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 ABSTRACT 

 
Precision forestry and agriculture rely on precise tree crown delineation as a 
fundamental component for effective forest management activities. The selection of 
appropriate techniques and algorithms for tree crown delineation significantly 
influences the accuracy and reliability of the outcomes. This study was conducted in a 
mango plantation at Universiti Teknologi MARA, Arau, Perlis, employing Unmanned 
Aerial Vehicle (UAV) multispectral imaging. The focus is to assess the accuracy of tree 
crown delineation using two different algorithms, namely watershed segmentation and 
local maxima and minima. The conventional method was used for reference parameter 
derivation and tree positioning, while object-based image analysis was employed for 
processing the multispectral images. Additionally, a manual digitization approach was 
utilized to conduct an accuracy assessment of the resulting tree crown delineation. The 
study findings indicated that the watershed algorithm exhibited superior accuracy, 
achieving 83.3% total 1:1 match and 73% goodness of fit, compared to the local maxima 
and minima algorithm, which yielded 81.7% and 71%, respectively. These results hold 
significant implications for forest management planning and remote sensing-based 
forest quantification estimation, enabling the development of efficient and effective 
forest management strategies for the future. 
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1. Introduction 
 

Harumanis mango (Mangifera indica) is a highly valued tropical fruit, known for its unique 
characteristics and high demand in the market. This special breed of mango is grown exclusively in 
Perlis, Malaysia, and is harvested once a year during its season [1]. The quality of the mango is 

 
* Corresponding author. 
E-mail address: nurulain86@uitm.edu.my 
 
https://doi.org/10.37934/araset.55.1.4462 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 55, Issue 1 (2026) 44-62 

45 
 

attributed to its vibrant green skin with yellow dots, which retains its colour even when ripe, and its 
aromatic fragrance and sweet taste are the result of lower rainfall distribution and abundant 
sunshine [2]. The production of high-quality Harumanis mangoes depends on several factors, 
including weather conditions and natural ecology. The weather must be hot and dry during the day 
and cold and windy at night for a continuous three-month period for healthy flowering and fruit-
bearing. Frequent rainfall throughout this period can negatively affect fruit production [3]. 
Harumanis mangoes in Perlis are usually ripe for picking from late April to mid-June, typically around 
60 to 120 days after flowering or approximately 8 weeks after the fruits reach a diameter of about 4 
cm. 

Individual Tree Crown (ITC) identification is an important technique for forestry and precision 
farming, which enables a precise delineation of individual trees and their crown boundaries, 
particularly for forest management, field inventory, and biodiversity assessments [4,5]. Previously, 
the conventional approach was utilized for the collection of data concerning tree positioning and 
various tree parameters, including tree crown, diameter at breast height and tree height. According 
to the research conducted by Chave et al., [6] this traditional method of acquiring data on tree 
parameters demands a significant amount of labour, intricate sampling designs and additional 
efforts. This is exemplified by the manual collection of tree crown data, which necessitates the data 
collectors positioning themselves beneath the tree. However, in current practices, tree crown 
delineation is increasingly being facilitated using various algorithms, such as the watershed and local 
maxima and minima algorithms, which rely on high-resolution multispectral imagery obtained from 
unmanned aerial vehicles (UAV) [4].  

Therefore, the purpose of this study is to investigate the tree crown delineation of Harumanis 
plantations in Perlis, Malaysia, using UAV multispectral and object-based image analysis (OBIA). The 
objectives of this study include (1) establishing the data collection of Harumanis tree parameters, 
such as diameter at breast height (DBH), tree height and tree crown diameter; (2) performing the 
tree crown delineation using the watershed algorithm and local maxima and minima; and (3) 
producing the tree crown delineation map of Harumanis crops in the study area. The use of UAV 
multispectral imagery and OBIA technique is expected to provide accurate and efficient tree crown 
delineation for Harumanis plantations. The accuracy assessment between the watershed algorithm 
and local maxima and minima will be performed to validate the results. This study's findings will 
contribute to the development of precision farming techniques for Harumanis mango production and 
forest management in the region. 
 
2. Study Background 
2.1 Tree Crown Delineation Techniques 

 
Individual tree crowns (ITCs) are fundamental components of precision forestry and agriculture 

[4]. They serve as a crucial link connecting diverse tree measurements, including crown shape, 
gathered from various data sources [5]. This process involves the identification and outlining of tree 
canopy boundaries. Accurate tree delineation and detection play a pivotal role in precision forestry 
and agriculture, providing essential information for a range of applications, such as mapping, stand 
density assessment, height distribution analysis, estimating average crown size, determining stem 
diameter distribution, calculating leaf area index, evaluating biomass stock, and monitoring growth 
[11]. Moreover, this information empowers foresters to enhance forest management practices and 
field inventories, including selective cutting, silviculture treatments, and biodiversity assessments [5]. 
Leveraging remotely sensed data enables the comprehensive acquisition of detailed tree information 
across extensive areas, facilitating the derivation of these essential metrics [11]. Furthermore, the 
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ability to identify trees from high-resolution aerial images based on crown shape and structure 
proves beneficial for estimating forest density and implementing fire prevention measures [13]. 
Timely identification of potential threats to tree populations allows for proactive intervention 
strategies, preserving forest ecosystems and ensuring sustainable resource management. 

 
2.2 Crown Projection Area 

 
The crown projection area (CPA), representing the vertical projection of tree crowns onto the 

ground surface, plays a crucial role in quantifying biomass volume and assessing inter-tree 
competition dynamics [14]. Accurately measuring tree crowns can be challenging due to the natural 
variability in their shapes. However, a practical method involves vertically projecting the crown 
perimeter onto the ground, utilizing the average diameter obtained from two perpendicular 
orientations [9]. Moreover, advancements in remote sensing technologies, including multispectral 
imagery, have significantly enhanced the precision of CPA measurements. Multispectral technology 
provides detailed information about tree canopies in multiple spectral bends, enabling the precise 
calculation of CPA and other tree-related parameters [15]. This technology has transformed forest 
inventory and management by allowing for large-scale, high-resolution data collection. Additionally, 
CPA serves a broader purpose than just estimating biomass. It plays a significant role in forestry 
research, helping researchers understand forest structure and dynamics. By analyzing variations in 
CPA across different tree species and sizes, researchers can gain insight into forest health and the 
distribution of resources such as light and nutrients [16]. Significantly, CPA demonstrates a 
correlation with tree diameter at breast height (DBH), facilitating the prediction of DBH for carbon 
estimation through suitable calculations. This relationship becomes particularly pivotal when 
modelling tree diameter using CPA data [9]. 
 
2.3 Tree Parameters 

 
The diameter at breast height (DBH) serves as the primary measurement utilized by tree 

professionals for tree characterization. DBH represents the diameter of a tree's trunk at a 
standardized height of 1.3 meters above the ground. The tree diameter can be efficiently determined 
by employing a specifically calibrated diameter tape, commonly referred to as a d-tape, which 
provides a direct measurement of the circumference that corresponds to the diameter. Alternatively, 
in the absence of a d-tape, a string, measuring tape, thumbtack, and calculator can be used as suitable 
substitutes for measuring the tree's diameter [17]. Tree height, in the realm of forestry, represents 
the vertical distance from the base of the tree to the highest point of its foliage. It is a metric of 
utmost importance, critical for a comprehensive understanding of a tree’s growth and ecological 
impact. Accurately measuring tree height can be challenging and should not be confused with the 
length of the tree trunk, as the two can significantly differ, especially in cases where a tree may incline 
or have an irregular shape. In such instances, the trunk length may exceed or fall short of the tree’s 
actual height, making precise measurements even more challenging [18].  

To address this complexity, a range of specialized instruments and methodologies have been 
developed to accurately measure tree height, customized to the specific conditions and 
characteristics of the tree and its surrounding environment. Among these, several trigonometric 
devices, such as Blume Leiss, Vertex, or Criterion are available to researchers for height 
measurements, with the selection of the instrument dependent on various factors, including stand 
density and crown visibility [17]. The most straightforward method for measuring tree height involves 
utilizing a telescoping height measuring pole, allowing the assessor to elevate a pole of known length 
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to the same level as the tree’s uppermost point. However, this method is commonly employed for 
measuring smaller trees, where the pole’s length can effectively match the tree’s height. In the case 
of larger trees, a more practical approach involves the use of a lightweight handheld instrument 
designed to assess the tree height from a distance, ensuring both accuracy and safety during the 
measurement process [18]. 

 
2.4 Object-Based Image Analysis in Forestry 

 
Object-based image analysis (OBIA) is an advanced technique that has emerged as a promising 

solution to overcome the limitations associated with pixel-based approaches. OBIA is recognized for 
its ability to deliver highly accurate results [19]. It leverages spectral, textural, and contextual 
information to identify thematic classes within an image. The key components of OBIA encompass 
image segmentation, feature extraction, and classification process [20]. The initial stage of OBIA 
involves segmenting the image into homogeneous objects, a critical task that sets the foundation for 
subsequent analysis. For this purpose, various algorithms, such as watershed, local maxima and 
minima, and region growing algorithms, are employed. Each of these algorithms has a distinctive role 
in defining objects within the image. They use inherent statistical properties derived from the 
individual pixels to guide this process. The accuracy of the classification process strongly relied on 
the quality and precision of image segmentation [20]. Therefore, image segmentation plays an 
important role within the OBIA framework. Upon completing segmentation and classification, a 
refinement process is typically employed to purify the delineated objects by eliminating impurities 
or undesirable elements. This stage ensures that the delineation process aligns closely with the true 
characteristics of the objects of interest. Collectively, segmentation, classification, and refinement 
form the essential steps involved in tree crown delineation [21]. In the context of this study, OBIA 
software was utilized, which facilitated the generation of tree crown boundaries and the 
determination of maximum tree heights. 
 
2.4.1 Watershed segmentation algorithm 

 
The Watershed transformation algorithm is a powerful method employed for separating image 

objects and features within imagery datasets. This method is particularly effective in handling the 
complex task of distinguishing overlapping tree crowns, which is achieved by setting a threshold 
based on the average crown size observed in the study area [8]. The algorithms identify connection 
points, like watersheds in geography, to address the challenge of overlapping crowns, allowing 
researchers to differentiate individual trees within densely clustered arrangements [9]. Inspired by 
the concept of natural watersheds, the algorithm treats pixel values as if they represent 
topographical elevations, helping it segment the entire image into distinct catchment areas. It creates 
zones of influence around each local minimum, resembling the way water flows in landscapes. This 
analogy between topography and tree crown surfaces makes the watershed segmentation approach 
a widely accepted and effective technique for accurately delineating tree crowns [10]. The Watershed 
algorithm interprets pixel values as elevations, aiding precise delineation of tree crowns in dense 
forests. 
 
2.4.2 Local maxima and minima algorithm 

 
The local maxima method is widely employed for individual tree detection due to its simplicity 

and computational efficiency [11]. In this method, a moving window is employed to systematically 
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identify the highest digital number value within an image, which subsequently serves as the central 
point for delineating the tree crown. In contrast, local minima are utilized to detect the valleys 
between trees, aiding in the accurate delineation of crown boundaries. The process of estimating 
tree crowns through the relative positions of local maxima and minima is grounded in two key 
assumptions. Firstly, it assumes that local maxima are consistently positioned within the crown area 
of individual trees. Secondly, it suggests that local minima occur at the crown’s boundary within 
forested areas [12]. Previous studies have employed specific fixed window sizes, such as a circular 
window of 7x7 pixels for the local maximum filter and a square window of 3x3 pixels for the local 
minimum filter. The moving window approach is then set into motion, systematically traversing the 
entire image, and identifying the maximum and minimum values in accordance with the defined 
window sizes [11].  
 
3. Methodology  
3.1 Study Area 

 
This study was conducted at plot B of the Harumanis plantation, situated within the UiTM Arau 

Campus in Perlis, with geographical coordinates at approximately latitude 6°26'44.50584"N and 
longitude 100°16'30.27318" E. The study area spans a total land area of approximately 2.63 hectares 
and is characterized by an elevation of 38.28 meters, as depicted in Figure 1. The climatic conditions 
within this region are favourable for the growth of harumanis mango, with an average annual rainfall 
of 1952mm and an average annual temperature of 26.8°C. Furthermore, the study site offers an open 
expanse that facilitates Global Navigation Satellite System (GNSS) observations and drone flights, 
enabling the collection of accurate spatial data for analysis and evaluation purposes. 

 

 
Fig. 1. Map of the study area (a) Map of Peninsular Malaysia (b) Map of Perlis 
(c) UAV multispectral image of Harumanis Plantation, UiTM Perlis 

 
3.2 Ground Control Point (GCP) Establishment 

 
Prior to UAV flight, the establishment of Permanent Ground Control Points (GCPs) is essential, 

following the static method of data collection. In this study, seven (7) GCPs were strategically 
positioned around the site, as depicted in Figure 2. The selection of GCP locations involved careful 
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surveying, considering factors such as avoiding tractor routes and ensuring unobstructed visibility of 
the sky by at least 10-15%, while also avoiding any potential sheltering by trees. After GCP 
installation, network design was conducted in advance of data collection, ensuring that the lines of 
other GCPs from different sessions did not intersect. Additionally, it was ensured that the network 
design for each session did not form a closed shape. The Global Positioning System (GPS) 
observations were performed using the static positioning method with the utilization of Topcon GR-
5 equipment. The GPS data collection comprised four (4) sessions, encompassing the measurement 
of seven (7) GCPs and two (2) nearby benchmarks. For each GCP in each session, three (3) epochs 
were recorded, with each epoch lasting 30 minutes. The collected data was then processed, 
incorporating the Real-Time Kinematic (RTK) data from Langkawi and Arau, which were connected to 
GCP 1 and GCP 3, respectively. The establishment of the GCPs as known reference points ensures the 
preservation of image integrity, allowing accurate alignment of the image coordinates with the 
corresponding locations on the Earth's surface. 

 

 
Fig. 2. GCPs location [22] 

 
3.3 Multispectral Image Acquisition 

 
In this study, the UAV multispectral imagery was employed to facilitate the creation of tree crown 

delineation maps using the watershed, local maxima, and local minima algorithms. The UAV 
multispectral image acquisition was carried out during the afternoon to ensure the absence of tree 
shadows, as their presence can introduce complexities during the segmentation and classification 
processes. The Ardupilot quadcopter was selected as the designated drone model for image capture. 
Before the flight, flight planning was conducted, specifying a horizontal and vertical overlap of 75%, 
an altitude of 75 meters, and a spatial resolution of 5cm ground sampling distance (GSD). The drone 
was flown over the Harumanis plantation, encompassing an approximate area of 24.957 hectares. In 
addition to capturing RGB imagery, the drone was equipped to capture infrared data. It is noteworthy 
that the drone's flight coverage extended beyond the study area to encompass the entire region 
where the GCPs were located. In this work, the application of UAV itself has demonstrated it’s ability 
to enhanced productivity while offering a reliable substitute for the meticulous ground survey 
techniques [23]. Figure 3 visually illustrates the UAV-derived image, utilizing the band combination 
of 3 (red), 4 (green), and 2 (blue). 
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Fig. 3. UAV multispectral image 

 
3.4 Measurement of Tree Parameters 

 
The selection of trees for parameter measurement focused specifically on those with a diameter 

at breast height (DBH) exceeding 10cm, resulting in a total of 60 trees labelled with IDs ranging from 
921 to 980. DBH measurements were obtained from trees utilizing a diameter tape, where the 
circumference of the tree trunk was encircled at a height of 1.3 m to determine the DBH. On the 
other hand, to retrieve the height of a tree, a Distometer device was employed, enabling 
measurements from the ground to the highest point of the tree's foliage. In relation to tree crown 
measurements, tape was employed. Two individuals were involved in the process, with one 
positioned beneath the tree on the right side, holding the tape and estimating its position at the tip 
of the leaf. Simultaneously, the other person stood in the opposite direction, conducting the same 
procedure. The collected tree crown data serves as a reference for the subsequent tree crown 
delineation process using OBIA software, facilitating a comparative evaluation of the accuracy 
between the watershed, local maxima and local minima algorithms. 

 
3.5 Positioning of Selected Trees 

 
A traverse survey was conducted to determine the positions of the selected trees. Prior 

reconnaissance was undertaken to strategically plan the traverse, ensuring that trees with 
designated IDs were visible from the traverse stations. A total of eight (8) stations were established 
along the traverse path, commencing at GCP 5 as the initial station and utilizing GCP 2 as the back 
bearing reference. The traverse is continuous around the study area where the tree with ID can be 
seen. Given the availability of permanent GCPs with known coordinates at GCP 2 and GCP 5, these 
coordinates were used as a basis for transferring coordinates at each traversed station. To calculate 
the coordinates, the Bowditch method was employed for coordinate transfer. However, due to the 
arrangement of harumanis trees, it was challenging to determine the positions of the trees without 
establishing new stations. Since the harumanis trees were planted in a structured manner, new 
stations were established to capture the positions of trees that were not visible from the traverse 
stations. These additional eight (8) stations were established to ensure comprehensive data 
collection. To determine the coordinates of each tree, the coordinates obtained from the GCPs were 
transferred to each established station, including the respective tree with its designated ID. The initial 
coordinates obtained from the GCPs were in the GDM2000 projection, necessitating a transformation 
to the Cassini-Soldner Malaysia projection. This transformation was performed to accurately 
compute and transfer the coordinates to the stations and trees. Subsequently, the coordinate 
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projection was adjusted to WGS1984 to align with the projection of the UAV multispectral imagery, 
ensuring compatibility for further analysis and processing. 

 
4. Data Processing  
4.1 Processing of Ground Control Points (GCPs) 

 
The GCPs were processed using Trimble Business Center (TBC) software. The dataset consists of 

seven (7) GCPs as depicted in Figure 4, which necessitated four (4) sessions for data collection. Within 
each session, three (3) epochs were recorded for each GCP. To enhance the accuracy of the 
processing, the GCP data will be merged with Real-Time Kinematic (RTK) data and benchmark 
measurements. This integrated approach ensures a higher level of precision. The GCP data will be 
processed individually, considering their respective sessions. Figure 5 depicts the network design of 
Ground Control Points (GCPs) utilized in this study. The first session, represented by the purple line, 
involves GCPs 7, 4, 1, and 5. The second session, indicated by the green line, comprises GCPs 5, 2, 3, 
and 6. GCPs 3, a benchmark located at the highway, 6 and 7 forms the third session, visualized by the 
yellow line. Lastly, the red line represents the last session, encompassing GCPs 7, 2, 4, and Benchmark 
Muda Agricultural Development Authority (MADA). To ensure the collection of highly accurate data, 
GCP 1 is connected to Real-Time Kinematic (RTK) data from Langkawi, while GCP 3 is connected to 
RTK data from Universiti Utara Malaysia (UUM). Multiple baselines are established for each GCP since 
three epochs are conducted within each session. Consequently, it becomes necessary to select a 
single baseline and deactivate the remaining lines. The GCP points will be merged into a single point, 
as there is redundancy due to multiple measurements of certain GCPs. This approach proves 
beneficial when assessing network accuracy and correctness. 

 

  
Fig. 4. Network design of GCPs Fig. 5. Network design of GCPs and benchmarks [2] 

 
Table 1 presents the GDM2000 projection coordinates of the Ground Control Points (GCPs), which 

were determined through the processing of TBC. Notably, the GCPs exhibit a negligible disparity in 
latitude and longitude due to their close spatial proximity. The variations in latitude and longitude 
between each GCP are minimal, with differences of merely seconds, as shown in Table 1. To verify 
the accuracy of the GCP coordinates derived from the TBC, the obtained coordinates were inputted 
into ArcMap software, in which all the seven (7) GCPs are impeccably positioned and aligned closely 
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with their corresponding ground control points, indicating the correctness of the derived GCP 
coordinates.  

 
Table 1 
GCPs coordinate 
GCP Latitude Longitude 

GCP 1 6°27'13.46543"N 100°16'56.3934"E 
GCP 2 6°27'33.50170"N 100°17'01.79160"E 
GCP 3 6°27'31.15680"N 100°17'08.43449"E 
GCP 4 6°27'11.64536"N 100°17'05.11409"E 
GCP 5  6°27'26.44288"N 100°17'00.00586"E 
GCP 6 6°27'26.43963"N 100°17'06.56725"E 
GCP 7 6°27'21.15630"N 100°17'05.00184"E 

 
4.2 Object-Based Image Analysis (OBIA) 

 
The orthomosaic image obtained from the UAV multispectral data will undergo processing using 

the Object-Based Image Analysis (OBIA) technique. This technique involves three essential steps: 
segmentation, classification, and refinement. In the segmentation step, the image is partitioned into 
distinct objects representing land-based features. Subsequently, in the classification step, these 
objects are categorized based on their spatial, spectral, shape, and size properties. Lastly, the 
refinement step aims to eliminate impurities or unwanted elements through the extraction process. 
To accomplish tree crown delineation, two OBIA algorithms will be employed, namely the watershed 
algorithm and the local maxima and minima algorithm. The combination of these algorithms, 
integrated within the OBIA framework, enables the accurate delineation of tree crowns by effectively 
segmenting, classifying, and refining the objects within the orthomosaic image.  

The segmentation process involves specifying a scale parameter of 50, which determines the size 
of image objects. A larger scale parameter results in larger objects, while a smaller scale parameter 
produces smaller objects. The UAV multispectral image consists of six layers, namely Red, Blue, 
Green, Near-Infrared (NIR), RedEdge, and Composite. Weightage values of four are assigned to the 
NIR layers, while the remaining layers are assigned a weightage value of one. Increasing the 
weightage of certain layers in the heterogeneity measure influences the merging of pixels or objects 
during the classification phase. Homogeneity criteria for shape and compactness are set to 0.8 and 
0.5, respectively. The higher shape value emphasizes shape characteristics during segmentation, 
while the compactness value achieves a balanced consideration between compact and non-compact 
object segments. The range is searched based on the layer bands and will be used for subsequent 
classification, distinguishing four classes: tree crown, shadow, bare soil, and grass.  

The classification step assigns the four predetermined classes: shadow, tree crown, bare soil, and 
grass to the image objects. Following class assignment, the merge region technique, also known as 
masking, is applied to merge objects within each class. This process is crucial for aggregating small 
pixels into larger segments, facilitating subsequent refinement. Refinement encompasses three main 
processes: individual tree separation, tree smoothening, and object removal. Individual tree 
separation involves utilizing the watershed and local extrema algorithms. The local extrema 
algorithm identifies areas that meet certain local maximum or minimum conditions within a defined 
domain and search range around the object. The watershed algorithm is employed without the local 
extrema algorithm. Subsequently, tree segments are subjected to smoothening to address non-
circularity issues. Lastly, object removal is performed to address misclassified features detected 
during the process, employing predefined rules and suitable range selection. 
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4.3 Manual Digitization for Accuracy Assessment  
 

Figure 6 depicts the image of manually digitized tree crown delineation. Manual digitization 
served as the reference for comparison against the results obtained using the algorithmic 
approaches. The manual digitization process involved the use of ArcMap software to accurately 
outline the boundaries of the tree crowns. It is important to note that the results obtained through 
manual digitization may differ from those obtained using algorithmic approaches, such as the 
watershed and local extrema algorithms. The manual digitization specifically focused on delineating 
the tree crowns of the selected trees used in the study. 
 

 
Fig. 6. Manual digitizing of tree crown delineation 

 
5. Results and Discussion 
5.1 Descriptive Analysis for Tree Parameters 

 
A total of 60 Harumanis trees were selected for inclusion in the study based on a specific criterion, 

in which the minimum diameter at breast height (DBH) threshold of 10cm. The descriptive statistics 
of the tree sampling are shown in Table 2. 

 
Table 2   
Descriptive statistics of tree sampling 

 DBH Height Tree Crown 

Standard error of 
the mean 

0.393 0.072 0.148 

Minimum 11.000 2.11 3.600 
Maximum 26.600 4.271 9.610 
Mean 18.983 2.983 6.303 
Standard Deviation 3.047 0.556 1.145 

 
5.2 Tree Crown Delineation Using Watershed Algorithm 

 
The process of creating tree crown delineation using the watershed algorithm involves following 

a four-step ruleset consisting of segmentation, classification, refinement, and removal of undesired 
objects. The employed segmentation algorithm in this study is multiresolution segmentation, which 
is crucial for accurate tree crown delineation. The selection of an appropriate scale parameter is 
essential, as higher values lead to the segmentation of larger object segments, while lower values 
result in smaller object segments. In this analysis, a scale parameter of 50 was chosen to achieve 
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more precise classification outcomes. Furthermore, the weights assigned to each image layer are 
significant factors affecting the heterogeneity measure, which determines the merging of pixels or 
objects and subsequently influences the classification process. 

Four distinct classifications were created: Shadow, Tree crown, Bare soil, and Grass. The objective 
of classification is to ensure that the segmented tree crowns do not include unwanted classifications, 
such as tree branches or other non-relevant features. Specific ranges were established for each 
classification based on the corresponding image layer. For example, the Shadow classification utilized 
the Brightness layer with a range of 5,000 to 21,000, while the Tree crown classification was based 
on the red layer within the range of 1,000 to 13,000. The Grass classification employed the Mix Diff 
layer with a range of 1.3 to 1.6, and the Bare soil classification utilized the red layer within the range 
of 2,600 to 50,000.  

Additionally, a merge region function was applied to combine segments within each class, 
resulting in the enlargement of the segmentation scale parameter. The subsequent step, refinement, 
involved the separation of individual trees using the watershed algorithm to ensure that each tree's 
segmentation was distinct. Morphology techniques were then employed for tree smoothening, 
aiming to achieve more realistic, rounded shapes resembling actual trees in real-world scenarios. 
Finally, undesired objects that did not align with the assigned classifications were removed. The 
output of the tree crown segmentation was exported as a shapefile. Figure 7 illustrates the results of 
tree crown delineation using the watershed algorithm, displaying a) the tree crown delineation in 
OBIA software, and b) the exported tree crown delineation overlaid with the UAV multispectral image 
in ArcMap software. 

 

 
(a) 

 
(b) 

Fig. 7. Tree crown delineation using watershed algorithm (a) Segmentation in OBIA software (b) Segmentation 
in ArcMap software 

 
5.3 Tree Crown Delineation Using Local Maxima and Minima Algorithm 

 
The ruleset employed to apply the local maxima and minima algorithm consists of three distinct 

steps, namely segmentation, classification, and refinement. In the segmentation step, the 
multiresolution segmentation technique is utilized, employing a scale parameter set to 50. 
Additionally, the image layer weights are configured as 1,1,4,4,1,1, with the higher weight of four (4) 
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assigned to the NIR and Green layers. These parameters aim to achieve accurate segmentation of the 
image data. The classification stage involves assigning four (4) distinct classes to the image data. The 
Shadow class is determined based on the Brightness layer, with a range spanning from 5,000 to 
21,000. The Tree Crown class is identified using the red layer, within a range of 1,000 to 13,000. The 
Grass class is determined through analysis of the Mix Diff layer, with a range of 1.3 to 1.6. Lastly, the 
Bare Land class is identified based on the red layer, with a range spanning from 2,600 to 50,000. 
Refinement of the segmentation results involves the insertion of two (2) child processes, namely local 
maxima and local minima, which enable the identification of areas exhibiting local maximum and 
minimum conditions. Subsequently, like the watershed algorithm, the resulting tree crown 
delineation is exported as a shapefile. Figure 8 showcases the outcome of the local extrema algorithm 
for tree crown delineation, with subfigure a) presenting the delineation in OBIA software and 
subfigure b) displaying the exported shapefile layered with the UAV multispectral image in ArcMap 
software. 

 

 
(a) 

 
(b) 

Fig. 8. Tree crown delineation using local extrema algorithm (a) Segmentation in OBIA software (b) 
Segmentation in ArcMap software 

 
5.4 Analysis of Crown Projection Area 

 
The CPA was conducted on a dataset consisting of 60 tree crowns. A manual digitization process 

collectively covering an area of 1282.719544 m2. The area measurements exhibited a standard 
deviation of 7.346676. The results showed that within the CPA range of 41 to 50 m2, no trees were 
observed, while the highest frequency of 29 trees was found within the CPA range of 21 to 30 m2. 
For Watershed algorithms, the total area encompasses 1444.205803 m2. The calculated standard 
deviation for the tree crown areas is 7.938860. The results indicate that the minimum frequency 
observed is one (1) tree within the CPA range of 0 to 10 m2, while the highest CPA range for the 
watershed algorithm is 21 to 30 m2, exhibiting a frequency of 26 trees. The local extrema algorithm 
was employed to analyze a dataset with a combined area of 1357.36698 m2. The standard deviation 
of the tree crown areas is calculated to be 7.479397. The results indicate that the minimum frequency 
observed is one (1) tree within the CPA range of 0 to 10 m2. Moreover, the largest CPA ranges for the 
local extrema algorithm are 11 to 20 m2 and 21 to 30 m2, with a frequency of 24 trees. 
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The comparison of CPA reveals that the most frequently observed ranges for the manually 
digitized, watershed algorithm, and local extrema algorithm are within the range of 21 m2 to 30 m2, 
with frequencies of 29, 26, and 24 trees, respectively. Notably, the local extrema algorithm exhibits 
high frequencies in two ranges: 11 m2 to 20 m2 and 21 m2 to 30 m2, with a frequency of 24 trees. The 
graphical representation demonstrates that the CPA values obtained from the watershed algorithm 
closely resemble those derived from manually digitized tree crown delineation. Upon comparing the 
total area covered by the manual digitized method and the algorithms, a disparity of 161.486259 m2 
is observed between the manual digitized and watershed algorithm methods, while a difference of 
74.647436 m2 is noted between the manual digitized and local extrema algorithm methods. This 
divergence can be attributed to the local extrema algorithm's tendency to segment numerous hollow 
areas, resulting in misclassifications where certain parts of the tree crown are identified as non-tree 
crown elements, as depicted in Figure 9. The figure illustrates tree ID 970, where the red line 
represents the watershed algorithm's delineation, and the cyan line represents the local extrema 
algorithm's delineation. The watershed algorithm achieves a more accurate segmentation by 
capturing the tree crown boundaries more effectively. 
 

 

Fig. 9. Segmentation of watershed algorithm in red line and local 
extrema algorithm in cyan line 

 
To conduct an accuracy assessment, it is necessary to calculate the CPA for both the watershed 

algorithm and the local extrema algorithm. Additionally, the intersection of CPA values between the 
watershed algorithm and the manual digitized method, as well as between the local extrema 
algorithm and the manual digitized method, needs to be determined. These calculations will involve 
the application of formulas for over-segmentation, under-segmentation, and distance index. 
Subsequently, a comparative analysis between the two distinct OBIA techniques will be conducted, 
providing insights into their respective performance and accuracy. 

 
5.5 Comparative Analysis of Delineation Algorithms 

 
The watershed algorithm and local extrema algorithm employ distinct step rulesets to achieve 

tree crown delineation. The watershed algorithm encompasses four crucial steps, while the local 
extrema algorithm involves three steps. Notably, the refinement stage of the watershed algorithm 
incorporates morphology and the removal of undesired objects, which are absent in the local 
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extrema algorithm due to its advanced classification technique. The omission of these steps in the 
local extrema algorithm can potentially result in the exclusion of certain tree crown delineations. 
Both algorithms produce tree crown delineations that are exported as shapefiles and subsequently 
integrated into ArcMap software for the calculation of CPA. The CPA serves as an assessment metric 
to determine the algorithm's accuracy performance. To evaluate the precision of each algorithm, 
manual digitization of tree crown delineation was conducted, enabling the calculation of CPA for 
comparison with the algorithm-derived CPAs. The manually digitized tree crown delineation was then 
intersected with the algorithm-generated delineations to evaluate their resemblance to the 
reference tree crown. 

Figure 10 illustrates the tree crown delineations obtained from different methods. Image (a) 
represents the manually digitized tree crown delineation, image (b) displays the tree crown 
delineation produced by the local extrema algorithm, and image (c) showcases the tree crown 
delineation generated by the watershed algorithm. The figure reveals that both algorithms exhibit 
classification inconsistencies. Specifically, the local extrema algorithm misclassifies shadows and 
grass as tree crowns, while the watershed algorithm solely misclassifies shadows. Furthermore, the 
figure indicates that the tree crown delineation derived from the watershed algorithm demonstrates 
a closer similarity to the manually digitized tree crown delineation compared to the delineation 
obtained from the local extrema algorithm. 

 

 
Fig. 10. Crown delineation of tree ID 954 (a) Manual digitize (b) Local extrema algorithm (c) Watershed 
algorithm 
 
5.5.1 Accuracy assessment for the watershed algorithm  

 
Two techniques were employed to assess the accuracy of the segmentation: the 1:1 technique 

and the goodness of fit technique. The 1:1 technique involved overlaying the manually digitized layer 
with the watershed algorithm layer and visually examining the alignment of tree crowns to determine 
the degree of concordance. Using the 1:1 technique, the segmentation achieved an overall accuracy 
of 83.3%, with 50 out of 60 trees exhibiting a satisfactory overlay between the manual digitizing and 
watershed algorithm layers. With regard to the goodness of fit technique, the segmentation attained 
a total accuracy of 73%, indicating a segmentation error rate of 27%. The over-segmentation measure 
was found to be 0.220 m2, while the under-segmentation measure amounted to 0.307 m2. The result 
of the accuracy assessment is shown in Table 3. 
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Table 3   
Accuracy assessment of watershed algorithm 

Table Head 
Accuracy Assessment 

Total Reference 
Polygon 

Total 1:1 
match 

Over 
segmentation 

Under 
segmentation 

Distance Index 

1:1 60 50    

Goodness of fit   0.220 0.307 0.27 

Total Accuracy  83.3%   73% 

 
5.5.2 Accuracy assessment for the local extrema algorithm 

 
The total accuracy of segmentation using the 1:1 technique is 81.7% where 49 trees from 60 trees 

overlay nicely. In the goodness fit technique, the total accuracy of segmentation is 71% and the error 
of segmentation is 29% where the over-segmentation is 0.266 m2 and under-segmentation is 0.307 
m2. Table 4 below indicates the accuracy assessment of the Local Extrema Algorithm. 

 
Table 4 
Accuracy assessment of the local extrema algorithm 

Head Table 

Accuracy Assessment 

Total Reference 
Polygon 

Total 1:1 
match 

Over 
segmentation 

Under 
segmentation 

Distance Index 

1:1 60 49    

Goodness of fit   0.226 0.307 0.29 

Total Accuracy  81.7%   71% 

 
The accuracy assessment results indicate that the watershed algorithm outperforms the local 

extrema algorithm in terms of accuracy. Using the 1:1 technique, the watershed algorithm achieved 
a higher accuracy with 50 trees exhibiting a perfect overlay as shown in Figure 11 (a), whereas the 
local extrema algorithm had 49 trees with a one-tree difference. In terms of the goodness of fit 
technique, the watershed algorithm demonstrated a lower over-segmentation measure of 0.220 m2 
compared to the local extrema algorithm, which had an over-segmentation measure of 0.266 m2, 
resulting in a difference of 0.046 m2. This discrepancy can be attributed to the misclassification of 
grass as a tree crown, as depicted in Figure 11 (b), where the manually digitized segmentation is 
smaller than the segmentation performed by the algorithms. Both algorithms exhibited the same 
under-segmentation value of 0.307 m2, as depicted in Figure 11 (c), where the segmentation 
performed by both algorithms is smaller than the manually digitized segmentation. Overall, the 
goodness of fit technique revealed that the watershed algorithm achieved a higher total accuracy of 
73% compared to the local extrema algorithm, which obtained an accuracy of 71%. This suggests that 
the watershed algorithm exhibits superior accuracy compared to the local extrema algorithm, 
whether assessed using the 1:1 technique or the goodness of fit technique. 
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Fig. 11. Manually segmented tree crown delineation in the yellow line, watershed segmented output in the 
red line while Local Extrema segmentation output in the cyan line (a) Perfect match tree crown (b) Over-
segmentation (c) Under-segmentation 
 
5.6 Tree Crown Delineation Map 

 
Figure 12(a) presents the generated tree crown delineation map utilizing the watershed 

algorithm, which is one of the employed OBIA techniques. The delineated tree crowns are 
represented by red lines. However, certain discrepancies exist within the tree crown delineation, as 
the algorithm erroneously identified certain areas of grass and shadow as part of the tree crown. To 
assess the accuracy of the delineation, the crown projection area (CPA) was computed for each tree 
crown using ArcMap software. The CPA values will be utilized in the accuracy assessment process to 
determine the algorithm’s overall accuracy performance. 

Figure 12(b) displays the finalized output of the tree crown delineation map obtained using the 
Local Extrema algorithm. Similar to the map generated through the watershed algorithm, the tree 
crown delineation is represented by the red lines. The positional markers assigned to each tree serve 
to indicate their respective IDs. Given that the map encompasses the tree crown delineation of 
unselected trees in the vicinity, the tree positions aid in identifying the trees that were chosen for 
analysis. Furthermore, the classification of grass and shadow as tree crowns within the local extrema 
algorithm results in classification inconsistencies. It is essential to calculate the CPA for the local 
extrema algorithm as well, which will be utilized in an accuracy assessment to determine the 
algorithm's overall accuracy performance. 
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(a) 

 
(b) 

Fig. 12. Tree crown delineation map using (a) watershed algorithm (b) local extrema algorithm 

 
6. Conclusions 
 

In summary, the comparative analysis between the watershed algorithm and the local maxima 
and minima algorithms reveals that the watershed algorithm exhibits a higher degree of accuracy. 
Both algorithms exhibit misclassifications, encompassing shadow, grass, and bare soil being 
incorrectly classified as tree crowns. However, the local maxima and minima algorithms demonstrate 
a greater extent of mismatched classifications, resulting in an accuracy assessment of 81.7% using 
the 1:1 technique and 71% using the goodness of fit technique. Conversely, the watershed algorithm 
attains an accuracy assessment of 83.3% using the 1:1 technique and 73% using the goodness of fit 
technique. Furthermore, the local maxima and minima algorithm showcases a higher prevalence of 
hollow areas being erroneously classified as tree crowns, despite its designation as an advanced 
classification technique. The goodness of fit technique exposes an over-segmentation value of 0.266 
m² for the local maxima and minima algorithm, in contrast to 0.220 m² for the watershed algorithm, 
signifying a disparity of 0.046 m². The under-segmentation value remains consistent between both 
algorithms at 0.307 m². Taken together, these findings indicate that the watershed algorithm 
surpasses the local maxima and minima algorithms in terms of tree crown delineation accuracy, 
exhibiting fewer mismatches and a greater concordance with manual digitization. 
 
Acknowledgement 
The authors would like to express their gratitude to the Universiti Teknologi MARA, Malaysia, for 
financing the research under Geran Penyelidikan Strategic Research Partnership (SRP), 100-RMC 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 55, Issue 1 (2026) 44-62 

61 
 

5/3/SRP (087/2021) and thanks to Universiti Teknologi MARA (UiTM), Cawangan Perlis, Kampus Arau, 
Perlis for granting access to the study area.  
 
References  
[1] Uda, M. N. A., Subash CB Gopinath, U. Hashim, Asyraf Hakimi, MN Afnan Uda, Aminudin Anuar, M. A. A. Bakar, M. 

K. Sulaiman, and N. A. Parmin. "Harumanis mango: Perspectives in disease management and advancement using 
interdigitated electrodes (IDE) nano-biosensor." In IOP Conference Series: Materials Science and Engineering, vol. 
864, no. 1, p. 012180. IOP Publishing, 2020. https://doi.org/10.1088/1757-899x/864/1/012180  

[2] de Freitas, Sergio Tonetto, Ítala Tavares Guimarães, João Claudio Vilvert, Marcelo Henrique Pontes do Amaral, 
Jeffrey K. Brecht, and Aline Telles Biasoto Marques. "Mango dry matter content at harvest to achieve high consumer 
quality of different cultivars in different growing seasons." Postharvest Biology and Technology 189 (2022): 111917. 
https://doi.org/10.1016/j.postharvbio.2022.111917  

[3] Talib, Shaidatul Azdawiyah Abdul, Muhamad Hafiz Muhamad Hassan, Mohd Aziz Rashid, Zul Helmey Mohd Sabdin, 
Muhammad Zamir Abdul Rashid, Wan Mahfuzah Wan Ibrahim, Mohammad Hariz Abdul Rahman, Mohd Ghazali 
Rusli, Syarol Nizam Abu Bakar, and Mohd Alif Omar Mustaffa. "Effects of Environmental temperature and 
precipitation pattern on growth stages of Magnifera Indica Cv. Harumanis Mango." Journal of Agricultural 
Science 12, no. 12 (2020): 26. https://doi.org/10.5539/jas.v12n12p26  

[4] Kuikel, Sudeep, Binita Upadhyay, Dhruba Aryal, Sudeep Bista, Basant Awasthi, and Sanjeevan Shrestha. "Individual 
banana tree crown delineation using unmanned aerial vehicle (UAV) images." The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences 43 (2021): 581-585. 
https://doi.org/10.5194/isprs-archives-xliii-b3-2021-581-2021  

[5] Gu, Jianyu, and Russell G. Congalton. "Individual tree crown delineation from UAS imagery based on region growing 
by over-segments with a competitive mechanism." IEEE Transactions on Geoscience and Remote Sensing 60 (2021): 
1-11. https://doi.org/10.1109/tgrs.2021.3074289  

[6] Chave, Jérôme, Christophe Andalo, Sandra Brown, Michael A. Cairns, Jeffrey Q. Chambers, Derek Eamus, Horst 
Fölster et al. "Tree allometry and improved estimation of carbon stocks and balance in tropical 
forests." Oecologia 145 (2005): 87-99. https://doi.org/10.1007/s00442-005-0100-x  

[7] Zhang, Zhengnan, Tiejun Wang, Andrew K. Skidmore, Fuliang Cao, Guanghui She, and Lin Cao. "An improved area-
based approach for estimating plot-level tree DBH from airborne LiDAR data." Forest Ecosystems 10 (2023): 
100089. https://doi.org/10.1016/j.fecs.2023.100089  

[8] Zaki, Nurul Ain Mohd, Zulkiflee Abd Latif, Mohd Zainee Zainal, and Khairulazhar Zainuddin. "Individual tree crown 
(ITC) delineation using watershed transformation algorithm for tropical lowland dipterocarp." In 2015 International 
Conference on Space Science and Communication (IconSpace), pp. 237-242. IEEE, 2015. 
https://doi.org/10.1109/iconspace.2015.7283795  

[9] Tawiah, Ekow Nyamekye, George Ashiagbor, Ir Louise van Leeuwen, Winston Adams Asante, and Jefferson Okojie. 
"Assessing the Potential Contribution of Latex from Rubber (Hevea Brasiliensis) Plantations as a Carbon Sink." 
International Journal of Innovative Research and Development 7 (12). 
https://doi.org/10.24940/ijird/2018/v7/i12/dec18016  

[10] Qiu, Lin, Linhai Jing, Baoxin Hu, Hui Li, and Yunwei Tang. "A new individual tree crown delineation method for high 
resolution multispectral imagery." Remote Sensing 12, no. 3 (2020): 585. https://doi.org/10.3390/rs12030585  

[11] Miraki, Mojdeh, Hormoz Sohrabi, Parviz Fatehi, and Mathias Kneubuehler. "Individual tree crown delineation from 
high-resolution UAV images in broadleaf forest." Ecological Informatics 61 (2021): 101207. 
https://doi.org/10.1016/j.ecoinf.2020.101207  

[12] Chang, Anjin, Yangdam Eo, Yongmin Kim, and Yongil Kim. "Identification of individual tree crowns from LiDAR data 
using a circle fitting algorithm with local maxima and minima filtering." Remote sensing letters 4, no. 1 (2013): 29-
37. https://doi.org/10.1080/2150704x.2012.684362  

[13] Safonova, Anastasiia, Yousif Hamad, Egor Dmitriev, Georgi Georgiev, Vladislav Trenkin, Margarita Georgieva, 
Stelian Dimitrov, and Martin Iliev. "Individual tree crown delineation for the species classification and assessment 
of vital status of forest stands from UAV images." Drones 5, no. 3 (2021): 77. 
https://doi.org/10.3390/drones5030077  

[14] Ritter, Tim, and Arne Nothdurft. "Automatic assessment of crown projection area on single trees and stand-level, 
based on three-dimensional point clouds derived from terrestrial laser-scanning." Forests 9, no. 5 (2018): 237. 
https://doi.org/10.3390/f9050237  

[15] Tu, Yu-Hsuan, Kasper Johansen, Stuart Phinn, and Andrew Robson. "Measuring canopy structure and condition 
using multi-spectral UAS imagery in a horticultural environment." Remote Sensing 11, no. 3 (2019): 269. 
https://doi.org/10.3390/rs11030269  

https://doi.org/10.1088/1757-899x/864/1/012180
https://doi.org/10.1016/j.postharvbio.2022.111917
https://doi.org/10.5539/jas.v12n12p26
https://doi.org/10.5194/isprs-archives-xliii-b3-2021-581-2021
https://doi.org/10.1109/tgrs.2021.3074289
https://doi.org/10.1007/s00442-005-0100-x
https://doi.org/10.1016/j.fecs.2023.100089
https://doi.org/10.1109/iconspace.2015.7283795
https://doi.org/10.24940/ijird/2018/v7/i12/dec18016
https://doi.org/10.3390/rs12030585
https://doi.org/10.1016/j.ecoinf.2020.101207
https://doi.org/10.1080/2150704x.2012.684362
https://doi.org/10.3390/drones5030077
https://doi.org/10.3390/f9050237
https://doi.org/10.3390/rs11030269


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 55, Issue 1 (2026) 44-62 

62 
 

[16] Ma, Minfei, Jianhong Liu, Mingxing Liu, Jingchao Zeng, and Yuanhui Li. "Tree species classification based on sentinel-
2 imagery and random forest classifier in the eastern regions of the Qilian mountains." Forests 12, no. 12 (2021): 
1736. https://doi.org/10.3390/f12121736  

[17] Pancel, L., and M. Kohl. Tropical Forestry Handbook. 2016. Springer EBooks. https://doi.org/10.1007/978-3-642-
54601-3  

[18] Larjavaara, Markku, and Helene C. Muller‐Landau. "Measuring tree height: a quantitative comparison of two 
common field methods in a moist tropical forest." Methods in Ecology and Evolution 4, no. 9 (2013): 793-801. 
https://doi.org/10.1111/2041-210x.12071  

[19] Yurtseven, Huseyin, Mustafa Akgul, Suleyman Coban, and Sercan Gulci. "Determination and accuracy analysis of 
individual tree crown parameters using UAV based imagery and OBIA techniques." Measurement 145 (2019): 651-
664. https://doi.org/10.1016/j.measurement.2019.05.092  

[20] Hossain, Mohammad D., and Dongmei Chen. "Segmentation for Object-Based Image Analysis (OBIA): A review of 
algorithms and challenges from remote sensing perspective." ISPRS Journal of Photogrammetry and Remote 
Sensing 150 (2019): 115-134. https://doi.org/10.1016/j.isprsjprs.2019.02.009  

[21] Johansen, Kasper, Malte Sohlbach, Barry Sullivan, Samantha Stringer, David Peasley, and Stuart Phinn. "Mapping 
banana plants from high spatial resolution orthophotos to facilitate plant health assessment." Remote Sensing 6, 
no. 9 (2014): 8261-8286. https://doi.org/10.3390/rs6098261  

[22] "Google Earth." 2023. Google.com. 2023. 
[23] Rabiu, Lawali, Anuar Ahmad, and Adel Gohari. "Advancements of Unmanned Aerial Vehicle Technology in the 

Realm of Applied Sciences and Engineering: A Review." Journal of Advanced Research in Applied Sciences and 
Engineering Technology 40, no. 2 (2024): 74-95. https://doi.org/10.37934/araset.40.2.7495  

 
 

 
 

https://doi.org/10.3390/f12121736
https://doi.org/10.1007/978-3-642-54601-3
https://doi.org/10.1007/978-3-642-54601-3
https://doi.org/10.1111/2041-210x.12071
https://doi.org/10.1016/j.measurement.2019.05.092
https://doi.org/10.1016/j.isprsjprs.2019.02.009
https://doi.org/10.3390/rs6098261
https://doi.org/10.37934/araset.40.2.7495

