in freshwater aquaculture. This study opens a new door for 
stakeholders, researchers, and policymakers to improve and navigate aquaculture water quality 
sustainably, balancing economic and environmental goals effectively in regard to ML and its 
integration with spectroscopy methods, especially the NIR Spectrometry. 

In the ever-evolving landscape of freshwater aquaculture, the need for robust water quality 
monitoring systems has become increasingly apparent. While the introduction touched upon the 
significance of aquaculture in addressing global food production challenges, a more explicit 
connection can be drawn to the existing body of research. Previous works by numerous researchers 
have significantly contributed to the development of sensor-based and spectroscopy-based smart 
water quality monitoring systems, each with their distinct advantages and limitations. However, 
these past contributions have not been systematically compared and analysed in a comprehensive 
review. This review aims to bridge this gap by delving into the strengths and weaknesses of both 
sensor-based and spectroscopy-based approaches, considering vital parameters for freshwater 
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aquaculture. Furthermore, recent highlights and advancements in the field will be integrated, 
offering a contemporary perspective on the evolving landscape of intelligent water quality 
monitoring. By examining the latest research findings, this review seeks to elucidate the trajectory of 
technological progress in ensuring the success of freshwater aquaculture, with a specific focus on the 
integration of machine learning and spectroscopy, notably Near-Infrared Spectrometry (NIRS). 

 
2. Methodology  

 
Research papers from various renounced databases are mostly referred for this review which are 

depicted in the first phase shown in Figure 1. The second phase method includes specific keyword 
matching such as water quality monitoring systems, freshwater Aquaculture water monitoring 
systems, and machine learning for freshwater aquaculture and machine learning for water quality 
monitoring systems. Finally, analysing and evaluating the main research papers using inclusion and 
exclusion techniques are implemented whereby for inclusion, only the latest articles of Spectroscopy 
for water quality monitoring systems and machine learning for water quality monitoring systems are 
included in this paper.  

 

 
Fig. 1. Methodology 

 
3. Water Quality Monitoring Systems 

 
To identify deviations in water quality and facilitate timely detection of potential threats, 

monitoring water quality involves evaluating its physical, biological, and chemical characteristics. 
Water quality monitoring systems play a crucial role in ensuring the health and sustainability of 
freshwater aquaculture environments [8]. Water quality monitoring systems are integral to the 
success and sustainability of freshwater aquaculture environments [9]. These systems play a crucial 
role in ensuring that the conditions within aquaculture facilities remain optimal for the growth and 
health of aquatic species. By continuously monitoring parameters like temperature, pH, dissolved 
oxygen, and nutrient levels, aqua culturists can prevent stress and disease among their stock, leading 
to efficient growth and resource utilization. Moreover, such monitoring helps in adhering to 
environmental regulations, preventing pollution, and conserving precious freshwater resources. It 
also provides early warnings of potential issues, allowing for timely intervention [10]. In the end, 
these tools make data-driven decision-making possible and support aquaculture operations' 
successful and responsible future, protecting the sector and the ecosystems in which it operates. This 
research provides a detailed assessment of two different approaches to measuring and maintaining 
water quality standards: sensor-based and spectroscopy-based. Both approaches used machine 
learning (ML) as a tool for predicting. 
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3.1 Water Quality Monitoring Systems Based on Electronic Sensor Methods for Freshwater 
Aquaculture 

 
Electronic sensor-based water quality monitoring systems are important for freshwater 

aquaculture and its maintenance. These systems use various types of sensors to access and measure 
water quality parameters such as temperature, pH, dissolved oxygen, ammonia level, and many 
more. These sensors provide real-time data that aids managers in making decisions to maintain ideal 
water quality levels [11]. These systems are able to alert managers when parameters deviate from 
the allowed range, enabling them to take immediate action. Monitoring systems with electronic 
sensors are essential to keeping the aquaculture sector sustainable. When it comes to guaranteeing 
the well-being and production of aquatic life, these monitoring systems are quite beneficial. 
Electronic sensors to monitor and manage water quality in aquaculture facilities have been invented, 
applied, and improved significantly in the last few decades. The entire system block diagram for 
freshwater aquaculture sensor-based water quality monitoring systems is displayed in Figure 2. 
These sensors are capable of detecting and analysing a wide range of water properties, such as EC, 
pH, DO, and turbidity [12].  

 

 
Fig. 1. Overall system block diagram of electronic sensor-based water quality monitoring systems for 
freshwater aquaculture [12] 
 

Meanwhile Table 1 summarizes the sensor-based monitoring systems including its description, 
advantages, disadvantages, and water quality parameters. 
 
Table 1 
Water Quality Monitoring Systems Based on Electronic Sensor-Based Methods for Freshwater Aquaculture 

Ref. Description Technology Advantages Disadvantages Parameters 
[13] Automatic data 

acquisition and 
monitoring 
system 

Fog computing Small size, low cost, 
lightweight, portable, 
high efficiency and 

Complexity, security, 
maintenance, power 
consumption 

Temperature, 
pH, and DO 

[14] Aquaculture 
wireless sensor 
network for 
monitoring and 
controlling 

ZigBee wireless 
communication 
using LabVIEW 
software 

effective in harsh 
environments provide 
an easily scaled solution 
and allows for long-
distance data collection 
and transmission 

Wireless signals 
can be affected by 
interference from other 
electronic devices, 
which can disrupt the 
accuracy of data 
collection 

Temperature, 
pH, and DO 
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[15] IoT-based water 
quality 
monitoring 
system for 
aquaculture 

IoT IoT-enabled system 
in aquaculture provides 
improved accuracy and 
cost-efficiency 

Expensive and 
complex to set up and 
maintain 

Temperature, 
pH, TDS, and 
Do 

[16] Web-based 
open-source IoT 
water quality 
monitoring 
system for 
aquaculture 

IoT through a web 
application 

Flexibility, efficient way, 
and reliability 

NA Temperature, 
pH, TDS, and 
DO 

 
The key takeaways can be distilled into a few crucial lessons from Table 1. First and foremost, 

aquaculture operators have a rich palette of monitoring solutions to choose from, each with distinct 
strengths and technologies [13,14]. Real-time data analysis and automation are consistent priorities, 
enabling operators to make informed decisions on-the-fly [15]. Selecting the right communication 
protocol, whether it is ZigBee or NB-IoT, plays a pivotal role in ensuring efficient data transmission 
[16]. Paramount to this is the monitoring of essential water quality parameters, including 
temperature, pH, dissolved oxygen (DO), total dissolved solids (TDS), and turbidity, as these 
parameters significantly impact the health of aquatic organisms [17,51]. Moreover, cost-effective 
solutions aim to alleviate financial constraints on aquaculture operations [16]. However, collective 
experience indicates that monitoring systems may provide their own set of difficulties, such as 
complexity, security concerns, maintenance, and potential data accuracy issues due to interference 
[15]. As a result, in order to achieve successful water quality management, aquaculture operators 
must examine these considerations, weigh the advantages and downsides, and select their 
monitoring systems wisely. 

 
3.2 Water Quality Monitoring Systems-Based on Spectroscopy Methods for Freshwater Aquaculture 

 
Water quality monitoring in aquaculture utilizes optical systems to manipulate light 

characteristics, including transmission, absorption, and fluorescence spectra, to assess the 
concentration and features of chemical species. From Table 2, these systems are capable for 
determining various water parameters, such as the concentration of suspended solids, contaminant 
size, chemical presence, and dissolved organic matter characteristics [18,19]. They make use of light 
transmission, absorption, and reflectance spectra to measure water turbidity, particle size, and 
contaminant concentration. Spectroscopy techniques play a crucial role in monitoring water quality 
through the interaction of light with atoms and molecules [20]. This interaction helps probe sample 
properties, investigate particle interactions, and study the emission and absorption of light and 
radiation by materials. Spectroscopy has been instrumental in identifying elements and compounds, 
with various types of spectrometers developed over time, including mass, electron, optical, and 
magnetic spectrometers. Different regions of the electromagnetic spectrum, such as ultraviolet-
visible (UV-Vis), X-ray, microwave, and infrared (IR), are used in spectroscopy for diverse analysis 
purposes. For instance, IR spectroscopy identifies functional groups in organic compounds, while X-
ray spectroscopy delves into the electronic structure of atoms and molecules [21]. Spectroscopic 
techniques offer distinct advantages for water quality monitoring in aquaculture. They centre on the 
interaction between light dispersion and water samples, providing insights into the biological and 
chemical components in the water. UV-Vis spectroscopy is a well-known technique that measures 
the absorption of light in the UV and Vis spectrum, helping to gauge chlorophyll concentrations, 
phosphate, nitrate, and dissolved organic matter. Fluorescence spectroscopy relies on measuring the 
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fluorescence emitted by dissolved organic matter, offering insights into energy state transitions. IR 
spectroscopy aids in identifying both organic and inorganic compounds in the water. Raman 
spectroscopy measures light scattering to provide information about chemical composition and the 
presence of contaminants. Near-infrared (NIR) spectroscopy measures NIR radiation absorption to 
assess parameters like suspended solids, dissolved organic matter, and total nitrogen [22]. These 
spectroscopic techniques are essential tools for water quality monitoring in aquaculture, delivering 
real-time data analysis on water quality parameters. This capability empowers aquaculture managers 
to make informed decisions to maintain optimal water conditions for the growth, health, and 
sustainability of aquatic organisms [23]. 
 
Table 2 
Water quality monitoring systems based on spectroscopy methods for freshwater aquaculture.  

Ref Spectroscopy 
Methods 

Instrument Technology Parameter mearing Range 
(nm) 

Significant result 

[18] VIS-NIR 
spectroscopy 

1D 
convolutional neural 
networks (CNNs) 

pH 400-
2500  

RMSEP was 0.7925 
and 𝑅2 was 0.8515 

[19] NIR 
spectroscopy 

Multilayer network Dissolved organic 
carbon 

780-
2500  

RMSECV was 20.19 mg/L, 
less than 10% of the 
measured COD average 

[20] NIR 
spectroscopy 

Prototype data 
acquisition 
measurement device 

pH, total ammonia, 
nitrogen 

780-
2500  

MSE was 0.1466 and 
R was 0.8398 

[21] NIR 
spectroscopy 

Normalization Salinity and total 
dissolved solids 

1000-
2500  

RPD index was 0.91 
and 2.41 for TDS 
prediction 

[22] Online UV-Vis 
instruments 

Chemometrics 
approach 

Dissolved organic 
carbon, total organic 
carbon, turbidity, and 
nitrate 

254 -
800  

± 0.01% mg/L 

[23] Vis-NIR 
spectroscopy 

Wavelength selection 
method 

pH 870-
990 

RMSEP of 0.35 

 
4. Near-Infrared Spectroscopy 

 
Near-infrared spectroscopy (NIRS) is a non-invasive method for determining the chemical 

composition of a material. NIRS is a spectroscopic method that operates in the NIR region from 700 
to 2500 nm (430–120 THz) [24], as shown in Figure 3. It measures light absorption or reflection to 
determine chemical species concentration and molecular structure. Medical, agricultural, 
environmental, and process control utilize NIRS. Recent hardware and data analysis advances have 
made NIRS more popular and accurate. The target sample can absorb, transmit, reflect, or scatter 
light irradiated with a broad range of the NIR operational wavelength. Based on the frequencies of 
the molecules in the sample vibrations, absorbed light produces a spectrum. The gathered spectrum 
provides data on the sample molecular composition as well as the characteristics of its organic 
components [25,26]. Comparing NIR spectroscopy to conventional chemical procedures, several 
significant benefits are available. It is a physical, non-destructive approach that can have great 
precision and requires little to no sample preparation. Unlike conventional chemical analysis, there 
is no need for reagents, and no waste is produced [26]. There are two ways to gather NIRS 
measurements: diffuse reflectance or transmittance/absorption. While diffuse reflectance is 
evaluated on opaque or light-scattering matrices, the transmittance is assessed on translucent 
materials. In transmission mode, incident light illuminates the sample on one side, travels through 
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the pore structure, and is detected on the opposite side. In diffuse reflection, light illuminates the 
sample surface and is then detected after being diffusely reflected from the sample surface [27]. 
According to the combinations and overtones of the molecule’s vibrational frequencies in the sample, 
light is absorbed. Because they induce a series of absorptions at various frequencies, overtones can 
be considered harmonics. Overtones are produced when a vibrational mode is activated at a 
frequency higher than the fundamental vibration [28]. NIRS offers non-destructive analysis and fast 
results, however, its limitations include shallow depth and sample sensitivity, lack of specificity, and 
challenges in structural interpretation [29]. Despite these drawbacks, NIRS remains valuable for its 
non-destructive and rapid analysis in various fields. NIRS has limitations including limited structural 
information and overlapping absorption bands. It requires calibration, has limited penetration depth, 
and sensitivity to environmental factors, but remains valuable when used appropriately [30]. The 
scientists analyse the effects of chemicals by combining NIRS with chemometric techniques and types 
of wood quality and attributes. The research findings demonstrated that NIRS data when paired with 
robust multivariate statistical tools and artificial intelligence solutions, produced a quick and accurate 
tool that was useful in the decision-making process. 

 
5. Machine Learning-Based Water Quality Monitoring System for Freshwater Aquaculture 

 
These days aquaculture relies more on machine learning, especially in monitoring water quality. 

Machine learning algorithms can analyse massive amounts of data collected by sensors and other 
monitoring instruments, allowing them to reveal patterns and anomalies that may indicate 
deterioration in water quality [31]. Machine learning (ML) has emerged as a very powerful tool for 
water quality monitoring in freshwater aquaculture. It provides automated and real-time analysis of 
different water parameters, helping in the optimization of aquaculture operations and ensuring the 
well-being of aquatic organisms. By utilizing machine learning algorithms, large volumes of water 
quality data can be efficiently processed and analysed. This enables the detection of patterns, trends, 
and anomalies that may affect the health and productivity of aquaculture systems. ML models offer 
advanced prediction methods and have become a popular research topic for water quality prediction 
worldwide [32]. They can handle complex and nonstationary data effectively, resulting in improved 
prediction accuracy compared to traditional methods [33]. 
 

 
Fig. 3. NIR region from 0.7 to 2.5 µm (700-2500 nm) [24] 
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Machine learning-based water quality prediction can improve the efficiency and sustainability of 
freshwater lobster farming by reducing the risk of adverse water quality conditions. The system 
overviews are displayed in Figure 4 [34]. Various methods have been proposed and used in the 
literature to analyse spectral data for water used in freshwater lobster farming. The use of machine 
learning algorithms for freshwater lobster farming stands in stark contrast to the conventional 
method since it provides more actionable data and allows for future outcomes to be predicted. The 
spectral data cannot be used directly to make predictions. Hence, a prediction model must be 
established using machine learning [35]. 

The implementation of machine learning in water quality monitoring also comes with challenges. 
It requires access to reliable and diverse datasets for training the models. Ensuring data quality, 
consistency, and compatibility across different monitoring systems is critical for accurate predictions. 
Moreover, the interpretability of machine learning models can be a concern, as understanding the 
underlying decision-making process is vital for effective decision support in aquaculture operations 
[36]. Machine learning models in aquaculture are utilized for water quality monitoring to ensure 
perfect and optimal conditions for aquatic organisms. Decision tree models classify water quality 
using a hierarchical structure, while KNN models classify samples based on neighbouring similarities. 
Artificial Neural Networks (ANN) capture complex relationships between variables, SVM separates 
quality classes using a hyperplane, and Naive Bayes employs probability theory. These models offer 
distinct advantages, and their selection depends on the requirements of the system. It can be 
deduced that future work for these ML algorithms involves improving scalability, exploring advanced 
kernel functions, handling class imbalance, and enhancing interpretability. 

 

 
Fig. 2. Machine learning-based water quality monitoring system for freshwater aquaculture [34] 

 
5.1 State-of-the-Art 

 
In the field of aquaculture water quality prediction, various studies have employed diverse 

modelling approaches to address the challenge of accurate forecasting. Each approach comes with 
its own set of advantages and limitations, which are explored in greater detail below. The K-Nearest 
Neighbor (KNN) algorithm to tackle missing data to effectively bridge gaps in the dataset. However, 
this study found the potential of overfitting when coupled with a complex nine-layer Multi-Layer 
Perceptron (MLP) model [37]. The predicting key water quality parameters such as dissolved oxygen 
and pH. For achieving high prediction accuracy, intricate models such as the Back Propagation Neural 
Network (BPNN), Radial Basis Function Neural Network (RBFNN), Support Vector Machine (SVM), and 
Least Squares Support Vector Machine (LSSVM) were employed. Despite their impressive predictive 
performance, these models suffered from limited interpretability due to their inherent complexity 
[34]. The power of Convolutional Neural Networks (CNNs) for forecasting and managing water quality 
in aquaculture systems. Leveraging CNNs' ability to capture spatial patterns, this approach 
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significantly improved prediction accuracy. However, like its predecessors, the study did not delve 
deeply into the model's interpretability aspect [38]. 

CNN-LSTM and CNN-GRU architectures for aquaculture water quality prediction. These models 
demonstrated exceptional prediction accuracy, albeit raising concerns about their practical 
implementation due to demanding computational requirements [39]. A different strategy by using 
Random Forests, Multivariate Linear Models, and Artificial Neural Networks for estimating and 
forecasting aquaculture outcomes. While these models delivered precise predictions, the study 
acknowledged potential limitations in applying them to real-world fish farming scenarios with limited 
data and practical challenges [40]. In a similar vein, relied on LSTM and GRU Deep Learning Recurrent 
Neural Network (DL-RNN) models for aquaculture water quality prediction, highlighting their superior 
predictive capabilities [41]. CNN-based models, specifically CNN-LSTM and CNN-GRU for water 
quality prediction. These models effectively captured water quality characteristics related to 
interpretability and practical implementation which are often associated with intricate models [42]. 
Decision Tree Classifiers to classify the water quality. These models offered interpretability, but it's 
worth noting that they could potentially become computationally expensive and complex under 
certain circumstances [40].  

Table 3 summarizes the aquaculture water quality prediction encompasses a wide array of 
modelling techniques, each with its strengths and weaknesses. While some models excel in 
prediction accuracy, others prioritize interpretability and practicality. Choosing the most suitable 
approach depends on the specific needs and constraints of the aquaculture scenario at hand. In Table 
3, realm of aquaculture water quality prediction, numerous modelling approaches have been 
explored, each offering a unique set of advantages and limitations. These approaches range from 
simple techniques like KNN for handling missing data to complex models such as CNNs and hybrid 
architectures like CNN-LSTM and CNN-GRU, which have demonstrated exceptional prediction 
accuracy. While the more intricate models tend to excel in accuracy, they often lack interpretability 
and may be computationally demanding, making practical implementation challenging. Conversely, 
simpler models like Decision Tree Classifiers offer interpretability but can become complex and 
computationally expensive under certain conditions. The choice of the most suitable approach 
ultimately hinges on the specific requirements of the aquaculture scenario at hand, balancing the 
need for accuracy, interpretability, and practicality to effectively manage water quality in fish 
farming. 
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Table 3 
Machine learning algorithms for water quality in aquaculture 

Ref Algorithm Purpose Advantages Disadvantages 
[38] K-Nearest 

Neighbour 
(KNN) Imputer 

Data imputation for 
missing values 

Resolves missing 
values 

overfitting due to the complex nine-
layer MLP, lacks interpretability 
discussion 

[35] Back 
Propagation 
Neural Network 
(BPNN)  
Radial Basis 
Function Neural 
Network 
(RBFNN)  
Support Vector 
Machine (SVM) 
Least squares 
support vector 
machine 
(LSSVM) 

Predict water quality 
parameters including 
dissolved oxygen (DO), pH, 
ammonium-nitrogen 
(NH3-N), nitrate nitrogen 
(NO3-N), and nitrite-
nitrogen (NO2-N) 

High Prediction 
Accuracy 

limited interpretability 

[39] Convolutional 
Neural Network 
(CNN) 

To predict and control 
water quality in 
Recirculating Aquaculture 
Systems (RAS) 

Improved 
Prediction Accuracy 
Better perform 

CNN, with its ability to capture spatial 
patterns, is effective in modelling and 
controlling water quality in 
aquaculture systems. 

[43] CNN-LSTM 
CNN-GRU 

Aquaculture Water Quality 
Prediction 

CNN effectively 
captures 
aquaculture water 
quality 
characteristics. 
high prediction 
accuracy 

potential impracticality of 
implementing the computationally 
intensive hybrid deep learning model 
(CNN-GRU-Attention) in real-world 
Recirculating Aquaculture Systems 
(RAS). 
 

[41] Random Forests 
Multivariate 
Linear 
Artificial Neural 
Networks 

Estimation and 
Forecasting 

accurate 
predictions 

it may not adequately address the 
potential limitations and challenges of 
implementing machine learning 
models, such as random forests and 
artificial neural networks, in real-
world fish farming scenarios with 
limited data and practical constraints. 

[42] LSTM and GRU 
DL-RNN Models 

Aquaculture Water Quality 
Prediction 

Superior prediction 
accuracy 

interpretability of the deep learning 
models (LSTM and GRU) for 
aquaculture water quality prediction 
and does not address potential 
challenges in practical 
implementation. 

[40] CNN-LSTM and 
CNN-GRU 

Aquaculture Water Quality 
Prediction 

CNN capture water 
quality 
characteristics 
effectively. 

The interpretability and practical 
implementation challenges associated 
with using complex hybrid deep 
learning models (CNN-LSTM and CNN-
GRU) for aquaculture water quality 
prediction. 

[44] Decision Tree 
Classifier 

Aquaculture Water Quality 
Prediction (WQP) 
(classification tasks) 

Simple and 
interpretable 

computationally expensive and harder 
to interpret 
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5.2 Comparison of ML-Based Spectroscopy Method and ML-Based Sensor Method  
 
ML-based spectroscopy method uses machine learning algorithms to analyse spectral data, 

enabling precise identification of materials and their properties shown in Table 4. On the other hand, 
ML-based sensor method employs AI to enhance sensor data processing for improved real-time 
monitoring and control in various applications as presented in Table 4. 

 
5.2.1 ML-based spectroscopy methods 

 
Table 4 offers a succinct comparison of six distinct spectroscopic techniques that incorporate 

machine learning methods. These techniques, their corresponding ML approaches, 
equipment/software, and their individual strengths and limitations are highlighted. Notably, Raman 
Spectroscopy distinguishes itself for the swift chemical composition analysis, though it is susceptible 
to interference from fluorescence may involve considerable equipment expenses [31,45,46] .UV-Vis 
Spectroscopy, on the other hand, offers versatility in examining both organic and inorganic 
compounds but is restricted to UV-Vis-active materials and may necessitate regular maintenance. 
Infrared Spectroscopy is particularly adept at identifying functional groups within compounds but is 
confined to IR-active substances and can be relatively costly. In contrast, Photoelectron Spectroscopy 
and ESR Spectroscopy specialize in the analysis of electronic structures and free radicals, but they 
mandate specialized equipment and controlled conditions. Meanwhile, NIR Spectroscopy excels in 
swiftly identifying organic compounds but is limited to NIR-active substances, and its effective use 
may require specific expertise. The choice of the most appropriate technique should be made based 
on the specific analytical needs and constraints of the intended application, ensuring the optimal 
method is employed [47-49]. 
 
Table 4 
ML-based Spectroscopy Methods  

Ref Spectroscopic 
Type 

Utilized ML Utilized 
Technology/Software 

Advantages Disadvantages Measured 
Performance 

Performance 

[31] Raman 
Spectroscopy 

 KNN and 
PCA  

Raman 
Spectrometer, data 
analysis software 

Rapid 
analysis of 
chemical 
composition, 
minimal 
sample 
preparation 

Signal 
interference 
from 
fluorescence, 
equipment 
cost 

Chemical 
Composition, 
Contaminant 
Detection, 
Water Quality 
Parameters 

Chemical 
Composition 
Accuracy: 
92%, 
Contaminant 
Detection: 
85% 

[45] Ultraviolet 
(UV) and 
Visible (Vis) 
Spectroscopy 

Logistic 
Regression, 
Random 
Forests, 
SVM 

UV-Vis 
Spectrophotometer, 
data analysis 
software 

Analysis of 
organic and 
inorganic 
compounds, 
real-time 
monitoring 

Limited to UV-
Vis-active 
compounds, 
maintenance 
cost 

Chemical 
Composition, 
Contaminant 
Detection, 
Water Quality 
Parameters 

Chemical 
Composition 
Accuracy: 
88%, 
Contaminant 
Detection: 
82% 

[47] Infrared (IR) 
Spectroscopy 

 PCA, SVM, 
GMM 

IR Spectrometer, 
data analysis 
software 

Identification 
of functional 
groups, real-
time 
monitoring 

Limited to IR-
active 
compounds, 
equipment 
cost 

Functional 
Group 
Identification, 
Contaminant 
Detection, 
Water Quality 
Parameters 

Functional 
Group 
Identification: 
90%, 
Contaminant 
Detection: 
86% 
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[47] Photoelectron 
Spectroscopy 

 PCA and 
SVM  

Photoelectron 
Spectrometer, data 
analysis software 

Electronic 
structure 
analysis, 
surface 
composition 

Specialized 
equipment, 
vacuum 
conditions 
required 

Electronic 
Structure 
Analysis, 
Surface 
Composition, 
Contaminant 
Detection 

Electronic 
Structure 
Analysis: 94%, 
Surface 
Composition: 
88% 

[48] Electron Spin 
Resonance 
(ESR) 
Spectroscopy 

 SVM and  
PCA 

ESR Spectrometer, 
data analysis 
software 

Study of 
unpaired 
electrons, 
free radical 
analysis 

Limited to 
samples with 
unpaired 
electrons, 
equipment 
cost 

Free Radical 
Analysis, 
Unpaired 
Electron 
Detection, 
Water Quality 
Parameters 

Free Radical 
Analysis: 96%, 
Unpaired 
Electron 
Detection: 
91% 

[50] Near-Infrared 
(NIR) 
Spectroscopy 

ANN NIR Spectrometer, 
data analysis 
software 

Rapid 
analysis of 
organic 
compounds, 
non-
destructive 

Limited to 
NIR-active 
compounds, 
specialized 
expertise 
required 

Organic 
Compound 
Identification, 
Water Quality 
Parameters 

Organic 
Compound 
Identification: 
93% 

 
5.2.2 ML-based sensors methods 

 
Machine learning-based sensor methods involve the integration of machine learning algorithms 

with sensor data to enhance data processing, analysis, and decision-making in various domains. 
These methods encompass data acquisition from sensors, feature extraction to transform raw data 
into meaningful features, model training using algorithms like decision trees or neural networks, and 
real-time prediction or classification of new sensor data. The applications span industries such as 
predictive maintenance, environmental monitoring, healthcare, smart homes, and autonomous 
vehicles. Key aspects include interpretability, allowing insights into model decisions, and adaptability, 
enabling continuous learning from new data. As technology advances, machine learning-based 
sensor methods continue to evolve, striving to improve accuracy, efficiency, and interpretability 
across a wide range of sensor-based applications. In Table 5, automated aquaculture monitoring and 
control systems are compared. Each system employs specific machine learning algorithms, sensors, 
and equipment to achieve various advantages and faces certain disadvantages. Measured 
performance metrics such as accuracy, recall, precision, and F1-score are provided for each system, 
indicating their effectiveness in monitoring and optimizing aquaculture conditions. These systems 
play a crucial role in improving aquaculture operations by ensuring optimal environmental conditions 
and maximizing fish or plant growth while addressing the challenges associated with maintenance 
and costs. It is evident that ML-based spectroscopy methods outperform their counterparts in 
various scenarios. This superiority is attributed to their ability to exploit distinct features within the 
spectral bands associated with different water quality parameters and their integration ease. Further 
accuracy and performance of ML-based spectroscopy methods especially the NIR spectroscopy 
details are discussed in section 6. 
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Table 5 
ML-based Sensors Methods 

Ref Spectroscopic 
Type 

Utilized ML Utilized 
Technology/Software 

Advantages Disadvantages Measured 
Performance 

Performance 

[20] Sensor data 
collection, 
real-time 
analysis, 
automated 
adjustments 

KNN, 
Linear 
regression, 
Random 
Forests 

pH sensors, ammonia 
sensors, nitrate 
sensors, IoT 
controllers 

Optimal 
conditions for 
plants and 
fish, improved 
sustainability, 
reduced 
manual 
testing 

Sensor 
maintenance, 
calibration 
requirements, 
initial setup 
cost 

Crop 
Growth, Fish 
Health, 
Water 
Quality 

Accuracy: 
75.12%, 
Recall: 88%, 
Precision: 
78%, F1-
Score: 81% 

[3] Data 
collection, 
analysis, 
automated 
nutrient 
dosing 

Multiple 
Linear 
regression, 
PCA, Naive 
Bayes 

Nutrient sensors, pH 
sensors, automated 
dosing systems 

Enhanced 
plant growth, 
nutrient 
efficiency, 
sustainable 
aquaculture 

Sensor 
calibration, 
dosing 
accuracy, 
initial setup 
effort 

Plant 
Growth, 
Nutrient 
Utilization 

Accuracy: 
78.45%, 
Recall: 85%, 
Precision: 
80%, F1-
Score: 83% 

[31] Sensor data 
collection, 
real-time 
analysis, 
automated 
aeration 
control 

LSTM, 
SVM, 
Gaussian 
Mixture 
Models 
(GMM) 

Salinity sensors, 
temperature sensors, 
dissolved oxygen 
sensors, control 
systems 

Improved 
shrimp health, 
growth rates, 
farm 
productivity 

Sensor 
maintenance, 
calibration, 
power supply 
reliability 

Shrimp 
Growth, 
Water 
Quality 
Optimization 

Accuracy: 
76.21%, 
Recall: 87%, 
Precision: 
79%, F1-
Score: 82% 

 
5.3 Challenges and Issues 

 
It has been observed that there are three main types of challenges in machine learning algorithms 

for water quality monitoring for aquaculture presented in Figure 5, which include: 
 

i. Data related Challenges: Obtaining accurate and sufficient water quality sample data is 
the highest challenge. Various types of environmental variability and sensor reliability can 
lead to data shuttering and inconsistencies. Data labeling for ML can be tidy and is more 
prone to errors. Maintaining the balance between the Integration of diverse data sources 
and ensuring real-time monitoring is always complex. 

ii. Algorithm based challenges: Selecting a suitable ML algorithm for different water quality 
parameters can be a game changer and is always considered a big deal. Keeping in view 
the various parameters, one has to choose the best with more effectiveness and less cost. 
Preventing overfitting and optimizing can add complexity. Managing and handling the 
temporal data and model interpretability is always challenging. Dealing with various types 
of imbalanced data is a prime choice for accuracy. Deployment, computational resources, 
and cross-domain generalization require attention. 

iii. Other Challenges: Ensuring government regulatory compliance and ethical data usage is 
a crucial component. Managing various data model deployment and scalability is critical 
for real-world use and prototyping. Take an example of a real-time water quality 
monitoring system for a fish farm. It can be tough to gather precise data on temperature 
and pH levels when sensors occasionally provide inaccurate readings due to drift or 
sudden weather changes causing fluctuations. Selecting the right ML algorithms for 
predicting oxygen levels is crucial, especially when dealing with imbalanced data 
dominated by normal readings. Additionally, as you expand the system to different farms, 
you must ensure compliance with various regulations, manage computational resources 
for real-time monitoring, and handle data preprocessing while adapting models to 
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changing conditions. These challenges arise from dealing with data, algorithms, and 
common issues when creating a dependable aquaculture monitoring system that 
operates in real-time. 

 

 
Fig. 5. Open Challenges and Issues 

 
To ensure the successful integration of machine learning (ML) algorithms into the aquaculture 

industry, a collaborative effort involving scientists, academicians, and industry experts is imperative 
and is a need of the day. These stakeholders must work together to enhance, fine-tune, and uphold 
the ML systems in line with the specific requirements and standards of aquaculture. 

 
5.4 Future Directions 

 
NIRS-based water quality monitoring system with machine learning algorithms could be a 

powerful tool to predict the quality of water for freshwater aquaculture. As discussed above, a 
spectral-based classification approach was shown to have significant consequences for water quality. 
In light of this, it is safe to say that NIRS coupled with a machine learning classifier, has great potential 
as a water quality monitoring system for freshwater lobster farming. Though promising, NIRS 
detection methods have yet to overcome several obstacles. Complexity arises from the need for 
thorough interpretation of spectral data, making NIRS a non-trivial procedure. In conclusion, 
aquaculture water quality is critical for ensuring the success of aquaculture and the quality of aquatic 
products. With the increasing discharge of industrial wastewater and household sewage, water 
quality monitoring has become an important research area in smart agriculture and the agricultural 
Internet of Things. Spectral analysis technology for water quality monitoring is promising due to its 
simplicity, convenience, and reproducibility. This article summarizes and organizes existing literature 
on water quality monitoring systems in smart aquaculture and highlights the advantages of spectral 
technology compared to traditional water quality monitoring methods. Examining the monitoring 
methods for various water quality parameters gives insight into the sensitive spectral bands that can 
be used to monitor water quality accurately and rapidly in aquaculture. The inclusion of ML in water 
quality monitoring systems for freshwater aquaculture has opened new doors and can be further 
implemented to get more value regarding classification, prediction, and performance in various fields 
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of aquaculture. To better understand the aquaculture environment and control water quality, 
investigate options for sensor fusion and data integration. Leverage automation technologies and 
real-time alerts for aquaculture water quality monitoring to ensure prompt responses to potential 
issues and enhance farm efficiency. 

 
6. Discussion 

 
The potential of NIRS within this domain, emphasizing its role as a promising tool that guarantees 

further investigation and application for various purposes. Moreover, the combination of ML 
techniques has evolved and emerged in the realm of water quality monitoring for aquaculture. The 
various ML techniques hold the promise of not only improving the accuracy and efficiency but also 
enhancing the way for future intelligent monitoring systems, which can ensure high-quality 
aquaculture yields, improved safe breeding practices, and environmentally conscious infusion. The 
open challenges and issues that will show the improved way to implement machine learning-based 
water quality monitoring systems in the field of freshwater aquaculture are discussed. These 
challenges range from cost-effectiveness, scalability, data integration, and model complexity. Also, it 
can be seen from the comparative evaluation in Tables 4 and 5 that ML-based spectroscopy methods 
excel in a variety of situations, thanks to their capacity to leverage unique features within the spectral 
bands linked to different water quality parameters, along with their seamless integration capabilities.  

Artificial Neural Networks (ANN) stand out as the premier machine learning algorithm, 
particularly when employed in conjunction with spectroscopy-based methods, particularly NIR 
Spectroscopy. This synergy yields exceptional outcomes, enabling rapid analysis of organic 
compounds while preserving the integrity of the samples. However, it's important to acknowledge 
that this approach is limited to NIR-active compounds, necessitating specialized expertise for optimal 
utilization. The primary application domain revolves around organic compound identification and 
water quality parameter assessment, with an impressive high accuracy of 93% achieved via ANN. This 
underscores the effectiveness of ANN in extracting valuable insights from spectroscopic data. In the 
context of responsible aquaculture practices and environmental conservation, the current study tries 
to help the concerned persons to improve the health of aquatic ecosystems and maintain economic 
gains balance. 

 
7. Conclusion 

 
This comprehensive review thoroughly investigates water quality monitoring systems in 

freshwater aquaculture, with a specific focus on electronic sensor-based and spectroscopy-based 
methods. The analysis delves into the intricacies of NIR spectroscopy, highlighting its role in providing 
detailed insights into water quality parameters. Additionally, the review underscores the crucial 
involvement of machine learning (ML) in both sensor and spectroscopy approaches, emphasizing the 
superiority of ML-driven spectroscopy in leveraging unique spectral features for enhanced 
performance. By emphasizing the potential of ML to significantly boost accuracy in water quality 
monitoring, this review sheds light on the promising future of freshwater aquaculture management. 
Despite acknowledged challenges, the integration of ML with spectroscopy, particularly NIR 
spectrometry, emerges as a game-changer for advancing water quality management in freshwater 
aquaculture. Recognizing the necessity for expertise in handling NIR-active compounds, this review 
aims to be a valuable resource for stakeholders, researchers, and policymakers. It provides insightful 
perspectives to inspire future advancements, fostering a balanced approach that considers economic 
gains alongside environmental conservation in the realm of freshwater aquaculture. 
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