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 ABSTRACT 

 
Driver fatigue poses a significant threat to road safety. This study investigates the 
potential of emotion-related Event-Related Potentials (ERPs) as a novel biomarker for 
differentiating between sleep-deprived and non-sleep-deprived drivers. A 
comprehensive research protocol comprising four stages was employed: initial 
brainwave recording, emotional stimulation experiments (happiness, fear, sadness, 
calm), driving tests, and final brainwave recording. EEG data underwent pre-processing 
and subsequent classification using Binary Linear Regression (BLR) to distinguish sleep-
deprived from non-sleep-deprived states based on emotion-related ERPs. The BLR 
model achieved an accuracy of 86.1%, suggesting promising potential for emotion-
based ERPs as a means to objectively assess driver fatigue. These findings lay the 
groundwork for further research to refine the classification model and explore its real-
world application, ultimately contributing to enhanced road safety through the 
development of non-intrusive fatigue detection methods.  
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1. Introduction 
 

This paper delves into the intricate relationship between sleep deprivation, drowsiness, and their 
influence on emotional processing. Sleep deprivation is a well-established factor linked to a cascade 
of detrimental effects, including mental exhaustion, diminished physical efficiency, and a heightened 
risk of errors [1, 2]. 

While the concept of "tiredness" often occupies a middle ground between alertness and 
sleepiness, it too can manifest as a decrease in both mental and physical productivity, decision-
making abilities, and overall performance [1]. Furthermore, a strong body of research underscores 
the cyclical nature of drowsiness and fatigue, where drowsiness amplifies feelings of weariness, and 
fatigue itself contributes to increased drowsiness [3]. Therefore, for the purposes of this study, we 
will encompass both sleep deprivation and drowsiness under the umbrella term "fatigue." 
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Despite significant advancements in understanding the impact of sleep deprivation on cognitive 
performance, scientific exploration remains in its early stages [4]. While a consensus exists regarding 
the detrimental effects of insufficient sleep on response speed and performance variability, the 
relationship between sleep deprivation and emotional processing remains less clear. However, 
emotions undeniably represent a cornerstone of human experience, and their functions are 
demonstrably intertwined with sleep deprivation [5]. 

From a biological standpoint, emotions can be viewed as potential biomarkers, akin to other 
physiological signals. External stimuli act as inputs, triggering a cascade of responses within the 
human brain that culminate in the experience of a broad range of emotions, including happiness, 
calmness, fear, and sadness [6]. Researchers have employed various techniques for emotion 
recognition, including analysis of facial expressions, speech patterns, and electroencephalogram 
(EEG) activity. Among these methods, EEG-based approaches hold particular promise as they offer a 
unique window into the brain's internal neural processes, which are less susceptible to conscious 
manipulation or masking [7]. 

Event-Related Potentials (ERPs) provide a powerful tool for investigating the human brain by 
measuring its electrical activity during cognitive processing [8]. By analyzing averaged raw EEG 
signals, ERPs enable researchers to glean valuable insights into cognitive processes related to 
perception, attention, and emotion [9, 10]. Given the rich information about cognitive processes that 
ERPs can reveal, this study aims to leverage EEG-monitored ERPs to assess the state of mental fatigue. 

However, previous research has primarily focused on a limited set of ERP features, leaving a gap 
in our understanding of the specific emotions associated with sleep deprivation and non-sleep 
deprivation. This study proposes a comprehensive and systematic exploration of a wider range of 
emotional characteristics using ERPs. This approach will allow us to gain a deeper understanding of 
the complex relationship between EEG signals and the emotional state in the context of sleep 
deprivation and non-sleep deprivation. 
 
2. Methodology  
2.1 Participants 

 
For this initial investigation, data was collected from six subjects (N=6) aged between 18 and 40 

years. The subjects were divided into two distinct groups: three sleep-deprived participants and three 
non-sleep-deprived participants. The non-sleep-deprived participants were required to have a 
sufficient amount of sleep prior to the experiment, defined as approximately seven hours or more. 
Conversely, the sleep-deprived participants were restricted from sleeping more than six hours before 
the experiment. 

This experimental design is grounded in the finding that sleeping for seven hours or more 
maintains healthy mental alertness [11]. In contrast, sleeping less than six hours per night is classified 
as sleep deprivation [12]. To ensure the validity of the study, all participants were required to possess 
a valid driving license and have a minimum of two years of driving experience. Furthermore, 
participants must have no history of events leading to brain damage. Each subject was required to 
complete a consent form and a questionnaire regarding their sleep/wake patterns prior to the 
experiment. Additionally, they were instructed to abstain from consuming caffeine, medications, or 
any substances that could influence brain activity before the experiment.  

This rigorous methodology was designed to ensure the reliability and accuracy of the data 
collected, providing a robust foundation for understanding the impact of sleep deprivation on mental 
alertness. 
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2.2 Experimental Procedure 
 

This study complies with the Declaration of Helsinki and was performed according to ethics 
committee approval. The experiment was conducted at the Pervasive Computing and Brain 
Development Research Group Lab (PCBDG) at the International Islamic University Malaysia (IIUM). 
Prior to their participation, all potential subjects were required to complete a standardized informed 
consent form. Additionally, a comprehensive questionnaire was administered to gather detailed 
information regarding their sleep and wake patterns. This data collection process ensured informed 
consent and facilitated accurate participant categorization for subsequent analysis. 

EEG data was recorded using a 19-channel EEG DABO Machine. The bandpass filter for the EEG 
recordings was set from 0 to 40 Hz, encompassing Delta, Theta, Alpha, Sigma, and Beta wave 
frequencies, with a sampling frequency of 250 Hz. This configuration was chosen to capture a 
comprehensive range of brainwave activity, ensuring the collection of high-quality data. 

The setup of the EEG equipment was completed in under 10 minutes. The simulations performed 
by the students were recorded using an unaltered EEG device configuration to measure ambient 
noise and obtain relevant data. The experimental protocol, or task sequence for the participants, was 
divided into three main tasks. Throughout the execution of these tasks, continuous EEG data was 
recorded using the EEG DABO machine. 

The detailed design of this experimental setup aimed to ensure the collection of high-quality, 
reliable data. By controlling the environment, precisely configuring the EEG equipment, and 
systematically organizing the task sequence, external variables were minimized, and accurate 
representations of brain activity were captured. The thorough methodology employed in this 
experiment enhanced the validity of the findings and demonstrated the feasibility of using ERPs to 
investigate the effects of sleep deprivation on cognitive and emotional functions. 
 
2.3 Research Protocol 

 
This study employed a comprehensive data acquisition protocol designed to investigate the 

interplay between sleep deprivation, emotional processing, and driving performance. The protocol 
comprised four distinct stages, each tailored to elicit specific neural responses and behavioral data 
(Figure 1). 
 

 
Fig. 1. Structure for the data acquisition research protocol 
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2.3.1 Baseline recordings: Establish a reference point 
 

The first stage involved a two-minute baseline EEG recording to establish a reference point for 
subsequent analyses. This recording was further divided into two sub-stages: 

 
i. Eyes Open: Participants were instructed to sit still and fixate on a blank white computer 

screen for one minute. This minimized motion artifacts in the EEG signals and provided a 
baseline for brain activity during visual processing. 

ii. Eyes Closed: Following the eyes-open recording, participants closed their eyes and 
remained still for another minute. This standardized procedure assesses the brain's default 
state, with minimal information processing due to the lack of visual input. The data 
acquired during this sub-stage serves as a reference for evaluating emotional and cognitive 
processing in subsequent stages. 

 
2.3.2 Emotional state stimulation: Eliciting affective responses 
 

The second stage aimed to elicit specific emotional responses in participants. This was achieved 
by presenting a series of four one-minute video clips designed to induce happiness, calmness, fear, 
and sadness. The specific content and presentation order of the video clips would be elaborated upon 
in a separate section of the manuscript. By carefully selecting these stimuli, the researchers sought 
to activate distinct emotional states within the participants' brains, enabling subsequent analysis of 
how these emotions relate to brain activity and driving performance, particularly in the context of 
sleep deprivation. 
 
2.3.3 Driving simulation: Assessing performance under varying conditions 
 

The third stage involved a 15-minute driving simulation task designed to assess participants' 
performance under different driving conditions and levels of cognitive demand. Participants wore 
the EEG equipment throughout this stage to capture brain activity during the simulation. The driving 
scenario unfolded in three distinct phases: 
 

i. Easy (5 minutes): During the initial five minutes, participants were required to navigate a 
straightforward, obstacle-free road while maintaining a steady speed of 100 km/h. This 
initial phase aimed to minimize motion artifacts in the EEG data and allow participants to 
acclimate to the driving simulator. 

ii. Medium (5 minutes): The following five-minute phase introduced simple obstacles, such 
as slippery road surfaces and minor distractions, into the driving simulation. This phase 
aimed to elevate the cognitive demands on participants and gauge their ability to respond 
to unexpected situations. 

iii. Hard (5 minutes): The final five minutes presented the most challenging driving scenario. 
The road surface became more complex, and participants encountered more frequent and 
demanding distractions, requiring them to utilize higher-order cognitive skills and 
potentially engage in distracted driving behaviors. This phase aligns with previous research 
suggesting that decision-making plays a vital role in distracted driving, with individuals 
experiencing greater difficulty in maintaining control exhibiting higher levels of such 
behaviors [13]. 
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2.3.4 Closing baseline recording: Evaluating post-driving state 
 

The final stage mirrored the initial baseline recording (Stage I). Participants completed a two-
minute EEG recording with both eyes open and closed to assess their brain's default state following 
the driving tasks. This closing baseline serves as a crucial reference point for analyzing the potential 
impact of sleep deprivation, emotional responses, and driving performance on brain activity. By 
comparing the opening and closing baseline recordings, researchers can gain valuable insights into 
the participants' overall cognitive state and potential changes induced by the experiment. 

The comprehensive nature of this data acquisition protocol allows for a multifaceted 
investigation into the complex interplay between sleep deprivation, emotional processing, and 
driving performance. By analyzing EEG data alongside driving simulation data, researchers can gain a 
deeper understanding of how these factors influence each other and potentially develop strategies 
to mitigate the risks associated with sleep-deprived driving. 
 
2.4 EEG Signal Acquisition 
 

The human brain represents a complex nexus that orchestrates and interlinks various 
physiological, mental, emotional, and even spiritual functions. Among these multifaceted activities, 
the process of evaluation and coordination stands out as paramount [14]. In delving into the intricate 
workings of the brain, particularly in deciphering the interplay between cognitive states and 
corresponding brain dynamics, the Electroencephalogram (EEG) signal emerges as a pivotal source 
of invaluable information [14]. 

Electroencephalogram (EEG) stands as a well-established modality for discerning brain activities. 
It captures the electrical impulses produced by the brain's neuronal activity, revealing the neural 
firings during cognitive processes. These brain signals emanate through the scalp and are intercepted 
by EEG electrodes strategically placed on the head. Similar to other instruments gauging physiological 
signals, EEG employs electrode patches, albeit focused specifically on the scalp region [2, 15]. 

In this study, the EEG signals were captured using the 19-channel DABO machine. The signal-to-
noise ratio exhibited by this apparatus is notably high when connected to a power source, 
transitioning to normal noise levels upon disconnection, rendering it particularly pertinent for 
scientific investigations and routine applications alike. Complementing the DABO machine is an 
electrode cap, facilitating the placement of EEG silver-silver chloride electrodes on the scalp surface 
of participants adhering to the standardized 10-20 EEG electrode placement system, as illustrated in 
Figure 2 below. The widely adopted 10-20 method for EEG sensor positioning derives its 
nomenclature from the fact that the actual distances between adjacent electrodes correspond to 
10% or 20% of the skull's total front-back or right-left dimensions [16]. 

The EEG signals recorded are subsequently subjected to an analysis using EEGLAB, a MATLAB 
toolbox designed for processing electrophysiological data. This methodology, coupled with advanced 
technological tools, ensures the precision and reliability of the findings garnered from EEG data 
analysis, fostering deeper insights into the intricate neural mechanisms underlying cognitive 
processes. 
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  Fig. 2. A participant is wearing a 19-channels  
  DABO EEG electrode cap 

 
2.5 Feature Extraction 
 

The first step of EEG analysis is featuring extraction, specifically using the ERPs. In this study, the 
ERPs are extracted based on alpha, delta, and theta bands as these frequency bands are related to 
human emotions and the state of drowsiness. At this stage, the ERP feature patterns were evaluated 
based on alpha, delta, and theta bands.  The 19 channels recorded signals were grouped into four 
separate regions: frontal, temporal, central, occipital, and parietal. The foundation of this step to 
extract the ERPs is established in previous works that utilize the separation of EEG signals into 
different frequency bands to classify emotions. The EEG frequency bands-mainly the alpha, beta, 
delta, and theta are the most consistent in terms of emotional occurrence and thus reliable for 
analysis. However, for this work, the beta band is excluded from the analysis as the band is unrelated 
to the state of sleep deprivation and drowsiness formed from emotional analysis and did not differ 
significantly between normal sleep and sleep deprivation conditions [17-21].  

 
2.6 Data Visualization and Classification 
 

Prior to classification, the ERP data was visualized to identify and select the potential ERPs and 
EEG channels [22]. Next, the data from selected ERPs and channels is preprocessed for further 
classification. First, the ERP data is extracted by averaging multiple temporal segments from the EEG 
signals, and then grouped into differing channels and temporal segments. Before the data is fed into 
the classifier, the data is normalized i.e., transformed into binary matrix, 0 to 1. Value "1” indicates a 
sleep-deprived condition; and value "0”, for non-sleep deprivation. Based on the obtained binary 
matrix, the connection network of the nodes of the channel was built. This work will use two 
classification techniques: binary logistic regression (BLR) and linear support vector machines (SVM).  
The performance of the classification based on the selected features is compared and analyzed per 
accuracy and area under the curve (AUC). 
      
3. Results  
 

The grand average of ERP in this study is the reference EEG signal for mental fatigue in non-sleep-
deprived and sleep-deprived conditions. When discussing event-related potentials (ERPs), the 
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average waveform that results from averaging the EEG data from several subjects or trials is referred 
to as the grand average. The brain's reaction to a particular event or stimulus is deduced from the 
grand average ERP. Attention, memory, and emotion are examples of cognitive processes that may 
be impacted by variations in the amplitude or latency of ERP components. 
 
3.1 EEG Channels for ERP Emotion Analysis  
 

A greater magnitude of grand average ERPs of the delta, alpha, and theta frequencies are found 
in the prefrontal, frontal, and occipital areas compared to the other sub-regions. Figures 3 and 4 
illustrate the 19- channels of EEG indicated by the regions:  frontal (F), temporal (T), central (C), 
occipital (O), and parietal (P) for the alpha and theta band, respectively. Both figures show a higher 
amplitude of grand average ERPs of the delta and theta frequencies in the prefrontal, frontal, and 
occipital areas.  
 

 Table 1  
 Selected channels for ERP emotion analysis 
Region Channels 

Frontal area Fp1, Fp2, F7, F8 

Occipital area O1, O2 

 

 
Fig. 3. ERP emotion features of the alpha band from the 19-channels DABO EEG 
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Fig. 4. ERP emotion features of the theta band from the 19-channels DABO EEG 

 
Figure 4 exhibits substantial amplitude changes in the frontal pole (Fp1, Fp2, F7, and F8) and the 

occipital lobe region (O1 and O2). This initial finding is consistent with a study of ERP coherences in 
both non-fatigued and fatigued states by Liu et al., [22]. In their experimental studies, they found 
that the ERP alpha coherences at frontal regions (FP1-FP2 and F3-F4) were significantly higher than 
at central (C3-C4), parietal (P3-P4) and occipital (O1-O2) regions [22]. Additionally, in the other 
mental fatigue study, there is an increase in both theta and alpha power over time which suggests 
recovery of mental fatigue following cognitively demanding tasks. Considering the initial finding and 
the previous report, this explains the basis of utilizing ERP emotion features on Fp1, Fp2, F7, F8, O1, 
and O2 (Table 1) on the selected time frames for the further classification of this work.  
 
3.2 Frequency Bands for ERP Emotion Analysis 
 

The first glance at the EEG-frequency bands visualizes a burst-like oscillation of the sigma band 
similar to the beta band in Fp1, as illustrated in Figure 5. Though the underlying mechanism cannot 
be confirmed at this point of the study, there are chances that the changed of amplitude in the other 
bands is more likely to be caused by sleep deprivation. It was reported by Wu et. al. that the change 
in alpha-band oscillations is closely associated with sleep deprivation [20]. For the beta (12.5-30Hz) 
and sigma band (12-15Hz), to the best of the authors' knowledge, there is limited research that can 
explain the changes affected by sleep deprivation. Additionally, a comparison of different frequency 
bands from a single channel (Fp1) also revealed a burst-like activity of the beta band (Figure 5).  Such 
variations of the beta frequency are considered enigmatic by some researchers, and their 
contribution to emotion studies is largely unknown. Besides, the beta power spectrum did not differ 
significantly between normal sleep and sleep deprivation conditions [21]. Thus, further analysis will 
focus on the delta, theta, and alpha bands. 
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      (a)       (b) 

 

       
        (c)       (d) 

 

 
(e) 

Fig. 5. ERP emotion features for each frequency band in single channel FP1 (a) Delta (b) Theta (c) Alpha 
(d) Sigma (e) Beta  

 
3.3 ERP Emotion Features in Non-Sleep Deprived and Sleep Deprived Conditions 
 

ERP components relevant to sleep-deprived and non-sleep-deprieved conditions: ERP waveforms 
for these conditions are detected at P3 (also known as the P300). P3, a positive deflection, usually 
happens 300ms or more after the stimulus starts. P3 amplitude changes might be a sign of changes 
in mental fatigue-related cognitive resources. Comparatively speaking, shorter latencies show better 
mental performance than longer latencies, greater attention appears to create larger P3 waves, as 
P3 amplitude appears to reflect sensory information [23]. 

ERP Components relevant to human emotions: P3a is a positive component linked to the 
emotional stimuli response, peaking 250–300 ms after stimulus initiation. The attentional capture by 
emotionally relevant items may be reflected in emotional processing and additionally, the 
components responded differently to the stimuli's emotional content [24]. 

As shown in (Figure 6), the non-sleep deprived condition in the red-shaded area of P300, peaked 
at the ERP emotion features of calm and sad. For the sleep-deprived condition, the P300 ERP 
components peaked at emotions calm, happy, fear, and sad. Thus, we can see that there are some 
emotional related between non-sleep deprived and sleep-deprived conditions. 
 

 
(a)  
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(b)  

Fig. 6. Non-sleep deprived and sleep deprived graph in FP1 channel (a) Non-sleep  
deprived graph (b) Sleep-deprived graph 

 
3.4 Preferred Classification Method for Mental Fatigue 
 

The classification of ERP emotion features data into each frequency band revealed that the 
highest accuracy reached is on the alpha dataset using binary logistic regression with 86.1 (AUC = 
0.89) and 83.1% (AUC = 0.88) accuracy using linear SVM.  Linear SVM classification on delta is 69.4% 
(AUC = 0.78) and theta is 72.2% (AUC = 0.83) meanwhile for binary linear regression on delta is 80.6% 
(AUC = 0.85) and theta is 77.8% (AUC = 0.86). The performance of linear SVM was not as good as that 
of binary logistic regression on alpha, delta, and theta bands, thus leading us to use binary logistic 
regression as our main classification method as its consistency in the accuracy results. 

The classification accuracy and AUC of the ERPs band are summarized in Table 2. For all bands, 
BLR indicates higher performance in terms of accuracy and AUC.  Out of the three bands, alpha 
indicates the highest performance for both BLR and linear SVM. This preliminary analysis concluded 
that the ERP alpha from the selected channels has the potential to classify sleep-deprived and non-
sleep-deprived.   
 

  Table 2  
  BLR and linear SVM classification for delta, theta, and alpha band 
Frequency band Classification  Accuracy Area under curve (AUC) 

Delta Binary logistic regression 80.6 0.85 

 Linear SVM 69.4 0.78 

Theta Binary logistic regression 77.8 0.86 

 Linear SVM 72.2 0.83 

Alpha Binary logistic regression 86.1 0.89 

 Linear SVM 83.3 0.88 

 
3.5 Future Works: Unveiling the Potential of ERPs for Fatigue Classification 
 

The results indicate that Event-Related Potentials (ERPs) hold promise as features for classifying 
mental fatigue. For future advanced experiments, incorporating a Virtual Reality (VR) simulator into 
the methodology could be beneficial. Carefully designed animations in VR can enhance the sense of 
presence and realism, leading to increased user immersion [25]. Leveraging VR technology opens 
avenues for expanding this research towards achieving therapeutic objectives, such as fatigue 
management and rehabilitation. 
 
4. Conclusions 
 

{This paper has discussed the results of a research study comprising signal acquisition based on a 
research protocol in differing emotional states and sleep conditions, ERP feature extraction, and 
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classification.  As a preliminary work, only six EEG datasets (sleep-deprived: 3; non-sleep-deprieved: 
3) were considered for ERP analysis and classification.  

Grand average ERP analysis revealed that only six out of 19 EEG channels were found to be most 
meaningful in explaining emotional activities in sleep-deprived and non-sleep-deprived conditions.  
These channels are located at the frontal and occipital regions, namely Fp1, Fp2, F3, F4, O1 and O2. 
Then, we detected burst-like oscillations of the sigma (12-15Hz) and beta band (12.5-30Hz) which are 
largely unexplained at this point of study particularly concerning human emotion studies.  Thus, we 
ascertain relevant frequency bands of delta, theta, and alpha based on related works on sleep 
studies. Additionally, ERP plotting of P3 (300 ms) and P3a (250-300 ms) components showed 
consistent activation for low arousal emotions of calm and sad in both sleep-deprived and non-sleep-
deprived groups, whereas the same ERP components were non-activated for emotions happy and 
sad in non-sleep-deprived conditions. The classification of the ERP alpha bands from the selected 
channels shows the highest accuracy of 86.1%.  

In a conclusion, we believe there are more features from the EEG signals based on the emotional 
stimulation and driving activities that can be utilized to understand and differentiate emotional states 
in both sleep-deprived and non-sleep-deprived conditions. Potential future work may include the 
study on EEG phase coherence, for assessing the connectivity of different brain regions in emotional 
processing. 
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