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ABSTRACT

Chest radiograph (CXR) are essential diagnostic tools to visualize the thoracic cavity's
anatomical structures, particularly the lungs. However, the interpretability of these
radiographs can be compromised by the presence of overlying bones, such as the ribs
and clavicles, which may obstruct the view of the lung regions. Recently, the bone
suppression technique applied to CXR has shown promise in aiding radiologists and
computer-aided diagnosis systems in detecting lung diseases. Numerous studies have
indicated that employing bone-suppressed images (BSIs) provides clinical evidence of
enhancing diagnostic accuracy and confidence. This systematic review paper provides
a recent of CXR bone suppression techniques and highlights their respective results.
The preference for systematic analysis over traditional literature review stems from
its capability to mitigate research bias. Recently, researchers increasingly favour using
deep learning methodology to suppress bone structures. Implementing these
techniques opens a pathway for various applications, particularly in lung nodule
detection or pathology assessment through radiological analysis of CXR.

Keywords:
Chest radiograph; Bone suppression;
Image segmentation; Deep learning

1. Introduction

Lung cancer remains the predominant cause of cancer-related mortalities worldwide [1-3]. A
significant challenge contributing to this grim statistic is the early detection of lung cancer nodules,
significantly when they overlap with other thoracic structures in radiographic images. Chest
radiographs (CXR), the frontline diagnostic tool for lung anomalies, can sometimes obscure nodules
due to the overlay of bony structures like ribs and clavicles [4,5]. Therefore, enhancing nodule
visibility on CXR is crucial for accurate and early detection.

Historically, dual-energy subtraction (DES) has been employed to separate bone and soft tissue
images [6,7]. Still, with the exponential growth in computational power and the advent of artificial
intelligence (AI), new methodologies leveraging deep learning, and particularly generative
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adversarial network (GAN), have emerged [8]. These techniques aim to suppress bone shadows,
accentuating the nodules and providing a clearer picture for radiologists and clinicians [9].

Moreover, the integration of AI in medical imaging has shown potential not only in enhancing
image quality but also in predictive analysis, adding a layer of precision to early diagnosis [10,11].
The incorporation of advanced algorithms in radiography also hints at a future where technology
could possibly assist, if not partially replace, certain diagnostic interpretations, ensuring quicker and
more accurate results [12].

This systematic review addresses critical gaps in the interpretability of CXR, which are often
compromised by overlying bones such as ribs and clavicles that obscure lung regions and hinder
disease detection. The review consolidates recent advancements in bone suppression techniques,
particularly emphasizing the role of deep learning methodologies, which have shown promise in
enhancing diagnostic accuracy and confidence. Drawing from peer-reviewed articles, we explore
the underlying principles of these methods, evaluate their performance metrics, and provide
insights into their real-world applicability. The ultimate goal is to offer readers a comprehensive
understanding of current bone suppression techniques, guiding future research and clinical
applications in chest radiography.

2. Literature Search

The literature review for this study is based on the PRISMA technique, a standard for systematic
reviews, ensuring comprehensive and accurate results [13,14]. Focusing on bone suppression
techniques in chest radiographs, we used two reputable databases: Web of Science and Scopus.
Searches were initiated with keywords like "chest," "rib," "suppress," "radio," and "x-ray.", and
primary articles' references were checked for more relevant studies.

Titles and abstracts were then carefully screened, discarding unrelated papers. Eligibility was
determined by examining full texts for relevance to bone suppression, research methods, peer-
reviewed publication, and significant contributions to the field. From eligible papers, data on
methodologies, outcomes, and findings concerning bone suppression techniques in chest
radiographs were extracted. This data was analysed to discern patterns, assess techniques' efficacy,
and identify research gaps. Notably, despite the vastness of our chosen databases, there is a chance
of missing some studies, and potential publication bias could influence results.

2.1 Identification

The systematic review process involves three primary steps for choosing appropriate
publications for consideration. First, we identified relevant keywords and looked for similar terms
by referencing glossaries, wordlists, information databases, and prior research. After consolidating
these terms, we formulated search queries for the Web of Science and Scopus databases (as listed
in Table 1). Consequently, we sourced 146 papers from these databases in the initial phase of our
systematic review.

Table 1
The search string
Scopus TITLE-ABS-KEY (chest* AND rib* AND suppress* AND radio* OR x-ray) AND PUBYEAR > 2018 AND

PUBYEAR < 2024 AND (LIMIT-TO (PUBSTAGE, "final”)) AND (LIMIT-TO (SRCTYPE, "j”)) AND (LIMIT-TO
(DOCTYPE, "ar”)) AND (LIMIT-TO (LANGUAGE, "English" ))

Web of
Science

TS= (chest* AND rib* AND suppress* AND (radio* OR x-ray*))
Refined by: || Publication Years: 2019-2023|| Document Types: Article || Languages: English ||
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2.2 Screening

In the preliminary screening phase, duplicated papers were removed. The study's initial phase
discarded 88 articles, while the subsequent phase assessed 23 papers, considering the researchers'
specific inclusion and exclusion standards (refer to Table 2). Research articles, being a primary
source of actionable insights, were prioritized. The scope encompassed systematic reviews, other
reviews, meta-synthesis, meta-analyses, books, book series, chapters, and conference papers not
featured in the recent research. The assessment only considered works written in English. Notably,
this strategy was geared towards the timeframe spanning 2019 to 2023.

Table 2
The selection criterion is searching
Criterion Inclusion Exclusion
Language English Non-English
Timeline / Years 2019 – 2023 < 2019
Literature type Journal (Article) Conference, Book, Review
Publication Stage Final In Press

2.3 Eligibility

In the eligibility phase, which is the third level, 42 articles were considered. Each article's title
and key content were meticulously examined during this phase to ensure alignment with the
study's inclusion criteria and research goals. This led to the exclusion of 19 articles as their titles and
abstracts does not have significant relevance to the objective of this study. Consequently, 23
articles were retained for further evaluation. Figure 1 depicted the sample of radiograph obtained
from the retained articles.

(a) (b)
Fig. 1. Sample of chest radiograph image, (a) original and (b) predicted bone
suppressed image [15]

2.4 Data Abstraction and Analysis

This research adopted an integrative analysis as a key evaluation method to explore and merge
diverse research methodologies, including quantitative, qualitative, and mixed methods. The
research aimed to uncover pertinent main and sub-topics. Gathering data marked the starting point
for thematic evolution. As illustrated in Figure 2, the researcher delved deeply into 23 selected
papers to find statements or content aligning with the research's themes. Subsequently, the
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researcher examined the bone suppression technique, aiming to discern and curate essential
categories during the next phase. After that, critical studies on CXR bone suppression were
scrutinized. The methods employed and the findings of these studies were investigated. Lastly,
themes were carved out based on the gathered evidence within the scope of this research.

Fig. 2. Flow diagram of the proposed searching study

3. Results and Findings

Past researchers have explored numerous methodologies within the domain of CXR bone
suppression. These methods have been summarized to facilitate a more straightforward
comparison of the study outcomes. The summarization of these approaches and their
corresponding results is presented in Table 3, offering an overview of the current state of CXR bone
suppression techniques.

3.1 Clinical Relevance of Bone Suppression

Bone suppression techniques in CXR have garnered considerable attention in recent medical
imaging studies. The primary objective of these methods is to refine the visibility of lung tissue by
suppressing or removing the overlaying bony structures, which in turn aids in detecting subtle lung
lesions and nodules. This enhanced visibility is not just a mere technological advancement; its
clinical implications are profound. Several studies, including those by Zarshenas et al., [16], and
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Chen et al., [17], vouch for bone suppression's pivotal role in elevating the clarity of lung lesions.
These holds promise for enhanced diagnostic accuracy for radiologists and bolsters the reliability of
computer-aided diagnosis systems.

Building on this foundation, Hong et al., [18] further delved into the efficacy of bone
suppression images (BSI) for detecting these subtle abnormalities. Their findings were striking.
Across the board, regardless of the expertise level of the reader, the use of BSI amplified diagnostic
performance. The implications were particularly evident for junior radiology residents and non-
radiology clinicians. The discernible difference in their detection capabilities when using BSI
underscores its potential to level the playing field, bridging the knowledge chasm between
seasoned experts and those still climbing the learning curve.

3.2 Technological Strategies for Bone Suppression

Modern technological advancements have led to the development of various strategies to
enhance the clarity of lung tissue obscured by overlaying bony structures. From traditional
techniques like dual-energy subtraction (DES) imaging to innovative deep learning methods, this
section delves into the myriads of technological solutions designed to optimize the bone
suppression process, thus improving diagnostic accuracy.

3.2.1 Dual-energy subtraction (DES) imaging

A widely recognized method for bone suppression is dual-energy subtraction (DES) imaging. This
technique capitalizes on the differential absorption properties of bones and soft tissues under
diverse X-ray energies, facilitating the production of markedly clear soft tissue images [17,19]. Do et
al., studies [20] provides an enhancement to DES, wherein an automatic algorithm has been
devised that precisely discerns the factors of bone and soft tissue crucial for subtraction. Integral to
this innovation is the harmonization of the window/level ratio with radiographic histogram analysis.

Further enriching the understanding of radiography techniques, Takagi S. et al., [21,22] have
delved into the relationship between tube voltage and image quality, particularly in the context of
bone-suppression. Their findings indicate that applying lower tube voltage to bone-suppressed
chest radiographs not only boosts contrast and contrast-to-noise ratio (CNR), especially in regions
where the lung fields overlap with ribs, but it also significantly reduces the patient's radiation
exposure. More compellingly, even in areas devoid of rib overlap, bone-suppression techniques
have showcased an uptick in both contrast and CNR values.

Collectively, these insights underscore the burgeoning potential of bone-suppression
techniques, with a notable emphasis on the synergy between DES imaging and tube voltage
adjustments. Such advancements are pivotal for the radiography domain, aligning improved
imaging fidelity with patient safety considerations.

3.2.2 Deep learning approaches

In the realm of bone suppression technologies, several methodologies stand out. Essential
techniques, for instance, have been highlighted by Chen et al., [17], who introduced the wavelet-
CCN. This cascaded convolutional network operates in the wavelet domain, specifically targeting
bone structures in CXR. Complementing this, Matsubara et al., [23] put forth a convolutional neural
filter (CNF) with an impressive 89.2 % bone suppression rate.
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The domain has also seen innovative GAN approaches. Zhou et al., [24] championed using GAN,
integrating it with conditional GAN that employs dilated convolutions. Following a different tangent,
Rani et al., [25] crafted the spatial feature and resolution maximization (SFRM) GAN, accentuating
image quality and spatial feature retention. Han et al., [26] further pushed the envelope with their
GAN-based model, RSGAN, which leans on unpaired CT images to suppress ribs in CXR.

Pivoting to disease-specific models, Rajaraman et al., [15] designed a deep-learning model that
aids tuberculosis detection in CXR. A subsequent study by Rajaraman et al., [27] unveiled DeBoNet,
an ensemble of convolutional neural network models, demonstrating enhanced COVID-19
detection rates when trained on bone-suppressed images. Another interesting study by Bae et al.,
[9] explored the potential of using a GAN-based deep learning technique for bone suppression
compared to the traditional DES technique. The results were promising, with the GAN-based bone
suppression showing comparable performance to the DES method. Both techniques were superior
to standard CXR, especially when detecting nodules overlaid by bones or in the upper/middle lung
zones.

The field has also witnessed specialized techniques, with Li et al., [28] revealing a nuanced
coarse-to-fine method that draws on structural priors from unpaired CT images for CXR bone
suppression. Both Cho et al., [29] and Liu et al., [30] have made unique contributions; the former
introduced a method centred on digitally reconstructed radiographs (DRRs) and a U-Net model for
paediatric CXR, while the latter suggested a two-stage distillation learning strategy merged with a
gradient correction approach for lateral CXR.

Xu et al., [31] uniquely melded physical models with machine learning (ML), formulating a
workflow that introduces the densely connected network, SADXNet, for rapid rib suppression.
Finally, in preprocessing, Horry et al., [32] devised a pipeline to debias CXR images, merging
histogram equalization with CNN to reduce bone noise.

3.3 Efficacy and Advantages of Emerging Techniques

In radiology, particularly with CXR, there has been a consistent emphasis on the importance of
advanced bone suppression techniques over traditional methods. Delving into specific
advancements and findings, Chen et al., [17] wavelet-CCN model stands out for its adaptability in
processing CXR across various X-ray machines, showcasing exemplary performance metrics.
Similarly, the CNF model, as reported by Matsubara et al., [23], boasts a bone suppression rate. At
the same time, DeBoNet's excellence was delineated in terms of PSNR and MS-SSIM by
Rajaraman et al., [27].

Moving towards preserving image quality, Zhou et al., [24] accentuated the role of contextual
data in achieving perceptual improvements. In a parallel vein, Rani et al., [25] SFRM GAN adeptly
balances the dual objectives of bone suppression and spatial quality preservation, ensuring images
retain their inherent quality. Liu et al., [30] further contributed to this arena with their method,
which produces captivating soft-tissue visuals for lateral CXR, rivalling the clarity of authentic DES
imaging. Beyond the techniques, there is also a significant impact on the practicalities of diagnostics.

Li et al., [28] approach surpasses its unsupervised CXR bone suppression counterparts, notably
reducing false-negative diagnoses among radiologists. This emphasis on improved diagnostics is
echoed by Rajaraman et al. [15], who noted enhanced detection rates of TB-consistent findings
using bone-suppressed CXR. Furthermore, their DeBoNet ensemble model demonstrated
heightened sensitivity in identifying COVID-19-related abnormalities. This focus on detection
accuracy is supported by the works of Xu et al., [31] and Kanade and Helonde [33], who brought
forward innovations reducing false positives in lung-related diagnostics and amplifying nodule
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visibility. In summary, it is abundantly clear that the future of bone suppression in CXR is tightly
intertwined with the promises of AI, especially the capabilities of deep learning models.

3.4 Other AI Potential uses Beyond Bone Suppression

While bone suppression in CXRs has been a primary focus, as bones overlapping with soft
tissues can hinder interpretation, the advancements in AI have paved the way for more diverse
applications beyond just bone suppression. With the progression of deep learning, there has been a
shift in how these technologies are employed in radiology. Liu Y. et al., [34] not only used a fully
convolutional DenseNet (FC-DenseNet) for delineating various rib structures but also highlighted
the utility of such networks in improving diagnostic clarity. Moreover, Singh A. et al., [35]
innovatively combined elements from Deeplabv3+ and U-net, indicating that deep learning can be
versatile in its application for segmenting both normal and abnormal CXRs.

Zhang D et al., [36] introduced the CAMS-Net, which showcases how AI can be optimized for
specific challenges, like rib segmentation in low-contrast areas. Their attention-driven modules
emphasize the potential for improved segmentation and hint at how such innovations can be
integrated into diverse networks.

Bosdelekidis et al., [37] brought a different perspective to the table. Instead of merely
suppressing bone structures, they emphasized how AI can quickly identify key bone points, assisting
in lung field segmentation. Their introduction of a deformation-tolerant procedure demonstrates
the expansive potential of AI in adapting to varied and complex challenges beyond conventional
tasks.

Table 3
Summary of prevailing works
Author
(Year)

Dataset BS-Algorithm Figure of Merit Findings

Liu et al.,
[19]

- DES CXR from
Nanfang Hospital,
Guangzhou, China

- CXR from JSRT

- Hierarchically
dense matching
- Bayesian maximum
a posteriori (MAP)

- RMSE The proposed method performs better
than the Locally Weighted Regression.
The images produced are comparable to
a real DES system only by using one
chest radiograph input. The model tested
on the JSRT dataset and successfully
suppressed the bone structure.

Zarshenas et
al., [16]

DES CXR from The
University of
Chicago Medical
Centre.

ASOFS-NNC
(anatomy-specific,
orientation
frequency-specific
deep neural network
convolution) scheme

- SSIM
- PSNR

The scheme has higher (t−test; P< 0.01)
similarity and outperformed the state-of-
the-art technique (AS MTANN) in terms
of SSIM and PSNR. It maintains nodule
visibility and separates bones, improving
radiographic analysis.

Liu et al.,
[34]

- DES CXR from
Nanfang Hospital,
Guangzhou, China
- CXR from JSRT
- NIH Chest X-
ray14

FC-DenseNet - Mean
boundary
distance
(MBD)
- Recall
- Precision
- F-measure

The FC-DenseNet-based deep learning
method automatically delineates ribs
and clavicles in CXRs. It outperformed
other techniques, with notable precision,
recall, and F-measure scores.
Demonstrated robustness across
multiple databases, it also aids in
suppressing bone components.

Chen et al.,
[17]

DES CXR from at
Nanfang Hospital,

Cascaded
convolutional

- RMAE
- PSNR

Wavelet-CCN outperforming gradient-
domain CamsNet. Utilizing Haar wavelet,
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Guangzhou, China. network model in
the wavelet domain
(Wavelet-CCN)

- SSIM
- Bone
suppression
ratio (BSR)

it produces high-quality soft-tissue
images and has a higher average PSNR
(39.4 dB) and SSIM (0.977) compared to
CamsNet.

Takagi et al.,
[21]

In house
radiograph
obtained using
Fujifilm DR-ID
1200

- Radiograph
processed using
ClearRead BS
software to produce
BS image
- Chest model and
fake 12-mm nodule
tested under four
tube power levels of
X-rays.

- Contrast
- Contrast-to-
Noise Ratio
(CNR)

In bone-suppressed chest radiographs,
dense nodules overlapping ribs have
better contrast and CNR with lower tube
voltage. Significant contrast difference
exists between 70 kVp and 90 kVp in
non-overlapping areas.

Takagi et al.,
[22]

In house
radiograph
obtained using
Fujifilm DR-ID
1200

- Radiograph
processed using
ClearRead BS
software to produce
BS image
-Chest model and
fake 12-mm tested
under four entrance
surface dose (ESD)
conditions

- Contrast
- Contrast-to-
Noise Ratio
(CNR)

Using the shortest exposure time and
lowest tube voltage without increasing
artifacts and noise can enhance bone-
suppressed image quality and reduce
patient dose. In non-rib overlapping
areas, bone-suppression significantly
improved contrast and CNR values,
especially at 70 kVp, with no noticeable
value decrease between ESDs of 0.3 and
0.1 mGy.

Matsubara
et al., [23]

- ChestX-ray8 from
NIH
- CXR from JSRT

Convolutional
Neural Filter (CNF)

- BSR
- PSNR
- SSIM

CNF with six convolutional layers
achieves 89.2% bone suppression
accuracy. Compared to the conventional
method (MTANN), the method
suppresses all bone components.

Zhou et al.,
[24]

- CXR from JSRT
- DES of JSRT from
Kaggle

Conditional
Generative
Adversarial Network
(cGAN)

- PSNR
- SSIM
- NMSE

The cGAN framework demonstrates
exceptional bone-suppressed image
quality using a relatively small training
set. The proposed method outperforms
Auto-Encoder, Pix2Pix, Pix2Pix-wgangp,
and Pix2Pix-MTdG models.

Li et al., [28] - CT volumes from
LIDC-IDRI
- CXR from
Shenzhen hospital
- Chest-14

-LoG Transformation
- CycleGAN
- Domain
Adaptation
- Histogram
Match

- PSNR,
- MAE
- MSE
- Weber
Contrast

The proposed method surpasses state-
of-the-art CXR bone suppression
techniques (U-Net, CycleGAN, Blind
Signal Separation, and DecGAN)
regarding image quality and lung disease
classification, reducing false-positive
misdiagnoses and reading difficulty.

Bosdelekidis
et al., [37]

- Montgomery
CXR
- JSRT CXR

- The Contrast
Limited Adaptive
Histogram
Equalization (CLAHE)
- Hough Line
Transform

- Jaccard
similarity
coefficient
- Dice
similarity
coefficient
(DSC)
- Average
Contour
Distance

A rapid identification of bone points in
the lung area aids in lung field
segmentation without suppressing bone
structures. The introduced method
effectively handles other bone
interferences, proves robust against lung
deformations, and achieves a Dice
similarity score of 0.92 on a benchmark
dataset. Bone seed points consistently
mark high-quality lung areas irrespective
of shape and abnormalities.

Rajaraman
et al., [15]

- JSRT CXR
- NIH–CC–DES CXR
- Shenzhen TB CXR

- Residual network
(ResNet)

- MAE
- PSNR
- SSIM

The proposed model (ResNet) has bone
suppression and achieves a PSNR of
34.07 dB and MS-SSIM of 0.98. It
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- Montgomery TB
CXR
- RSNA CXR
- Paediatric
pneumonia CXR

- MS–SSIM successfully suppresses bony structures
in TB-related CXR datasets. Compared to
other algorithm methods conducted in
the study, ResNet performs best.

Rajaraman
et al., [27]

- COVID-19 CXR
- RSNA CXR
- NIH-CC-DES

- DeBoNet - MS-SSIM
- PSNR
- SSIM
- Mixed loss

The proposed DeBoNet outperforms
most models with PSNR
(36.7977±1.6207) and MS-SSIM
(0.9848±0.0073). However, the FPN
model utilizing the EfficientNet-B0
encoder backbone exhibited the best
bone suppression performance, trailed
by the FPN model using ResNet-18 and
the U-Net employing ResNet-18 as the
encoder backbone.

Singh et al.,
[35]

In-house dataset
produced by
radiologist from
Christian Medical
College Vellore,
India

- Combination of U-
Net and Deeplab
v3+ network

- DSC
- Jaccard index
-Pixel
classification
accuracy
- Sensitivity
- Specificity

A combined approach using Deeplabv3+
and U-net techniques offers enhanced
bone segmentation in chest X-rays,
including abnormal cases. Tested on a
diverse dataset, this method shows
superior bone detection and
segmentation performance.

Rani et al.,
[25]

- CXR from JSRT Spatial Feature and
Resolution
Maximization
(SFRM) GAN

- PSNR
- NMSE
- SSIM
- Entropy
- BRISQUE
Score
- Laplace
Variance

The SFRM-GAN achieves a mean PSNR of
43.59 dB, mean NMSE of 0.00025, mean
SSIM of 0.989, and mean entropy of
0.454 bits/pixel on a test set of 100
images. The model effectively balances
bone suppression and information
retention, improving spatial features and
image quality. The combination of
specific hyperparameters offers a
suitable trade-off. SFRM-GAN
significantly outperforms Pix2Pix STdG.

Han et al.,
[26]

- CT volumes from
LIDC-IDRI
- CT volumes from
2017 and 2019
TianChi AI
Competition for
Healthcare
- CXR from TBX11K
- CXR from chest-
14
- CXR from
Montgomery
County
- CXR from
Shenzhen Hospital

Rib Suppression
(RS) GAN

- Weber
Contrast
- Learned
Perceptual
Image Patch
Similarity
(LPIPS)
- PSNR
- SSIM
- MAE

RSGAN outperforms state-of-the-art
methods U-Net DRR, U-Net Cycle, and
Li et al., in rib suppression, enhancing
image quality. Combining CXR with rib-
suppressed results improves lung disease
classification and tuberculosis detection.
The approach effectively retains
anatomical details and eliminates rib
residues, enhancing the accuracy and
reliability of CXR-based diagnosis,
particularly for pulmonary diseases.

Cho et al.,
[29]

- CT dataset from
seven multi-
centres by the
Korean
obstructive lung
disease cohort
study (2005–2015)
-CXR and CTs from

U-Net based
approach

- PSNR
- RMAE
- SSIM

The developed bone suppression
method preserves soft-tissue pixel
intensity while effectively subtracting
bones. Expert radiologists evaluated the
efficacy of BSIs using a rating scale from
1 to 5. The achieved outcome of 3.31 ±
0.48 suggests that the BSIs exhibit
consistent bone removal, albeit with
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Asian Medical
Centre (AMC)
dataset (2008 -
2020)
- JSRT CXR

subtle remaining bone shadows.

Kanade et
al., [33]

- JSRT CXR
- Budapest
University Bone
Shadow
Eliminated Image
dataset

Circular Window
Adaptive Median
Outlier (CWAMO)

- PSNR
- MSR
- Universal
Quality Index

The proposed method for bone
suppression outperforms the existing
technique (ICA algorithm) in terms of
PSNR, MSR, and IQI. For segmentation,
the proposed method (active shape
modelling) shows improvement in
nodule area contrast of 3.83% and
23.94% shadow compared to Budapest
University's Bone Shadow Eliminated
Image dataset.

Horry et al.,
[32]

- CXR from JSRT
- CXR subset from
LIDC

CNN-based
approach

The metrics for
bone
suppression
are not
mentioned

The authors conducted experiments
involving three operators: Segmentation,
Cropping, and Rib Suppression.
Combining all these operators yielded
the most favourable outcome, achieving
a consistent 80 % AUC for the JSRT -
trained model. They subsequently
evaluated this model on the LIDC dataset
and achieved a classification accuracy of
89 %.

Xu et al.,
[31]

- VinDr-RibCXR
- NODE21
- ChestX-ray14

Benchmark
dataset
contributed by
authors:
FX-RRCXR

- SADXNet
- ST smoothing

RMSE SADXNet was trained on FX-RRCXR. It
effectively maintained its ability to
suppress rib structures when applied to
scans from NODE21 and ChestX-ray14
datasets. SADXNet obtains a test RMSE
of 2.32 ± 0.13 × 10^ (-5). In contrast to
the time-intensive ST-smoothing
algorithm, SADXNet suppresses a single
scan in less than 1 second.

Do et al.,
[20]

- In house dataset
produced by
radiologist
- DE Healthcare
- Fujifilm

- DES
- Window/level ratio
- Radiographic
histogram analysis

- Runtime
- Image quality
comparison

The proposed algorithm achieves a
runtime of 200 ms, significantly shorter
than the 4-second runtime of the GE
algorithm. Plus, its iterative DES process
takes 6.066 seconds, outperforming the
10-second runtime of the Fujifilm
algorithm. It maintains comparable
image quality to other algorithms for
visualizing nodules within soft tissue
images.

Zhang et al.,
[36]

- RCS-CXR
- VinDr-RibCXR
- JSRT CXR
- Shenzhen
- NIH

- CAMS-Net - DSC
- Recall
- Precision
- Jaccard
- Accuracy

CAMS-Net, an attention-guided
algorithm, improves rib segmentation in
chest X-rays, particularly in low contrast
and abnormal grey areas. It outperforms
existing methods in tests, proving
effective across multiple datasets, and its
components can be adapted into other
networks.

Liu et al.,
[30]

- Lateral CXR with
DES from Nanfang
Hospital,
Guangzhou, China

MsDd-MAP
framework

- RMAE
- PSNR
- SSIM

The suggested technique outperforms
other methods (CamsNet, Dilated CGAN,
Pix2pix-STdG) through quantitative
metrics and evaluation by experienced
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radiologists. The distillate model
generates visually appealing soft-tissue
images, showcasing its potential for
resembling really dual-energy
Subtraction imaging in lateral CXR.

4. Discussion and Conclusion

The ongoing advancements in CXR, specifically within bone suppression techniques, showcase a
fusion of traditional approaches and modern AI solutions. Given the significant global impact of lung
cancer, refining diagnostic tools to detect early-stage nodules accurately is essential. According to
Takaki et al., [38], employing the bone suppression technique resulted in notable enhancements in
the collective figure-of-merit metrics for all radiologists, thus being advantageous in identifying
subtle pulmonary lesions in digital CXR. While traditional methods like DES imaging have held their
ground, the rise in AI technologies, particularly deep learning, offers innovative methods that
promise enhanced diagnostic capabilities.

Modern models such as the wavelet-CCN, CNF, and various GAN strategies present clear benefits,
offering high-resolution imaging despite the challenges posed by overlapping bony structures in the
chest. Their ability to adapt to different X-ray machines and maintain image quality makes them
invaluable in contemporary medical diagnostics. More than just technological advancements, these
methods present substantial clinical benefits. Improved diagnostic accuracy, reduced instances of
overlooked conditions, and increased detection rates for diseases like tuberculosis and COVID-19
underscore the importance of these advancements.

Recent works emphasize the integration of AI into the radiology workflow. Dikici et al., [39] chart
the progression of AI from mere visualization to feedback-driven retraining in radiological tasks.
Ranschaert et al., [40] spotlight AI's prowess in optimizing nondiagnostic operations, while Sohn et
al., [41] address integration challenges by proposing an adaptable open-source framework. In
essence, the prevailing literature indicates that AI and ML are set to be pillars in modern radiology
by elevating diagnostic precision and operational efficiency.

However, the swift assimilation of AI into radiology demands substantial revamps in radiologist
and technician training. Schuur et al., [42] note the superficial nature of most current AI training,
which mainly introduces fundamental concepts in brief modules. Richardson et al., [43] stress that
radiologists must grasp core AI tenets, primarily when overseeing AI system management. Yang et
al., [44] reveal that while the impact of AI on radiology is anticipated, a complete replacement of
radiologists is still possible. A cohesive approach between AI specialists and radiologists is
universally advocated. The core is for AI to revolutionize radiology; thorough training and a
symbiotic alliance between the IT and medical sectors are pivotal.

While the potential of AI techniques appears promising, it is essential to understand their
pitfalls for the images they generate thoroughly. For instance, the initial enthusiasm surrounding AI
in medical imaging was tempered by scepticism due to concerns about overfitting, data bias, and
generalizability [45-47]. The reviewed articles show it leans heavily on the Posterior-Anterior (PA)
projection as their training data, frequently neglecting other projections like Anterior-Posterior (AP)
and lateral views, including paediatric patients. Relying predominantly on PA-trained AI models can
create challenges when applied to diverse clinical contexts. The absence of direct comparative
research between DES and AI-based approach further fuels hesitancy towards embracing AI-centric
techniques.

The medical community has also expressed concerns regarding the ethical implications of
relying heavily on automated systems, emphasizing the importance of human oversight in



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 56, Issue 2 (2026) 307-321

318

diagnostic processes [48-50]. Reliance on automated AI can raise concerns about accountability.
Determining responsibility becomes complex when misdiagnoses occur due to AI errors. Should the
liability reside with the software developers, the medical practitioners who placed their confidence
in it, or the institutions that implemented it? These ethical grey areas necessitate clear guidelines
and protocols to ensure patient safety and care remain paramount.

Moreover, assessing and comparing AI performance is challenging due to inconsistencies in
image quality assessment measures across reviewed studies. While some studies utilize objective
numerical metrics such as mean absolute error (MAE), peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and bone suppression ratio (BSR), these metrics can differ from one study to
another. Because of this absence of standardization, some research relies on physicians' subjective
evaluations of image quality [51].

Nevertheless, it is crucial to interpret these findings with a critical mindset. Every technique
presents unique challenges, and the potential for bias in published research should be addressed.
As AI and deep learning gain traction in CXR, continuous research, rigorous validation, and
harmonious integration of novel and conventional methodologies are essential. In summary, the
present literature signals a trend where AI-powered bone suppression techniques, backed by solid
research, are set to play a crucial role in chest imaging. As technology and clinical needs evolve,
researchers and clinicians will benefit from collaborative efforts, ensuring that the best of
traditional and modern approaches are brought to the forefront of medical diagnostics.
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