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 ABSTRACT 

 
In order to move people, commodities, and services in an efficient and effective 
manner, transportation networks are essential. To increase these networks' efficiency 
and save expenses, they must be optimised. In this research, we offer a unique method 
that makes use of graph labelling techniques to determine the optimization value of a 
transportation network. The goal is to give the network's constituent parts labels that 
accurately represent their potential for optimisations. We start by creating a graph 
model of the transportation network, with vertices standing in for important places and 
edges for the links between them. The process of labelling a graph entail giving vertices 
and edges labels according to their attributes. When choosing the labels, we consider 
several variables, including capacity, distance, traffic flow, and transportation costs. 
These elements allow us to record the optimization value of various network 
components throughout the labelling process. After the graph labelling process is 
finished, we examine the labelled network to find regions that could want more effort 
and optimization. The labels aid in decision-making and offer insightful information 
about how well the network is doing. Based on the optimization values obtained from 
the graph labelling, we may set priorities for investments and distribute resources 
accordingly. We apply our method to a real-world transport network case study to verify 
its efficacy. The outcomes show that the optimization value of network components 
may be efficiently determined by the graph labelling technique. Targeted interventions, 
such as infrastructure upgrades, traffic control plans, or route optimizations, might be 
used to address the areas that have been identified for optimization. In conclusion, 
network planners and decision-makers can benefit greatly from our method of 
calculating a transportation network's optimization value using graph labelling. Making 
well-informed decisions to improve the effectiveness and efficiency of transportation 
networks can result in increased system performance and cost savings by utilizing the 
insights obtained from the labelled network.  

Keywords: 

Irregular labelling; helm graph; circulant 
graph; grid graph 

 
* Corresponding author. 
E-mail address: nurdin1701@unhas.ac.id 
 
https://doi.org/10.37934/araset.57.1.306315 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 57, Issue 1 (2026) 306-315 

307 
 

1. Introduction 
 

Transportation networks are critical infrastructure systems that facilitate the movement of 
goods, services, and people. The efficient and effective operation of these networks is essential for 
economic development and quality of life. To ensure optimal performance, transportation networks 
need to be continuously evaluated and improved. Optimization techniques provide valuable insights 
into network performance and aid decision-making processes for network planners and operators. 

Graph labelling is a powerful technique that can be applied to analyze and optimize 
transportation networks. It involves assigning labels to the components of a graph, such as nodes 
and edges, based on specific characteristics and properties. These labels provide valuable 
information about the optimization potential of network components and help identify areas that 
require attention. 

The objective of this paper is to present a novel approach for determining the optimization value 
of a transportation network using graph labelling techniques. By assigning appropriate labels to the 
network components, we aim to capture their optimization potential and identify areas for 
improvement. This approach enables decision-makers to prioritize investments and allocate 
resources effectively. 

In this study, we consider various factors that contribute to the optimization value of 
transportation networks. These factors may include distance, capacity, traffic flow, transportation 
costs, and other relevant parameters. By incorporating these factors into the graph labelling process, 
we can obtain a comprehensive understanding of the network's performance and identify 
opportunities for optimization. 

The proposed approach is supported by a case study of a real-world transportation network. By 
applying the graph labelling technique to this case study, we demonstrate its effectiveness in 
determining the optimization value of network components. The insights gained from the labeled 
network enable informed decision-making and can guide the implementation of targeted 
interventions to enhance network performance. 

The remainder of this paper is organized as follows: Section 2 provides a review of relevant 
literature on transportation network optimization and graph labelling techniques. Section 3 describes 
the methodology used in this study, including the graph modeling and labelling process. Section 4 
presents the results of the case study and discusses the implications for network optimization. Finally, 
Section 5 concludes the paper and highlights future research directions in the field of transportation 
network optimization using graph labelling techniques. In this paper, we determining the 
optimization value of a transportation network model grid. 
 
2. Methodology  
 

The total vertex irregularity strength of the graph 𝐺 is the minimum positive integer such that 𝐺 
have a total vertex irregular labelling. The total vertex irregularity strength of the graph 𝐺 denoted 
by 𝑡𝑣𝑠(𝐺). To find the exact value of 𝑡𝑣𝑠(𝐺) for some simple connected graph, we have to proof that 
the lower bound and upper bound of 𝑡𝑣𝑠(𝐺) are not different. To find its lower bound, we use 
Theorem 1 from Baca (2017).  

Theorem 1: Let 𝐺(𝑉, 𝐸) be a graph on order n with the minimum and maximum degree of 𝐺 are  
𝛿(𝐺) and ∆(𝐺). Thus: 
 

𝑡𝑣𝑠(𝐺) ≥ ⌈
(𝑛+𝛿(𝐺))

(∆(𝐺)+1)
⌉             (1) 
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To find its upper bound we have to construction a total vertex irregular labelling for 𝐺. To 
construction a total vertex irregular labelling for any graph 𝐺, we begin by construction a function for 
some simple cases of 𝐺, up to we have a pattern in give label on all vertices and edges of 𝐺. After that 
we have proof that the weights of all vertices are distinct. The last step, we have to the largest label 
in use. 

There are three difficulties in showing the upper bound of total vertex irregularity strength of the 
graph. The first is the difficulty in constructing a labelling function. This difficulty arises because the 
function to be constructed must be believed to be valid for all cases, namely cases regardless of the 
number of vertices of graph. Another difficulty in construction a function is that the function is not 
unit and depends on the structure of the graph that is the object. 

The second difficulty is in determining that the weights of all vertices are different. This difficulty 
will arise if the function being constructed is complicated. The third difficulty is in determining the 
largest label to use. This difficulty occurs because all the labels used must be compared with each 
other.  
       
3. Results  
3.1 Modification of Grid Graph 
 

In this subsection, we define of the graph used in this research, namely a modified of grid graph. 
Previously given the definition of a grid graph. 
 
Definition 1. A graph is a grid graph if only it is an induced subgraph of a grid.  

 
The graph used in this research is a graph construction from grid graph 4 ×  𝑛 such that the 

degree of each vertices increases by one, denoted 𝐺𝑀𝑛. To make it easier to carry out research, if 
the vertex and edge sets of grid graph are: 
 
𝑉 = {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖|1 ≤ 𝑖 ≤ 𝑛} and            (2) 

 
𝐸 = {𝑎𝑖𝑎𝑖+2, 𝑏𝑖𝑏𝑖+2, 𝑐𝑖𝑐𝑖+2, 𝑑𝑖𝑑𝑖+2|𝑖 = 1,2, … , 𝑛 − 2} ∪ {𝑎𝑖𝑐𝑖 , 𝑐𝑖𝑑𝑖 , 𝑑𝑖𝑏𝑖|1 ≤ 𝑖 ≤ 𝑛} 
 
The vertex and edge sets of 𝐺𝑀𝑛 are:  
 
𝑉(𝐺𝑀𝑛) = {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖|1 ≤ 𝑖 ≤ 𝑛} and           (3) 
 
𝐸(𝐺𝑀𝑛) = {𝑎1𝑏1, 𝑎2𝑏2, 𝑎𝑛−1𝑎𝑛, 𝑏𝑛−1𝑏𝑛, 𝑐𝑛−1𝑐𝑛, 𝑑𝑛−1𝑑𝑛}         (4) 
 
∪ {𝑎𝑖𝑎𝑖+2, 𝑏𝑖𝑏𝑖+2, 𝑐𝑖𝑐𝑖+2, 𝑑𝑖𝑑𝑖+2|𝑖 = 1,2, … , 𝑛 − 2}         (5) 
 
∪ {𝑎𝑖𝑐𝑖 , 𝑏𝑖𝑑𝑖, 𝑐𝑖𝑑𝑖|𝑖 = 1,2, … , 𝑛}           (6) 
 

∪ {𝑐𝑖𝑐𝑗 , 𝑑𝑖𝑑𝑗|3 ≤ 𝑖 ≤
𝑛+2

2
,
𝑛+4

2
≤ 𝑗 ≤ 𝑛, 𝑖 = 𝑘 + 2, 𝑗 = 𝑛 − 𝑖 + 3, 𝑘 = 1,2, … ,

𝑛−2

2
}     (7) 

 
For example, in Figure 1 give 𝐺𝑀6.  
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Fig. 1. Graph GM6 

3.2 Total Irregularity Strength of 𝐺𝑀𝑛 
 

In this subsection, we give the total vertex irregularity strength of a modified of grid graph.  
 
Theorem 2. For even integer n ≥ 6, then: 
 

 𝑡𝑣𝑠(𝐺𝑀𝑛) = ⌈
4𝑛+3

6
⌉             (8) 

 
Proof: To find the total vertex irregularity strength of 𝐺𝑀𝑛, we have to find its the lower and upper 
bounds. To find the lower bound, we use Theorem 1. Since order of 𝐺𝑀𝑛 is 4𝑛, minimum degree is 

3, maximum degree is 5, 𝑡𝑣𝑠(𝐺𝑀𝑛) ≥ ⌈
4𝑛+3

6
⌉. 

To find the upper bound, we have to construction a total vertex irregular labelling, 𝑓: 𝑉 ∪ 𝐸 →
{1, 2, 3, … , 𝑘}  for some 𝑘, in tree cases as follows. These three cases emerged because the same 
pattern was not found for the three cases. 
 
Case 1: For 𝑛 =  6, the total vertex irregular labelling, as shown in Figure 2.  
 

 
Fig. 2. The total vertex irregular 5-labelling of GM6 

  
Case 2: For 𝑛 =  8, the total vertex irregular labelling, as shown in Figure 3. 
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Fig. 3. The total vertex irregular 6-labelling of GM8 

 
Case 3: For 𝑛 ≥ 10, the total vertex irregular labelling as follows. 
 

𝑓(𝑎𝑖) = {
1, 𝑖 = 1,2
4, 𝑖 = 3,4,

             (9) 

 

(𝑏𝑖) = {
2, 𝑖 = 1,2
5, 𝑖 = 3,4,

                       (10) 

 

𝑓(𝑎𝑖) = 𝑓(𝑏𝑖) =

{
 
 
 
 

 
 
 
 

𝑖+1

3
+ 3, 𝑖 ≡ 5 (𝑚𝑜𝑑 6)

𝑖

3
+ 4,       𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)
𝑖−1

3
+ 4, 𝑖 ≡ 1 (𝑚𝑜𝑑 6)

𝑖+1

3
+ 4, 𝑖 ≡ 2 (𝑚𝑜𝑑 6)

𝑖−1

3
+ 5, 𝑖 ≡ 4 (𝑚𝑜𝑑 6),

 

                   (11) 

 
𝑓(𝑐𝑖) = 2, 𝑖 = 1,2                        (12) 
 
𝑓(𝑑𝑖) = 3,   𝑖 = 1,2                       (13) 
 
𝑓(𝑎𝑖𝑏𝑖) = 1,    𝑖 = 1,2                        (14) 
 

𝑓(𝑎𝑖𝑎𝑖+2) = {
1, 𝑖 = 1 
2, 𝑖 = 2  
  3, 𝑖 = 3,4

                      (15) 

 

(𝑎𝑖𝑎𝑖+2) =

{
  
 

  
 

𝑖+1

2
+ 1,         𝑖 ≡ 5(𝑚𝑜𝑑 6) 

𝑖

2
+ 1,               𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

2 (𝑚𝑜𝑑 6)

4 (𝑚𝑜𝑑 6)

𝑖−1

2
+ 2 ,         𝑖 ≡ {

1 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)

                    (16) 

 

(𝑎𝑛−1𝑎𝑛) =
𝑛

2
+ 1                       (17) 
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(𝑎𝑖𝑐𝑖) = {
1,    𝑖 = 1,2
4,    𝑖 = 3,4

                       (18) 

 

𝑓(𝑏𝑖𝑑𝑖) = {
2,    𝑖 = 1,2
4,    𝑖 = 3,4

                      (19) 

 

𝑓(𝑎𝑖𝑐𝑖) = 𝑓(𝑏𝑖𝑑𝑖) =

{
 
 
 
 

 
 
 
 

2𝑖+2

3
,    𝑖 ≡ 5 (𝑚𝑜𝑑 6)

2𝑖

3
,          𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)
2𝑖+1

3
,    𝑖 ≡ 1 (𝑚𝑜𝑑 6)

2𝑖−1

3
,    𝑖 ≡ 2 (𝑚𝑜𝑑 6)

2𝑖−2

3
,      𝑖 ≡ 4 (𝑚𝑜𝑑 6) 

 

                   (20) 

 

𝑓(𝑏𝑖𝑏𝑖+2) = {
1, 𝑖 = 1 
2, 𝑖 = 2  
  4, 𝑖 = 3,4

                      (21) 

 

(𝑏𝑖𝑏𝑖+2) =

{
  
 

  
 

𝑖+1

2
+ 2, 𝑖 ≡ 5(𝑚𝑜𝑑 6) 

𝑖

2
+ 2,      𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

2 (𝑚𝑜𝑑 6)

4 (𝑚𝑜𝑑 6)

𝑖−1

2
+ 3, 𝑖 ≡ {

1 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)

                      (22) 

 

𝑓(𝑏𝑛−1𝑏𝑛) =
𝑛

2
+ 2                       (23) 

 

𝑓(𝑐𝑖𝑐𝑖+2) = 𝑓(𝑑𝑖𝑑𝑖+2) = {
3,                𝑖 = 1,2
𝑛

2
+ 1,        𝑖 = 3,4                    (24) 

 

𝑓(𝑐𝑖𝑐𝑖+2) = 𝑓(𝑑𝑖𝑑𝑖+2) =

{
 
 
 
 
 

 
 
 
 
 

𝑖+1

6
+
𝑛

2
+ 1,             𝑖 ≡ 5 (𝑚𝑜𝑑 6)

𝑖

6
+
𝑛

2
+ 1,                 𝑖 ≡ 0 (𝑚𝑜𝑑 6)

𝑖−1

6
+
𝑛

2
+ 1,              𝑖 ≡ 1 (𝑚𝑜𝑑 6)

𝑖−2

6
+
𝑛

2
+ 1,              𝑖 ≡ 2 (𝑚𝑜𝑑 6)

𝑖−3 

6
+
𝑛

2
+ 1,             𝑖 ≡ 3(𝑚𝑜𝑑 6)

𝑖+2

6
+
𝑛

2
,                      𝑖 ≡ 4 (𝑚𝑜𝑑 6) 

 

                 (25) 

 

𝑓(𝑐𝑖𝑑𝑖) = {

2,     𝑖 = 1
3,     𝑖 = 2
𝑛

2
, 𝑖 = 3,4

                        (26) 
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(𝑐𝑖𝑑𝑖) =

{
 
 
 
 

 
 
 
 
2𝑖+2

3
+ 1, 𝑖 ≡ 5 (𝑚𝑜𝑑 6)

2𝑖

3
+ 1,      𝑖 ≡ 0 (𝑚𝑜𝑑 6)

2𝑖+1

3
+ 1,   𝑖 ≡ {

1 (𝑚𝑜𝑑 6)

4 (𝑚𝑜𝑑 6)
2𝑖−1

3
+ 1, 𝑖 ≡ 2 (𝑚𝑜𝑑 6)

2𝑖

3
+ 2,       𝑖 ≡ 3 (𝑚𝑜𝑑 6) 

 

                    (27) 

 
Subcase 3.1: For 𝑛 ≡ 4 (mod 6). 
 

𝑓(𝑐𝑖) = {

𝑛−4

3
, 𝑖 = 3

𝑛−1

3
, 𝑖 = 4

                                     (28) 

 

𝑓(𝑐𝑖) =

{
 
 
 
 

 
 
 
 

𝑖+1

3
+
𝑛−1

3
− 3, 𝑖 ≡ 5 (𝑚𝑜𝑑 6)

𝑖

3
+
𝑛−1

3
− 2,       𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)
𝑖−1

3
+
𝑛−1

3
− 2, 𝑖 ≡ 1 (𝑚𝑜𝑑 6)

𝑖+1

3
+
𝑛−1

3
− 2, 𝑖 ≡ 2 (𝑚𝑜𝑑 6)

𝑖−1

3
+
𝑛−1

3
− 1, 𝑖 ≡ 4 (𝑚𝑜𝑑 6),

 

                    (29) 

 

𝑓(𝑑𝑖) = {

𝑛−1

3
+ 1, 𝑖 = 3

𝑛−1

3
+ 2, 𝑖 = 4,

                      (30) 

 

𝑓(𝑑𝑖) =

{
 
 
 
 

 
 
 
 

𝑖+1

3
+
𝑛−1

3
− 1,        𝑖 ≡ 5 (𝑚𝑜𝑑 6)

𝑖

3
+
𝑛−1

3
,                    𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)
𝑖−1

3
+
𝑛−1

3
,               𝑖 ≡ 1 (𝑚𝑜𝑑 6)

𝑖+1

3
+
𝑛−1

3
,               𝑖 ≡ 2 (𝑚𝑜𝑑 6)

𝑖−1

3
+
𝑛−1

3
+ 1,         𝑖 ≡ 4 (𝑚𝑜𝑑 6),

 

                   (31) 

 

𝑓(𝑐𝑛−1𝑐𝑛) = 𝑓(𝑑𝑛−1𝑑𝑛) =
2𝑛−2

3
+ 1                     (32)       

 

𝑓(𝑐𝑖𝑐𝑗) = 𝑓(𝑑𝑖𝑑𝑗) =
2𝑛+1

3
+ 1, 𝑖 = 3,4, … , (

𝑛+2

2
) dan 𝑗 = 𝑛 − 𝑖 + 3                (33) 

 
Subcase 3.2: For 𝑛 ≡ 0 (mod 6). 
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𝑓(𝑐𝑖) = {

𝑛

3
− 1, 𝑖 = 3

𝑛

3
,         𝑖 = 4

                       (34) 

 

𝑓(𝑐𝑖) =

{
 
 
 
 

 
 
 
 

𝑖+1

3
+
𝑛

3
− 3, 𝑖 ≡ 5 (𝑚𝑜𝑑 6)

𝑖

3
+
𝑛

3
− 2,       𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)
𝑖−1

3
+
𝑛

3
− 2, 𝑖 ≡ 1 (𝑚𝑜𝑑 6)

𝑖−2

3
+
𝑛

3
− 1, 𝑖 ≡ 2 (𝑚𝑜𝑑 6)

𝑖−1

3
+
𝑛

3
− 1, 𝑖 ≡ 4 (𝑚𝑜𝑑 6) 

 

                    (35) 

 

𝑓(𝑑𝑖) = {

𝑛

3
+ 1, 𝑖 = 3

𝑛

3
+ 2, 𝑖 = 4

                      (36) 

 

𝑓(𝑑𝑖) =

{
 
 
 
 

 
 
 
 

𝑖+1

3
+
𝑛

3
− 1, 𝑖 ≡ 5 (𝑚𝑜𝑑 6)

𝑖

3
+
𝑛

3
,               𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)
𝑖−1

3
+
𝑛

3
,          𝑖 ≡ 1 (𝑚𝑜𝑑 6)

𝑖+1

3
+
𝑛

3
,          𝑖 ≡ 2 (𝑚𝑜𝑑 6)

𝑖−1

3
+
𝑛

3
+ 1,    𝑖 ≡ 4 (𝑚𝑜𝑑 6),

 

                    (37) 

 

(𝑐𝑛−1𝑐𝑛) = 𝑓(𝑑𝑛−1𝑑𝑛) =
2𝑛

3
+ 1                            (38) 

 

(𝑐𝑖𝑐𝑗) = 𝑓(𝑑𝑖𝑑𝑗) =
2𝑛

3
+ 1, 𝑖 = 3,4, … , (

𝑛+2

2
) dan 𝑗 = 𝑛 − 𝑖 + 3                 (39) 

 
Subcase 3.3: For 𝑛 ≡ 2 (mod 6). 
 

𝑓(𝑐𝑖) = {

𝑛+1

3
− 1, 𝑖 = 3

𝑛+1

3
,         𝑖 = 4

                      (40) 

 

𝑓(𝑐𝑖) =

{
 
 
 
 

 
 
 
 

𝑖+1

3
+
𝑛+1

3
− 3, 𝑖 ≡ 5 (𝑚𝑜𝑑 6)

𝑖

3
+
𝑛+1

3
− 2,       𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)
𝑖−1

3
+
𝑛+1

3
− 2, 𝑖 ≡ 1 (𝑚𝑜𝑑 6)

𝑖+1

3
+
𝑛+1

3
− 2, 𝑖 ≡ 2 (𝑚𝑜𝑑 6)

𝑖−1

3
+
𝑛+1

3
− 1, 𝑖 ≡ 4 (𝑚𝑜𝑑 6)

 

                    (41) 
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(𝑑𝑖) = {

𝑛+1

3
+ 1, 𝑖 = 3

𝑛+1

3
+ 2, 𝑖 = 4

                      (42) 

 

𝑓(𝑑𝑖) =

{
 
 
 
 

 
 
 
 

𝑖+1

3
+
𝑛+1

3
− 1, 𝑖 ≡ 5 (𝑚𝑜𝑑 6)

𝑖

3
+
𝑛+1

3
,               𝑖 ≡ {

0 (𝑚𝑜𝑑 6)

3 (𝑚𝑜𝑑 6)
𝑖−1

3
+
𝑛+1

3
,         𝑖 ≡ 1 (𝑚𝑜𝑑 6)

𝑖+1

3
+
𝑛+1

3
,         𝑖 ≡ 2 (𝑚𝑜𝑑 6)

𝑖−1

3
+
𝑛+1

3
+ 1, 𝑖 ≡ 4 (𝑚𝑜𝑑 6)

 

                    (43) 

 

𝑓(𝑐𝑛−1𝑐𝑛) = 𝑓(𝑑𝑛−1𝑑𝑛) =
2𝑛−1

3
+ 1                     (44) 

 

 𝑓(𝑐𝑖𝑐𝑗) = 𝑓(𝑑𝑖𝑑𝑗) =
2𝑛−1

3
+ 1, 𝑖 = 3,4, … , (

𝑛+2

2
) dan 𝑗 = 𝑛 − 𝑖 + 3                     (45) 

 
Based on Eqs. 9 to 45, it can be obtained that: 

 
𝑤𝑡(𝑎1) < 𝑤𝑡(𝑎2) < 𝑤𝑡(𝑏1) < 𝑤𝑡(𝑏2) < 𝑤𝑡(𝑐1) < 𝑤𝑡(𝑐2) < 𝑤𝑡(𝑑1) < 𝑤𝑡(𝑑2) < 𝑤𝑡(𝑎3) <
𝑤𝑡(𝑎4) < 𝑤𝑡(𝑏3) < 𝑤𝑡(𝑏4) < 𝑤𝑡(𝑎5) < 𝑤𝑡(𝑎6) < 𝑤𝑡(𝑏5) < 𝑤𝑡(𝑏6) < ⋯ < 𝑤𝑡(𝑎𝑛−1) <
𝑤𝑡(𝑎𝑛) < 𝑤𝑡(𝑏𝑛−1) < 𝑤𝑡(𝑏𝑛) < 𝑤𝑡(𝑐3) < 𝑤𝑡(𝑐4) < 𝑤𝑡(𝑑3) < 𝑤𝑡(𝑑4) < 𝑤𝑡(𝑐5) < 𝑤𝑡(𝑐6) <
𝑤𝑡(𝑑5) < 𝑤𝑡(𝑑6) < ⋯ < 𝑤𝑡(𝑐𝑛−1) < 𝑤𝑡(𝑐𝑛) < 𝑤𝑡(𝑑𝑛−1) < 𝑤𝑡(𝑑𝑛). 
 

This shows that all vertices of 𝐺𝑀𝑛 have weight distinct. So that, the function 𝑓: 𝑉 ∪ 𝐸 →

{1, 2, 3, … , 𝑘} is total vertex irregular 𝑘-labelling of 𝐺𝑀𝑛 where 𝑘 = ⌈
4𝑛+3

6
⌉. Therefore, 𝑡𝑣𝑠(𝐺𝑀𝑛) ≤

⌈
4𝑛+3

6
⌉. 
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