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In the digital era, the exponential growth of data presents significant challenges for 
storage efficiency and processing speed. This paper reviews Content-Defined Chunking 
(CDC), a cornerstone in data deduplication technology, aimed at addressing these 
challenges. We systematically examine various CDC algorithms, categorising them into 
hashing-based and hash-less methodologies, and evaluating their performance in 
deduplication processes. Through a critical analysis of existing literature, the study 
identifies the balance between chunking speed and deduplication efficacy as a pivotal 
area for enhancement. Our findings reveal the need for innovative CDC algorithms to 
adapt to the evolving data landscape, proposing future research directions for 
improving storage and processing solutions. This work contributes to the broader 
understanding of data deduplication techniques, offering a pathway towards more 
efficient data management systems. 
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1. Introduction 
 

The proliferation of interconnected devices is expected to substantially extend worldwide 
networks; according to a previous study [1], the GSM Association projects that by 2025, more than 
1.7 billion users will be connected. The projected expansion is anticipated to generate a significant 
increase in the volume of data, with approximations placing it at 180 zettabytes globally. As a result, 
the current capacities of transmission and storage systems will be challenged. Significantly, studies 
suggest that up to 70% of this data could be redundant. This emphasizes the critical necessity for 
novel approaches to data management, which aim to optimise storage and transmission efficiency in 
light of the increasing digital overload, as indicated in recent research [2,3].  
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In this context, data deduplication emerges as a promising technique for reducing data 
redundancy. By eliminating duplicate data instances and preserving only unique elements, data 
deduplication optimizes storage capacity and enhances storage platform productivity [4]. Its primary 
objectives include conserving storage space and reducing network traffic and bandwidth 
requirements, as thoroughly analysed by Prajapati and Shah [5] and further explored by Randall and 
Lu [6]. The deduplication process, encompassing stages such as chunking, fingerprinting, indexing, 
and storage management, is foundational to efficient data management [7,8]. Specifically, the 
chunking phase, where data is segmented into smaller pieces for more effective duplicate 
identification and elimination, plays a crucial role in the initial stages of deduplication, as discussed 
by Khaing and Jeyanthi [9] and Zhang et al., [10]. By following these first steps, the process of indexing 
chunk fingerprints allows for the accurate detection of duplicate and unique data chunks. This 
method has been extensively described by Guan [11] and Naresh et al., [12], emphasizing the 
significance of advanced indexing techniques in the deduplication process. 

Data deduplication techniques vary in their approach to segmenting data, with three primary 
methods based on chunk size: whole file, fixed-size, and variable-size chunking. Whole file chunking 
treats the entire data object as a single chunk, offering simplicity and speed at the cost of lower 
deduplication efficiency [13]. Fixed-size chunking segments data into equal-sized chunks, improving 
deduplication effectiveness compared to whole file chunking, though it struggles with identifying 
optimal chunk boundaries [14]. Variable-size chunking, which creates chunks of differing sizes, stands 
out for its superior performance despite its complexity and computational demands [15]. 

The boundary shift problem, a significant challenge for both whole file and fixed-size chunking 
methods, occurs when modifications within a file shift the byte offsets of chunks, thereby 
misidentifying unique chunks as duplicates [16]. This problem highlights the limitations of relying on 
byte offsets for distinguishing between chunks [17]. In contrast, content-defined chunking (CDC), 
which segments files based on content rather than byte offsets, maintains consistent chunk 
identification even when files are altered, significantly improving deduplication ratios [18]. 

In the context of content-defined chunking (CDC) approaches, the utilization of the Rabin hash 
sliding window technique is pivotal for determining chunk boundaries. This method, despite its 
effectiveness, is noted for its computational intensity due to the need for hashing each byte in the 
data stream, as detailed by Guo et al., [19]. The variability in chunk sizes, a direct outcome of hash 
function properties, poses efficiency challenges, as discussed by Xu and Zhang [20]. Moreover, 
existing CDC algorithms confront ongoing hurdles in reducing chunk variance and computational 
overhead, with notable issues including high computational demand, CPU overhead, and challenges 
in processing low-entropy strings, as explored in various studies [21-24]. These challenges underscore 
the necessity for advancements in CDC techniques to balance efficiency and computational resources 
effectively. 

This study narrows its focus on the chunking stage of data deduplication, emphasizing Content-
Defined Chunking (CDC) for its potential to increase deduplication ratios by resolving the boundary 
shift problem inherent in fixed-size chunking. Despite the pivotal role of chunking in the efficiency of 
data deduplication, there exists a noticeable gap in the literature—a comprehensive comparison and 
evaluation of CDC techniques. Our work contributes a detailed review of both hashing-based and 
hash-less CDC algorithms, dissecting their operational methodologies, benefits, and drawbacks. We 
aim to elucidate the selection of CDC methods for specific applications, address the challenges of 
chunk size variance and computational overhead, and chart a course for future research, including 
the integration of CDC in dynamic and heterogeneous data environments. The subsequent sections 
systematically explore chunking methodologies, recent advancements in CDC algorithms, outline key 
challenges and future directions for this crucial field and the last section is the review’s conclusion.  
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2. Chunking Methodology  
2.1 Chunking Method 

 
The Chunking Method stands as the foundational step in the data deduplication process, playing 

a critical role in determining the process's overall efficiency. As outlined by Ellappan and Abirami [25], 
the method encompasses several approaches including whole file chunking, fixed-size chunking, and 
content-defined chunking, also known as variable size chunking, as we can see in Figure 1. These 
techniques are essential for categorizing data into manageable and comparable units.  

 

 
Fig. 1. Chunking Method Categories 

 
2.2 Whole File Chunking 

 
Whole file chunking operates on the principle of identifying redundant data at the file level, 

contrasting with methods that compare data within smaller segments of files. Cheng et al., [26] 
describe this approach as comparing entire files against one another to detect duplicates, storing 
only a single instance of duplicate files while associating further references with metadata pointing 
to the stored copy, as depicted in Figure 2. This method is particularly advantageous in environments 
like file servers and archival storage due to its simplicity and the high processing speeds achieved by 
treating each file as a single chunk. However, Jehlol and George [27] note that the primary limitation 
of whole file chunking lies in its lower duplication detection ratio at the file level, as minor 
modifications in files necessitate the creation of new file versions, thereby complicating duplicate 
identification and potentially leading to inefficiencies. 

  

 
Fig. 2. Whole File Chunking 
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2.3 Fixed Size Chunking 
 
Fixed-size chunking, as its name implies, involves dividing data into uniformly sized blocks for 

comparison, a method that Kumar et al., [28] suggest can significantly aid in the detection of 
duplicate data. This technique enables direct comparison of each block to previously stored blocks of 
identical size as illustrated in Error! Reference source not found.. This method potentially enhancing 
the process's efficiency in terms of processing time and computational resources. Nevertheless, the 
approach is not without its drawbacks, including the boundary-shift problem, which arises when 
changes within a file necessitate the movement of other data chunks.  
 

 
Fig. 3. Fixed Size Chunking 

 
As demonstrated in Figure 4, even a single character insertion can trigger a shift in all subsequent 

data, rendering previously established block comparisons invalid and thereby compromising 
duplicate detection accuracy. This limitation, emphasized by Elouataoui et al., [29], becomes 
particularly problematic when dealing with files of irregular or non-standard sizes. Moreover, the 
fixed-size chunking method may result in suboptimal storage utilization, as blocks are allocated fully 
to data elements, even if the actual data occupies only part of the block's capacity.  

 

 
Fig. 4. Boundary Shift Problem 
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2.4 Variable Size Chunking 
 
Variable size chunking utilizes a content-defined chunking (CDC) method to segment data into 

chunks of varying sizes. This approach, as described by Babu et al., [30], effectively addresses the 
byte-shifting issue that plagues fixed-length chunking strategies. By employing the Rabin fingerprint 
algorithm, CDC defines chunk boundaries, adapting to the unique characteristics of each data 
segment (Figure 5).  
 

 
Fig. 5. Variable Size Chunking 

 
As Nakamura et al., [31] detail, this adaptability significantly enhances deduplication efficiency. 

Each chunk size aligns with the content within, as illustrated in Figure 6. This flexibility ensures 
resilience against modifications like insertions or deletions within the file, preserving the ability to 
efficiently identify duplicate chunks and achieve optimal storage utilization.  Additionally, CDC can 
potentially enhance data transfer rates. Despite its advantages in both storage optimization and data 
management, CDC comes with the trade-off of requiring more intensive computational resources. As 
Jin et al., [32] point out, the thorough file analysis required to determine individual chunk boundaries 
can lead to increased CPU utilization. 

  

 
Fig. 6. Variable-Size Content-Based Chunking 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 52, Issue 1 (2025) 21-34 

26 
 

2.5 Fixed vs. Variable Size Chunking 
 
The CDC method, by determining chunk boundaries based on the data's local content, 

circumvents the boundary-shift problem observed with fixed-size chunking. This not only improves 
storage efficiency but also the overall system performance, by allowing data to be divided into 
smaller, more manageable chunks for more efficient storage and processing. Xia et al., [33] 
emphasize CDC's design to withstand the challenges posed by file content alterations, such as 
insertions and deletions. 

However, the computational demand of CDC, particularly due to the processing of content 
window size and hash value calculations, poses a challenge to deduplication efficiency. Jehlol and 
George [34] suggest that optimizing chunk size variance could enhance efficiency, noting that a lower 
variance in chunk size tends to yield better deduplication results. In contrast, fixed-size chunking, 
while faster and simpler, often results in lower deduplication efficiency due to its inability to adapt 
to data variability. Neelamegam and Marikkannu [35] argue for simplifying the chunking process to 
mitigate computational overhead and improve deduplication throughput in CDC implementations. 

 
2.6 Comparison of Chunking Methods 

 
The comparison of chunking methods, as summarized in Table 1, highlights the unique benefits 

and limitations associated with each technique. Whole file chunking treats each file as a single chunk, 
offering rapid processing speeds and minimal resource usage due to its straightforward approach. 
This method is particularly advantageous for environments where execution speed is prioritized over 
granular deduplication accuracy. 

Fixed-size chunking divides data into uniformly sized chunks, facilitating efficient data processing 
and resource allocation. However, this method may encounter the boundary shift problem during 
data modifications such as insertions, deletions, or reorganizations, potentially impacting 
deduplication effectiveness as noted by Chhabra and Bala [36] and Kumar and Puli [37]. 

Variable-size chunking, or content-defined chunking (CDC), addresses these challenges by 
dynamically adjusting chunk boundaries based on the data's content, thereby enhancing the 
precision of duplicate detection. Rajkumar and Dhanakoti [38] demonstrate that CDC's adaptability 
to content variations results in superior duplication identification. Nonetheless, the complexity of 
comparing each chunk against multiple others of varying sizes introduces higher computational 
demands, which may slow processing times and increase resource requirements, as discussed by Ye 
et al., [39]. 

Choosing the most suitable chunking method for data deduplication involves weighing factors 
such as resource utilization, processing speed, data variability, and duplication accuracy, tailored to 
the demands of the specific application scenario. Whole file chunking might suffice for tasks where 
deduplication is a secondary concern, like data migration. Fixed-size chunking represents a balanced 
choice for data backup applications, where it strikes a compromise between efficiency and 
computational simplicity. Variable-size chunking emerges as the preferred method for scenarios 
prioritizing high-level deduplication, such as in cloud storage solutions, due to its capacity for 
handling large datasets with varied content effectively. This assessment underscores the importance 
of selecting a deduplication strategy that aligns with the operational requirements and objectives of 
the deployment environment, considering the inherent trade-offs between complexity, efficiency, 
and resource demands associated with each chunking method. 
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Table 1 
Comparison of Chunking Methods 
Metrics  Whole File  Fixed size  Variable size  
Chunk Size  Whole file  Fixed size  Variable size  
Resource utilization  Less  More  More  
Throughput  Low  High  Moderate to High  
Deduplication ratio  Low  Low  High  
Boundary shift problem  Yes  Yes  No  
Computational complexity  Low  Moderate  High  

 
3. CDC Techniques and Algorithms 

 
CDC algorithms aim to strike a delicate balance between chunking speed, which measures the 

efficiency of dividing large datasets into smaller chunks, and deduplication ratio, which quantifies the 
data reduction achieved by eliminating duplicate information. However, this quest for optimization 
often involves a trade-off, where prioritizing one objective can adversely affect the other [40,41]. 

Smaller chunk sizes tend to lead to increased deduplication ratios by facilitating the identification 
of more duplicate segments within the dataset. However, this benefit comes at the expense of slower 
chunking speed due to the larger number of smaller chunks requiring analysis. Conversely, employing 
larger chunks may enhance chunking speed by reducing the overall number of chunks to process, but 
this gain often translates to a lower deduplication ratio as fewer opportunities arise to detect 
duplicates [42]. This inherent trade-off necessitates careful consideration during the design and 
implementation of CDC algorithms. Finding the optimal equilibrium between chunking efficiency and 
deduplication effectiveness depends on various factors, including the specific characteristics of the 
target dataset and the intended use case [43]. 

Several strategies have been proposed to address this challenge, encompassing both hash-based 
and hash-less techniques. Hash-based methods like Rabin fingerprinting efficiently identify potential 
duplicates by exploiting data patterns, but they might introduce computational overhead [44]. Hash-
less approaches, like byte pair frequency analysis, offer alternative solutions but may encounter 
limitations in certain data types or require more complex processing steps [45]. The ongoing 
development of CDC techniques underscores the dynamic nature of data deduplication challenges. 
Continuous advancements are observed in: 

 
3.1 Hashing-Based Algorithm 

 
The Content Defined Chunking (CDC) method partitions a file into chunks by analysing the file's 

content to identify repeatable patterns, such as byte sequences or strings. These patterns act as 
predetermined breaking points. This analysis transforms a set of input bytes into an output hash, 
often referred to as a fingerprint [46]. A rolling hash function is employed to pinpoint these specific 
patterns within the data, generating a hash value for each data block and its adjacent blocks [47]. 

Research in the field of CDC algorithms has focused on overcoming the issue of low deduplication 
ratios by introducing hashing-based algorithms for chunking. Various studies have advocated for 
these algorithms, citing their ability to enhance deduplication ratios [19,20,24,44,49,50]. However, 
they demand considerable computational resources, particularly for large datasets, as they 
necessitate scanning the entire data stream to locate duplicate chunks. This intensive process results 
in increased processing times and reduced chunking speeds. 

Rabin-based chunking algorithms, for instance, utilise Rabin fingerprints to determine chunk 
boundaries. This involves sliding a window of bytes across the data and computing a Rabin fingerprint 
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for each new position. A change in the fingerprint indicates a new chunk boundary. Despite its 
effectiveness in detecting duplicates, this technique requires detailed byte-by-byte analysis, resulting 
in significant time overhead [19]. 

A chunk boundary is confirmed when the fingerprint matches a specific boundary value, ensuring 
the chunk's size meets or exceeds the minimum threshold [20]. To achieve higher deduplication rates 
and efficiency, Xu and Zhang [20] developed the Quick CDC algorithm which uses techniques like 
chunk boundary jumping and dynamic chunk length adaptation. While these advancements improve 
resistance to byte shifting, they introduce complexities that could impact chunk performance, 
particularly where there is considerable variability in chunk sizes [24]. FastCDC offers solutions to 
speed up the CDC process, achieving processing speeds 3–12 times faster than traditional CDC 
methods without sacrificing deduplication rate, thereby reducing the computational burden of 
establishing chunk boundaries [24]. 

Further innovations include the algorithm by Saeed and George [44], which divides files based on 
the frequency of byte pairs (BFBC) to improve deduplication speed and storage efficiency. Although 
BFBC shows improvement, it also introduces issues such as increased processing times and memory 
requirements, with slight data modifications potentially affecting deduplication ratios. The Two 
Thresholds Two Divisors (TTTD) algorithm by Eshghi and Tang [49] builds on Rabin's method for 
eliminating redundant data by adding two divisors and thresholds, thus managing the generation of 
large chunk sizes. Despite enhancing deduplication performance, TTTD may introduce complexity 
and reduce effectiveness in some scenarios of redundant data management. Additionally, Yang et 
al., [50] have developed the Dynamic Asymmetric Maximum (DAM) algorithm, which uses maximum 
value chunk boundaries and perfect hash techniques to enhance chunk search efficiency in scenarios 
with large block sizes and low-entropy patterns, though it may face challenges in detecting specific 
patterns. Table 2 summarises the key features of hash-based algorithms, highlighting the balance 
between computational efficiency and deduplication performance. 

 
Table 2 
Summary of Hash-based Chunking Methods based: Techniques, Advantages, and Disadvantages 

Method Technique Advantages Disadvantages 
Double Sliding 
Window (DSW) 
[19] 

Divides the data stream into 
two fixed size sliding 
windows, using Rabin 
fingerprinting for hashing 
comparison. 

Low memory usage, low false-
positive rate, high 
deduplication ratio. 

Not suitable for frequently 
changed data, computationally 
expensive for large datasets. 

QuickCDC [20] Jumps straight to chunk 
boundaries in cases of 
duplicate chunks. 

Fast chunking and a higher 
deduplication ratio with 
redundant datasets. 

Not effective for datasets with 
a lot of unique data. 

Super CDC [21] Combines two acceleration 
mechanisms: small chunk cut 
point skipping and predicting 
where boundaries are likely 
to occur. 

Reduces chunking 
computations, achieves a 
higher deduplication ratio 
than state-of-the-art gear-
based methods. 

Requires more memory to store 
stream history, high processing 
power needed, cannot 
recognize small or large 
duplicate chunks. 

FastCDC [24] Utilizes five different 
techniques for optimization. 

About 3 to 12 times faster 
than traditional CDC's 
chunking speed, data removal 
percentage is close to the 
classic Rabin method. 

Chunk Size Variability 
complex computations and 
optimization techniques 
demand more memory and 
CPU resources, 

Jump-based 
chunking (JC) [32] 

speculative jump technique 
in the sliding window, jumps 
based on the hash condition. 

Reduces the number of hash 
calculations and speeds up 
the chunking process. 

May reduce the deduplication 
ratio, introduces false positives, 
requires more storage. 
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Window Chunking 
Signature 
Encryption 
(WCSE) [35] 

Separates data, encrypts it 
with a unique signature 
using MD5 hash function, 
and saves it in the cloud.  

Efficient segment signature 
analysis outperforms 
competing deduplication 
algorithms.  

Increasing computing expenses 
with large datasets, 
computational difficulty, and 
increased processing time  

Bytes Frequency 
Based Chunking 
(BFBC) [44] 

Divides files based on byte 
pair frequency  

Three times faster chunking 
speed than TTTD, faster 
hashing algorithm  

Computational overhead, high 
memory requirements, low 
deduplication ratio  

Two Thresholds 
Two Divisors (TD 
&TTTD) [49] 

Two divisors for boundary 
identification, Divides data 
into equal-sized chunks.  

High deduplication ratio, 
efficient entropy removal, 
and reduces chunk size  

High chunk size variance, 
inefficiency in handling high 
redundancy data 

Dynamic 
Asymmetric 
Maximum (DAM) 
[50] 

Uses a maximum value as a 
chunk boundary, perfect 
hash algorithm  

Detects low-entropy strings in 
redundant data, slightly 
improves deduplication rate  

Time complexity, incapability to 
handle large data sets, and low 
efficiency when using substring 
comparison  

 
3.2 Hash-Less Algorithm 

           
The hash-less CDC algorithm differs from hashing-based algorithms as it does not use hash values 

to identify duplicate data chunks. Instead, it employs byte values within a sliding window to perform 
the chunking process. This approach eliminates the need to compute hash values, significantly 
reducing the computational complexity involved in deduplication and improving chunking 
throughput, which has documented the method's efficiency and speed [22,23,25,51-54]. Despite 
these advancements, the same body of research indicates certain limitations. Notably, the process 
of boundary shifting—integral to the algorithm's operation—can change the cut points for chunks. 
Such alterations may inadvertently lead to the exclusion of duplicate chunks, potentially 
compromising the algorithm's efficacy in deduplication [22,23,25]. Additionally, a critical challenge 
arises from the potential for significant variance in data chunk sizes. Since the algorithm's chunking 
mechanism is predicated on the distribution of byte values within the sliding window, an uneven 
distribution can result in considerable inconsistencies in chunk sizes [51-54]. This variability may 
undermine the algorithm's efficiency, particularly in its capacity to uniformly identify and eliminate 
duplicate data chunks. Thus, while the hash-less CDC algorithm offers notable advantages, including 
reduced computational demands and improved chunking throughput, it also faces challenges in 
accurately detecting duplicate chunks. These challenges highlight areas for potential improvement 
and further research, particularly in optimizing the algorithm to address the issues of chunk size 
variance and the potential omission of duplicates. The existence of such limitations underscores the 
need for a balanced assessment of the hash-less CDC algorithm's performance compared to 
traditional hashing-based algorithms. Despite these challenges, the hash-less CDC algorithm's 
reduced computational demands and increased chunking throughput present notable advantages. 
Yet, the identified limitations necessitate a balanced evaluation of its performance relative to 
traditional hashing-based methods. Specifically, addressing chunk size variance and the potential for 
missing duplicates are critical areas for future enhancement. Table 3 provides a summary of some 
hash-less algorithms, serving as a resource for comparing these approaches and underscoring the 
ongoing need for research aimed at refining deduplication technologies. 
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Table 3 
Summary of Hash-less Chunking Methods: Techniques, Advantages, and Disadvantages 

Method Technique Advantages Disadvantages 
Asymmetric 
Extremum (AE) [22] 

Uses a fixed-size right 
window and a variable-sized 
fixed window.  

Low computational overhead, 
high throughput, smaller chunk 
size, ability to eliminate low-
entropy string  

Less resistance to byte 
shifting, more time to 
process chunks, and a small 
improvement in 
deduplication  

UltraCDC [23] Use four techniques 
compute boundary, 
skipping sub-minimum size, 
normalising, and jumping  

Reduces overhead of hash 
calculation, detects low-
entropy strings, and has faster 
processing compared to Rabin 
and AE.  

Low deduplication ratio, 
possibility of false positives 
or missed duplicates, 
storage space requirements  

Dynamic Prime 
Chunking (DPC) [25] 

Dynamically adjusts window 
size based on duplicate 
chunks  

Improves throughput, low 
computational overhead, 
reduces processing time, 
avoids large chunk  

High computational 
complexity, less resistant to 
boundary problem  

Maximum Points 
/Local Maximum 
Chunking 
(MAXP/LMC)  
 [51] 

Divides data using local 
extreme values  

Timesaving, high throughput, 
resistance to data changes  

High chunk size variance, 
limitation in entropy 
removal, slow processing  

Rapid Asymmetric 
Maximum (RAM) 
[52] 

Uses a fixed-sized left 
window and a variable-sized 
right window.  

low computational expenses, 
productivity of chunking is 
high. High chunking speed.  

Problem of boundary 
shifting.  

Minimal 
Incremental Interval 
(MII) [53] 
 

based on incremental data 
synchronization  

Reduce time overhead, 
manage boundary-shift 
problem  

Variance chunk size and 
inefficient chunking  

Double Extreme 
and Rapid Double 
Extreme (DE & RDE) 
[54] 

Uses byte values in a sliding 
window to the determine 
cut point.  

Better handling of low entropy 
strings improves chunking 
throughput.  

High computational 
complexity, slow processing 
time, less resistance to byte 
shifting, chunk size variance  

       
4. Challenges and Open Issues of CDC Algorithms 

 
Despite the effectiveness of numerous CDC algorithms, several challenges and open issues still 

necessitate systematic study and further development. This section addresses significant challenges 
in CDC algorithms that impact deduplication efficiency, which in turn affects storage space utilization 
and network transmission efficiency. The creation of an efficient chunking algorithm can enhance 
storage utilization, cost efficiency, and presents substantial utility and research value. The gap 
between the throughput of existing algorithms and the capabilities of current storage devices 
represents a significant challenge, highlighting the crucial role of data chunking research in improving 
data deduplication system performance, conserving CPU resources, and optimizing storage device 
capacity. The following sections outline pivotal areas for future investigation aimed at overcoming 
these challenges and propelling CDC technology forward: 

 
4.1 Variance in Chunk Size 

 
 The variability in chunk sizes presents a significant challenge for CDC techniques, which strive to 

deduplicate similar data by segmenting it based on content. Balancing chunk granularity with 
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deduplication efficiency is a complex task: excessive chunking can increase processing time, whereas 
insufficient chunking may reduce throughput. Future research should focus on developing adaptive 
chunking strategies that dynamically adjust to data characteristics. Investigating machine learning 
models that predict optimal chunk sizes could offer groundbreaking improvements in CDC efficiency. 

 
4.2 Dynamic Data Changes 

 
CDC algorithms must be designed to adapt to changes in data content, especially in environments 

characterized by frequent updates. This adaptability is essential for maintaining efficient chunking 
and deduplication processes over time. Research in this area could explore the development of 
algorithms that more effectively identify and adjust to data mutations, thereby enhancing the 
longevity and efficacy of deduplication strategies. 

 
4.3 Reducing CPU Overhead 

 
The intensive process of detecting chunk boundaries in CDC algorithms significantly contributes 

to CPU resource consumption. Addressing this challenge requires exploring methods to reduce 
computational demands. Future investigations could explore the potential of hardware acceleration, 
leverage distributed computing architectures, or optimize algorithmic efficiency to reduce CPU load. 

 
4.4 Stream Data Processing 

 
Adapting CDC algorithms for real-time streaming data processing poses distinct challenges due 

to the continuous nature of the data. Developing strategies for efficient, real-time chunking and 
deduplication is an important area of research. 

 
5. Conclusions 

 
This review offers a comprehensive examination of CDC algorithms, elucidating their core 

concepts, methodologies, advantages, and limitations. It has identified critical challenges facing these 
algorithms, such as chunking speed, chunk size variance, chunk boundary detection, and 
deduplication ratio. Proposed solutions to these challenges are discussed, along with observations 
on their effectiveness. The review also highlights the complex implementation issues faced by CDC 
algorithms and outlines state-of-the-art research aimed at addressing these challenges to improve 
CDC algorithm efficiency and performance. The need for focused research on designing efficient CDC 
algorithms that navigate the complexities of hashing and hash-less byte shifting to achieve superior 
performance while reducing storage demands is evident. 
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