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This paper examines the possible quantum entanglement generated in a coupler system 
consisting of two waveguides, where one waveguide is nonlinear and Raman-active, 
while the other waveguide only undergoes linear processes. The analytical-perturbative 
method is employed to investigate the production of entangled states in the given 
system. The Hillery-Zubairy criterion is employed to examine the possible quantum 
entanglement between the two fundamental pump modes propagating in both 
waveguides. We explore the generation of quantum entanglement under different 
initial conditions and critical design parameters. The simulation results suggest a 
continuous entanglement that remains until a particular distance of interaction is 
reached. As the linear coupling parameter increases, the relationship between the 
maximum reachable distance for entanglement and the degree of entanglement 
becomes more complex. The study reveals that entanglement experiences significant 
fluctuations when there is a substantial frequency mismatch between the modes. 
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1. Introduction 
 

In today's era of rapid technological advancement, relying solely on classical technology is no 
longer adequate. Classical technology has inherent limitations that cannot be avoided. As 
computational tasks become increasingly complex, classical technology is proving to be inefficient in 
solving them [1]. With the rapid advancement of computer technology, classical security measures 
are becoming increasingly inadequate. For example, compared to quantum cryptography, classical 
technology is unable to provide the same level of reliable security features [2]. As technology 
advances rapidly, there is a growing need to replace classical technology with the more superior 
quantum technology. 

One of the fundamental concepts of quantum mechanics that has the potential to impact 
quantum technology is quantum entanglement. Quantum entanglement is the phenomenon in which 
two or more particles are inexplicably interconnected. This connection will persist even if the Second 
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correlated particles are separated by a very great distance. When two particles are entangled, any 
change to one particle will affect the other particle. Quantum entanglement has numerous current 
and potential future applications across various fields. For example, in quantum communication, 
quantum entanglement enables secure communication through quantum key distribution (QKD) [3, 
4]. By encoding information in entangled particles, such as photons, it becomes impossible for an 
eavesdropper to intercept the information without disturbing the entanglement. This has the 
potential to revolutionize cryptography and provide unhackable communication channels. Quantum 
entanglement is also a crucial resource for quantum computers [5]. By entangling qubits, quantum 
computers can perform parallel computations and solve certain problems exponentially faster than 
classical computers [6]. While quantum entanglement holds great promise for these applications, 
many are still in the early stages of development and require significant technological advancements 
before becoming widely available. However, ongoing research in the field of quantum physics 
continues to push for more efficient sources of entangled light. 

Quantum properties of light can be generated in various nonlinear systems, such as Bose-Einstein 
condensate [7] and optical parametric amplifiers [8]. Among these, the nonlinear coupler has caught 
the interest of many researchers due to its advantages as a simple-structured, experimentally 
realizable, and simply integrated device [9, 10]. The standard two-waveguide coupler system is 
essentially two codirectional waveguides placed in close proximity to each other to allow for the 
coupling between the optical field modes via the evanescent field waves. Each waveguide is pumped 
with a single optical mode. Various types of nonlinear couplers have been extensively studied in the 
literature, including three-waveguide couplers [11, 12], four-waveguide couplers [13, 14], and cavity-
assisted nonlinear couplers [15, 16]. Additionally, nonlinear couplers based on different nonlinear 
processes, such as the Kerr effect [17-20] and second harmonic generation [21], have also been 
proposed. 

The Raman effect is one of the most promising methods for generating nonclassical light. The 
Raman process happens as a result of the interaction of light with some solid and is a nonlinear 
scattering process of the third order [22]. As shown in Figure 1(a), there are two possible outcomes 
of this interaction: Stokes Raman scattering and anti-Stokes Raman scattering, both of which involve 
the transfer of energy from light to the solid. When the energy of the radiated light is less than that 
of the incident light, Stokes Raman scattering takes place. When the emitted light's energy is greater 
than the incident light's, an effect known as anti-Stokes Raman scattering occurs. In addition, phonon 
vibrations in materials will be induced by both processes. Quantum opticians have been interested 
in the quantum description of many types of the Raman process in nonlinear media (see, e.g., [23]). 

To the best of our knowledge, the quantum properties of Raman nonlinear couplers remain 
rather limited, with only two published articles providing insights so far. This is likely due to the 
mathematical and numerical rigor required for this type of work. The first study investigates the 
behavior of squeezing and sub-Poissonian photon statistics in a Raman nonlinear coupler composed 
of two waveguides operating via the Raman process [24]. The second study explores the quantum 
Zeno effect in an asymmetric Raman nonlinear coupler configuration, where one waveguide is linear 
while the other employs a nondegenerate hyper-Raman process [25]. The main objective of the 
current study is to explore another fundamental quantum property-quantum entanglement. The 
investigation of entanglement in Raman nonlinear coupler devices represents a domain yet to be 
extensively explored. 

In this article, we look at a two-waveguide coupler system with one nonlinear Raman-active 
waveguide connected to another waveguide with just a linear process. One fundamental coherent 
mode is pumped into each waveguide. When the coherent fundamental mode is pumped into the 
Raman-active waveguide, it generates Raman Stokes, anti-Stokes, and phonon modes (see Figure 
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1(b)). Both waveguide’s fundamental modes are also linearly connected (cross-action coupling) by 
evanescent waves. We will investigate how quantum entanglement is generated in the current 
system under various initial conditions and critical design parameters. For clarity, we shall refer to 
the light mode injected into the Raman-active waveguide as the 'first mode' and the mode inserted 
into the linear waveguide as the 'second mode' throughout this paper. 
 

     
(a)               (b) 

 Fig. 1. (a) Diagram for Raman process (b) Basic diagram of the two-waveguide asymmetric nonlinear coupler 

 
2. Mathematical Description of the System 
 

To investigate the quantum entanglement in the current system, we employ the analytical 
perturbative (AP) method. Sen and Mandal [26] introduced the AP method, which was subsequently 
used to investigate the quantum optical properties of diverse quantum systems (See, e.g., [27]). The 
AP method has demonstrated superior performance in comparison to the standard short-length 
approximation (SLA) method (See, e.g., [26]). The quantum mechanical description of the current 
two-waveguide system can be expressed using the momentum operator shown below [28]. 
 

1 1 1 2 2 2 1 1

1 1 2 1 2 1
   

= + + + + + +

+ + + +

† † † † † † † †

† † † † †

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

b c dG k a a k a a k b b k c c k d d ga b c ga bc

a cd a c d a a a a
                                                      (1) 

 

On the right side of Eq. (1), the term ℏ𝑘1𝑎̂1
†𝑎̂1 + ℏ𝑘2𝑎̂2

†𝑎̂2  account for the pump modes in the 

first and the second waveguide, respectively. The term ℏ𝑘𝑏𝑏̂†𝑏̂ + ℏ𝑘𝑐𝑐̂†𝑐̂ + ℏ𝑘𝑑𝑑̂†𝑑̂ accounts for 
the Stokes mode, the phonon mode, and the anti-Stokes mode, respectively, with kj being the 

wavenumber of each mode. The term ℏ𝑔𝑎̂1𝑏̂†𝑐̂† + ℏ𝑔𝑎̂1
†𝑏̂𝑐̂ represents the Stokes Raman scattering, 

where g is the Stokes nonlinear coefficient that governs this process. Inversely, the term ℏ𝜒𝑎̂1𝑐̂𝑑̂† +

ℏ𝜒𝑎̂1
†𝑐̂†𝑑̂ denotes anti-Stokes Raman scattering, which produces the anti-Raman mode by 

annihilating the pump and phonon modes; the governing parameter for this process is χ (The anti-
Stokes nonlinear coefficient). Finally, the evanescent linear coupling between the fundamental 

modes is expressed by the last term in ℏ𝜅𝑎̂2𝑎̂1
† + ℏ𝜅𝑎̂2

†𝑎̂1 . The strength of this coupling is 
proportional to the evanescent coupling coefficient κ, which is inversely proportional to the 
waveguide separation. 

In the Heisenberg picture, the system is characterized by the spatial evolution of the quantum 
operators while the state vector remains constant. By inserting the momentum operator from Eq. (1) 

into the Heisenberg equation of motion 𝑑𝑎̂𝑗 𝑑𝑧⁄ = (𝑖 ℏ⁄ )[𝑎̂𝑗 , 𝐺̂], we arrive at the following set of 

coupled differential equations describing the spatial evolution of the quantum operators 

𝑎̂1, 𝑎̂2, 𝑏̂, 𝑐̂, 𝑎𝑛𝑑 𝑑̂.  
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( )1
1 1 2

 = + + +†
ˆ ˆ ˆˆ ˆ ˆ ˆ

da
i k a gbc c d a

dz            (2) 
 

( )2
2 2 1

= +
ˆ

ˆ ˆ
da

i k a a
dz              (3) 

 

( )1
= + †

ˆ
ˆ ˆ ˆ

b

db
i k b ga c

dz              (4) 
 

( )1 1
= + +† †ˆ ˆ ˆˆ ˆ ˆ

c

dc
i k c ga b a d

dz             (5) 
 

( )1
= +

ˆ
ˆ ˆ ˆ

d

dd
i k d a c

dz              (6) 
 

In the AP method, the solution of these equations is assumed in the form of the Baker-Campbell-

Hausdorff (BCH) formula, 𝑎̂𝑗(𝑧) = 𝑒𝑥𝑝 [
𝑖𝑧𝐺̂(𝑧)

ℏ
] 𝑎̂𝑗(0) 𝑒𝑥𝑝 [

−𝑖𝑧𝐺̂(𝑧)

ℏ
], which can be expanded as:  

 

( ) ( ) ( )
2

2

1
0 0 0

2
    = + − +    

ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ...j j j j

iz z
a a G a G G a

         (7) 
 

In the traditional short-length approximation (SLA) method, the commutator elements in Eq. (7) 
are evaluated, and a closed analytical solution is obtained for each operator, which contains terms 
up to z2 only. This solution disregards numerous physical system insights [29]. Alternatively, the AP 
method proposed a more general solution of the form. 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 3 4
0 0 0 0 0 0= + + + †ˆ ˆˆ ˆ ˆ ˆ ˆa z A z a A z a A z b c A z c d

       (8) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 1 3 4
0 0 0 0 0 0= + + + †ˆ ˆˆ ˆ ˆ ˆ ˆa z B z a B z a B z b c B z c d

        (9) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 1
0 0 0 0 0= + +† †ˆ ˆ ˆ ˆ ˆ ˆb z P z b P z a c P z a c

                  (10) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 2 4 1 5 1
0 0 0 0 0 0 0 0 0= + + + +† † † †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆc z Q z c Q z a b Q z a d Q z a b Q z a d

              (11) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 1
0 0 0 0 0= + +ˆ ˆ ˆ ˆ ˆ ˆd z R z d R z a c R z a c

                    (12) 
 

The spatial evolution of the operators 𝑎̂1(𝑧), 𝑎̂2(𝑧), 𝑏̂(𝑧), 𝑐̂(𝑧) along the z-axis is described by the 
previous solutions (8)-(12) stated in terms of the unknown spatial-dependent coefficients 𝐴𝑘(𝑧), 
𝐵𝑘(𝑧), 𝑃𝑘(𝑧), 𝑄𝑘(𝑧) and 𝑅𝑘(𝑧) which assume to contain all z terms ranging from z0 to z∞. Substituting 
the operator solutions Eqs. (8)-(12) into each equation of motion in the set (2)-(6) and gathering 
similar terms from both sides produces a set of differential equations that characterize the spatial 
evolution of these unknown coefficients. 
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( )1
1 1 2

= +
dA

i k A B
dz                        (13) 

 

( )2
1 2 1

= +
dA

i k A B
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= + +
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= +
dB
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i k B A
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dB
i k B A
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2 4 4

= +
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i k B A
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1
1
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dP
ik P

dz                         (21) 
 

( )2
2 2 1

= + *
b

dP
i k P gA Q

dz                        (22) 
 

( )3
3 1 1

= + *
b

dP
i k P gAQ

dz                       (23)
          

1
1

= c

dQ
ik Q

dz                         (24) 
 

( )2
2 2 1

= + *
c

dQ
i k Q gA P

dz                        (25) 
 

( )3

3 2 1
= + *

c

dQ
i k Q A R
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( )4
4 1 1

= + *
c

dQ
i k Q gA P

dz                       (27) 

( )5

5 1 1
= + *

c

dQ
i k Q A R

dz                       (28) 
 

1
1

= d

dR
ik R

dz                         (29) 
 

( )2
2 2 1

= +d

dR
i k R A Q

dz                       (30) 
 

( )3

3 1 1
= +d

dR
i k R AQ

dz                       (31) 
 
2.1. Criteria for Entanglement 
 

Entanglement is defined by a set of criteria that determine its properties. These criteria assist in 
defining and identifying entanglement in quantum systems, and they have been tested in quantum 
physics experiments. In the literature, there are approximately twelve basic entanglement criteria. 
For entanglement detection, each criterion takes advantage of a distinct property of entangled 
systems, such as superposition, nonseparability, measurement correlations, entropy, and Bell's 
Inequality [30, 31]. Here, we will utilize the Hillery-Zubairy criteria to detect entanglement in the 
current system. These criteria were proposed by Hillery and Zubairy in 2006 [32] and are particularly 
applicable to systems with continuous variables, such as two-mode harmonic oscillators. The first 
criterion (HZ-I) tests the negativity, while the second (HZ-II) tests the nonseparability of the system. 
The HZ criteria have been employed to identify the entanglement in various quantum systems such 
as two-level atomic medium and optical nonlinear coupler (See e.g., [33]). Here we will utilize the HZ-
I criterion to determine the presence of entanglement generated between the two fundamental 
modes propagating in both waveguides. In this case, the HZ-I criterion can be expressed as follows. 
 

2

1 2 1 2
0 = − †ˆ ˆ ˆ ˆ

I N N a a                                                                                                                                   (32) 

 

In the previous expression,  I represents the entanglement and 𝑁̂ = 𝑎̂†𝑎̂ is the number operator. 

Substituting the operator solutions from Eqs. (8) and (9) into the Hillery-Zubairy criterion Eq. (32) 
results in the following formula for quantum entanglement between both fundamental modes given 
in terms of the previously defined spatial-dependent coefficients 𝐴𝑘(𝑧), 𝐵𝑘(𝑧), 𝑃𝑘(𝑧), 𝑄𝑘(𝑧) and 
𝑅𝑘(𝑧). 
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− − − − * *

2

* * * *

2 4 1 2 1

c d

c dA A B B

 

  −                 (33) 
  

In the former expression (Eq. 33), 𝛼𝑗 is the classical equivalent of the quantum operators 𝑎̂𝑗(0) 

at their initial state, i.e., at z = 0; it is the initial complex amplitude of a mode in a coherent state. Eq. 
33 describes the evolution of the entanglement between the fundamental modes in the current 
Raman coupler system as a function of the interaction distance inside the waveguides.  
 
3. Results  
 

The numerical procedure consists of two major steps: (i) solving the coupled set of Eqs. (13)-(31) 
simultaneously to obtain numerical values of the spatial-dependent coefficients 𝐴𝑘(𝑧), 𝐵𝑘(𝑧), 𝑃𝑘(𝑧), 
𝑄𝑘(𝑧) and 𝑅𝑘(𝑧), and (ii) evaluating the entanglement using the criteria given by Eq. (33). However, 
from the numerical simulation perspective, putting the relevant equations in dimensionless form 
makes it easier to acquire numerical solutions. Here, we can scale the coupled system Eqs. (13)-(31) 
by dividing both sides of each equation by the wavenumber of the first mode k1. Thus, a new set of 

differential equations with these dimensionless parameters 𝑘̃1 =  𝑘1  𝑘1⁄ , 𝑘̃2 =  𝑘2  𝑘1⁄ , 𝑘̃𝑏 =

 𝑘𝑏  𝑘1⁄ , 𝑘̃𝑐 =  𝑘𝑐  𝑘1⁄ , 𝑘̃𝑑 =  𝑘𝑑  𝑘1⁄ , 𝑔̃ = 𝑔 𝑘1⁄ , 𝜒̃ = 𝜒 𝑘1⁄  and 𝜅̃ = 𝜅 𝑘1⁄  are obtained. In this case, 
the system evolves as a function of a scaled spatial distance given by 𝑧̃ = 𝑘1𝑧. 

Figure 2 depicts the entanglement as a function of scaled distance in the stimulated Raman 
process, where the starting amplitude of each mode is nonzero. For the spontaneous process, where 
𝛼𝑏 = 𝛼𝑐 = 𝛼𝑑 = 0, the same outcome as in Figure 2 is produced. Hence it is not presented here. The 

input parameters are 𝛼1 = 10, 𝛼2 = 10, 𝛼𝑏 = 8, 𝛼𝑐 = 0.01, 𝛼𝑑 = 9, 𝑘̃1 = 10, 𝑘̃2 = 10, 𝑘̃𝑏 = 10, 

𝑘̃𝑐 = 0.00001, 𝑘̃𝑑 = 10, 𝑔̃ = 𝜒̃ = 0.0001 and 𝜅̃ = 0.8. As can be seen in Figure 2, there is evidence 
of entanglement up to a value of 𝑧̃  ≈  1.5. After that value, there is no indication of entanglement, 
and the graph continues to oscillate within the positive zone. 
 

 
Fig. 2. Entanglement as a function of scaled distance 𝑧̃ in the case  
of the stimulated Raman process 

 
When waveguides are in close proximity, the evanescent fields associated with the guided modes 

can extend beyond the boundaries of their respective waveguides. This can result in an overlap of 
the evanescent fields, leading to a coupling between the modes. The strength of mode coupling 
between neighboring waveguides depends on various factors, including the distance between the 
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waveguides, their geometries, the characteristics of the modes, and the spatial extent of the 
evanescent fields. In this model, the strength of this kind of coupling is quantified by the coefficient 
𝜅̃. The influence of linear coupling coefficient 𝜅̃ on the generated entangled states is depicted in 
Figure 3. For this purpose, the spatial evolution of entanglement is depicted for 𝜅̃ = 0.01 in Figure 
3(a), 𝜅̃ = 0.5 in Figure 3(b), and 𝜅̃ = 0.7 in Figure 3(c). We observe that the range of entanglement 
between both modes along the distance 𝑧̃ reduces with increasing the value of the linear coupling 
coefficient 𝜅̃. When 𝜅̃ = 0.01, 0.5, and 0.7, the entangled states evolve approximately up to a scaled 
distance of 𝑧̃ = 2.629, 𝑧̃ = 2.177, and 𝑧̃ = 1.696, respectively. On the other hand, when the linear 
coupling becomes stronger, the degree of entanglement (The negativity) becomes more significant. 
It should be noted that the mode coupling between adjacent waveguides could be controlled by 
Designing waveguide structures with appropriate spacing, isolation, and coupling mechanisms (see, 
e.g., [34, 35]). 

 

  
(a)             (b) 

 

 
(c) 

Fig. 3. Entanglement as a function of scaled distance 𝑧̃ at different mode coupling constants. Other parameters 
remain as in Figure 2 (a) 𝜅̃ = 0.01, (b) 𝜅̃ = 0.5 (c) 𝜅̃ = 0.7 

 
To investigate the effect of frequency-mismatching between the propagating modes on 

entanglement, we fixed the wavenumber of the first pump mode at 𝑘̃1 = 10, while the wavenumber 

for the second pump mode 𝑘̃2 is increased gradually. For this purpose, the spatial evolution of 

entanglement is depicted for three different values of mismatching; Figure 4(a) for 𝛥𝑘̃ = 𝑘̃2 − 𝑘̃1 =

12 − 10 = 2, Figure 4(b) for 𝛥𝑘̃ = 𝑘̃2 − 𝑘̃1 = 14 − 10 = 4, and Figure 4(c) for  𝛥𝑘̃ = 𝑘̃2 − 𝑘̃1 =
23 − 10 = 13. In these three figures, we observe a gradual improvement in the range of 
entanglement and its frequency. In the usual situation, where two modes coexist in the same 
waveguide, frequency-mismatched modes can interfere with each other. Constructive or destructive 
interference effects can lead to changes in the amplitude or the phase of the modes. This kind of 
unwanted mode coupling can lead to cross-talk, signal degradation, or loss in performance.  

However, in this case of a directional coupler, the two modes are in different waveguides but 
placed close to each other, and the light is coupled to facilitate efficient energy transfer. When we 
increase the frequency of a propagating light mode, the wavelength decreases, and the energy 
increase since the energy of a photon is directly proportional to its frequency. Thus, fixing the 
frequency of one mode while increasing the frequency of the other mode leads to a stronger crossing 
coupling. As the frequency of one mode increases, while the other remains fixed, the energy is 
gradually transferred to the mode with the increasing frequency. Initially, when the frequency 
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difference between the two modes is small, the energy transfer is minimal (Figure 4(a)), and each 
mode predominantly propagates in its respective waveguide without significant interaction. 
However, as the frequency difference increases, the coupling between the modes becomes more 
pronounced, leading to a transfer of energy between the waveguides (Figure 4(b) and 4(c)). The 
phenomenon of mode coupling in a directional coupler has applications in various fields, such as 
integrated optics, optical communications, and photonic circuits, where the control and 
manipulation of light propagation paths are essential. 
 

   
(a)           (b) 

 

 
(c) 

Fig. 4. Generated entanglement in case of frequency mismatching. The first mode wavenumber is fixed at 

𝑘̃1 = 10 while the second mode wavenumber 𝑘̃2 is increased. Other parameters remain as in Figure 2 

(a) 𝑘̃2 = 12, (b) 𝑘̃2 = 14 and (c) 𝑘̃2 = 23  

 
4. Conclusion 

 
In conclusion, the analytical-perturbative method has been utilized to study the generation of 

entangled states in the Raman nonlinear coupler. The Heisenberg equation of motion was used to 
describe the evolution of the momentum operator of the current system. The solution of the system 
is obtained by utilizing the weak pump field approximation, which disregards terms with higher 
power of the nonlinear coefficient beyond the second order. The Hillery-Zubairy criterion is used to 
evaluate the possible quantum entanglement. The study has been centred around the establishment 
of entanglement between the two fundamental pump modes in the waveguides. The findings 
indicate a consistent entanglement that persists until reaching a specific interaction distance. As the 
linear coupling parameter increases, the maximum reachable distance for entanglement decreases, 
even though the degree of entanglement improves. It is observed that there is a rapid fluctuation of 
entanglement when there is a high value of frequency mismatching between both modes. 
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