
Journal of Advanced Research in Applied Sciences and Engineering Technology 63, Issue 1 (2026) 1-16

1

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Input-Output Based Relations T-Way Test Suite Generation Strategy
Based on Ant Colony Optimization Algorithm (iTTSGA)

Nuraminah Ramli1,2*, Rozmie Razif Othman1,2, Rimuljo Hendradi 3, Hasneeza Liza Zakaria1,2, Iszaidy
Ismail1,2, Nurul Ain Mohd Zaki4, Nik Afiqah N. Ahmad Yani5

1 Advanced Computing, Centre of Excellence (CoE), Universiti Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis, Malaysia
2 Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis, Malaysia
3 Faculty of Sciences and Technology, Universitas Airlangga, 60115, Surabaya Jawa Timur, Indonesia
4 School of Geomatics Science and Natural Resources, College of Built Environment (CBE), Universiti Teknologi MARA, Cawangan Perlis, 02600

Arau, Perlis, Malaysia
5 College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Cawangan Perlis, 02600 Arau, Perlis, Malaysia

ABSTRACT

Input-output based relations (IOR) testing is one of the support interactions in t-way
testing (t is referring to the interaction strength). T-way testing is useful to solve the
issue of exhaustive testing, which generates a large number of test cases and is
impractical to execute because of financial and schedule limitations. Several IOR test
suite generation strategies have been put forth in the literature. Although these
strategies can produce a sizable IOR test suite, very few of them use the metaheuristic
search technique which can produce smaller test suite sizes for uniform and variable
strength interactions. Because the T-way test suite generation problem is NP-hard, no
strategy can guarantee that it can produce the ideal test suite size for every possible
system configuration. Motivated by these challenges, this paper presents an IOR test
suite generation strategy based on a metaheuristic algorithm, Ant Colony Optimization
(ACO) called iTTSGA. The results of two benchmark experiments for IOR uniform and
non-uniform configurations were compared with those of other IOR strategies that
have been published. The performance of iTTSGA has been statistically analyzed using
the Friedman test and Wilcoxon Sum test. Results show that, except for |R|=10 and
the top ranking in the Friedman Test, iTTSGA outperforms other strategies in the
majority of uniform configurations. In addition, the iTTSGA performs exceptionally
well in non-uniform configuration for |R|=30 and 60 and ranks second in the Friedman
test. It demonstrates that iTTSGA can produce test suites with a smaller file size for
IOR t-way testing.

Keywords:
T-way testing; input-output based
relations; ant colony algorithm;
metaheuristic optimization algorithm

1. Introduction

Software testing is a crucial activity in any software development project. Testing activities
receive more allocation of resources for software development [1]. It is important because this
activity can increase the client’s confidence in the software project and ensure compliance with the

* Corresponding author.
E-mail address: nuraminah@unimap.edu.my

https://doi.org/10.37934/araset.63.1.116

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

2

requirements. Testing activities involve generating test cases [2]. Test cases are created based on
scenarios, and combinations of inputs within the system under test (SUT). The number of test cases
will increase exponentially as the number of functionalities (or inputs) is added to the system and
eventually will lead to combinatorial explosion problem where there are too many test cases that
need to be executed [1, 2].

Testing methods have therefore been developed to deal with this problem. One testing method
that operates by interacting input parameters and their values at specific strengths is known as
combinatorial testing (also referred to as t-way testing) [3-5]. As a general rule of thumb, the t-way
test suite size is reduced when the interaction strength (i.e., the number of input parameters that
are interacted) is low. If the interaction strength value is similar to total input parameters, the t-way
test suite produced is identical to exhaustive testing.

Three different types of interaction support, including input-output-based relations (IOR),
uniform and variable strength, are offered by t-way testing. In the case of uniform strength
interaction, all input parameters are given the same strength, whereas in the case of variable
strength interaction, some input parameters are given different interaction strengths. Regarding
IOR, the relationships between the SUT's input and output are used to derive the interactions. For
detail explanation regarding different type of interactions, readers are suggested to refer to the
following papers [4, 6, 7].

Each type of interaction supports has its advantages. As far as test suite size is concern, IOR
produces the smallest size of all [8]. Nevertheless, IOR can be beneficial and more effective in
generating smaller test suite size if the software tester has information of interactions between
parameter inputs and outputs of the system to be tested. Unlike uniform and variable strength, IOR
will ignore other unrelated interactions.

Although many existing works have been carried out on uniform [4, 9-15] and variable strength
[14, 16-26] very few studies have explored IOR [27]. To date, only a few strategies have been
reported in the literature that support IOR [3] (e.g. Density [28] ParaOrder [29], ReqOrder [29],
Union [30], Greedy [31], TVG [32], ITTDG [33], AURA [34], DA-RO, DA-FO [35] and CTJ [36]).
Interestingly, only a few of the existing IOR based strategies utilize metaheuristic search technique
in generating the test suite such as CTJ whereas the others apply computational search technique
[37]. Although computational search technique able to generate good results, metaheuristic is able
to produce smaller size of t-way test suite for both uniform and variable strength [4, 13, 38, 39].
Besides that, metaheuristic requires only a few or no assumptions which make it adaptable and
flexible in many situations. It also has the capability of solving bigger search space [40].

Based on this motivation, this paper presents an IOR test suite generation strategy developed
by embedding Ant Colony Optimization (ACO) algorithm, iTTSGA. In addition, generating IOR test
suite is challenging problem, known as NP-Hard, meaning no single strategy can claimed to produce
the optimum test suite size for all system configurations) [15, 41, 42]. Therefore, research in this
area is always open for new contributions. The iTTSGA strategy benefits the IOR t-way testing field
with the adoption of metaheuristic ACO algorithm. Besides, this paper presents results of
experiments based on benchmarked experiments that can be used to see the performance of each
strategy.

To facilitate the discussion, the paper is organized into five sections. Elaboration on the related
works and research context are described in the second section. Subsequently, the proposed
strategy is discussed thoroughly in the third section. Meanwhile, the fourth section elaborates the
evaluation for our strategy. The final section concludes the discussion.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

3

2. Related Works
2.1 Background Research

A College Advisory System will be discussed as an example of IOR testing scenario. The system
advises student on which college programs they can apply based on their final examination marks
for the selected courses such as Economic, Mathematics, English Language and Information
Technology. There are 3 programs offered by the college which are Business Administration,
Technoprenuership and Computer Science Program. The system will suggest the students for:

i. Business Administration Program if students pass Economic and English Language courses.
ii. Technopreneurship Program if students pass Economic and Information Technology

courses.
iii. Computer Science Program if students pass Mathematics, English Language and

Information Technology courses.
Here, marks for all courses are between 0 and 100 inclusive and the passing marks are 50. By

using Equivalent Partitioning Technique [43] and ignoring the invalid partition, the input marks for
all courses can be grouped into two partitions either passed or failed partition. One value for each
partition is selected as the testing value. The value of 50 is for passed partition and 49 for failed
partition. The testing input value for each course (or input parameter) is presented in Table 1.

Table 1
College advisory system’s input value
Economic / Mathematics / English Language / Information Technology
Pass 50
Fail 49

To ease the discussion, a symbolic representation as shown in Table 2 will be used to represent
input values throughout this section where E, M, G and N represent Economic, Mathematics,
English Language and Information Technology respectively. Meanwhile, the lowercase letter and
number 1 represent pass, while fail is represented by 2. To exhaustively test all combinations, 16
test cases are required to be conducted as depicted in Table 3.

However, a closer look on the system requirements reveals three distinct outputs with following
input-output relationships:

i. Acceptance for Business Administration Programme, F(V), directly related to input for
Economics and English Language (i.e. E and G respectively)

ii. Acceptance for Technopreneurship Programme, F(W), directly related to input for
Economics and Information Technology (i.e. E and N respectively)

iii. Acceptance for Computer Science Programme, F(X), directly related to input for
Mathematics, English Language and Information Technology (i.e. M, G and N respectively)

Table 2
Input parameter values representation
E M G N
e1 m1 g1 n1
e2 m2 g2 n2

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

4

Table 3
Exhaustive combination of the SUT

E M G N
e1 m1 g1 n1
e1 m1 g1 n2
e1 m1 g2 n1
e1 m1 g2 n2
e1 m2 g1 n1
e1 m2 g1 n2
e1 m2 g2 n1
e1 m2 g2 n2
e2 m1 g1 n1
e2 m1 g1 n2
e2 m1 g2 n1
e2 m1 g2 n2
e2 m2 g1 n1
e2 m2 g1 n2
e2 m2 g2 n1
e2 m2 g2 n2

The input-output relationships for College Advisory System can be graphically described by
Figure 1. From the system requirements with the three outputs mentioned above, the IOR testing
for College Advisory System is implemented. Final test cases are produced as in Figure 2. It also
shows the three outputs which are f(V), f(W) and f(X)) and the related input values. Symbol (*)
indicates a don’t care value where it is not needed to cover the output. The final test cases illustrate
that the number of test cases produced is smaller than that of exhaustive testing. The reduction is
due to IOR testing has removed any repeating test cases (i.e. e1m1g1n1, e2m1g1n2, e1m1g2n1,
e2m2g1n2 and e2m2g2n2). Finally, only 10 test cases need to be performed as compared to 16 test
cases produced by exhaustive testing.

Fig. 1. IOR t-way testing for college advisory
system

According to [33], IOR t-way test suite can be mathematically represented using covering array
(CA) notation, P, as in Eq. (1).

P = IOR (N, C, R,) (1)

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

5

where N is size of final test suite, C is configuration value represented as V0
p0 , V1

p1 ,……., Vn
pn

indicating that there are p0 parameters with V0 values, p1 parameters with V1 values and so on and
R is the IOR involve in generating the test suite and |R| refers to the number of defined IOR
definition set. Therefore, the representation of test suite in Figure 3 using CA notation, P is as in Eq.
(2).

P = IOR 10, 24, E, G , M, G, N , E, N (2)

Fig. 2. IOR testing for college advisory system

2.2 Existing Strategies

There are two types of search technique that has been used widely by researchers, namely
computational and metaheuristic [44]. As discussed earlier, most of the existing strategies that
support IOR apply computational which involves greedy technique.

Schroeder introduced the Union strategy [30], which assigns unrelated IOR parameters a
random value at the "don't care" value. This strategy then combines redundant test cases. While it
can generate test suites quickly, the resulting size tends to be large. Two years later, the Greedy
strategy was proposed. It assigns a do not care value to any parameter values that are unaffected.
It selects test cases from the initial test suite that cover the largest number of remaining uncovered
interactions. Greedy yields a more optimized test suite size compared to the Union strategy.
However, it is worth mentioning that Greedy requires a longer time to generate the test suite [31].

ITTDG works by having a candidate test data list to determine final test data. The strategy
compares a parameter at a time with a value that can covers the most uncovered tuples and uses
test data weight to be in the final test suite [33].

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

6

The AURA strategy [33] consists of Interaction Pair Generation, Test Suite Construction, and
Actual Data Mapping algorithms that work together to create the final test suite. Both symbolic
values and actual data output are supported by the strategy. It is possible to shorten the time
needed to load fault files and analyze parameters by mapping the actual data values. The strategy
also incorporates a post-processing method that enables software testers to change the settings in
accordance with their preferences, like the number of iterations.

DARO and DAFO are another example of strategies that support IOR. The strategies were
developed based on the Density strategy. Both strategies focus on determining the values of factors
classified on different criteria. The DA-RO strategy considers the highest coverage requirements to
fix the values of factors, while the DA-FO strategy determines the order of factors to fix their values
[35].

CTJ is using a different search technique than the other strategies discussed earlier. It embeds
Java algorithms and applies a metaheuristic search technique. The Jaya algorithm consists of only
two parameters to be controlled (i.e. population size and maximum iterations) and it only depends
on global search to search for the best results. Its main strength is to produce test suite size within
a short time [36].

Every strategy has its unique strengths in generating an optimal size of test suite. CTJ is the only
strategy that utilizes metaheuristic search technique. In contrast, Union, Greedy, ITTDG, AURA,
DARO dan DAFO strategies apply greedy search techniques. The utilization of search techniques
and algorithms can greatly assist in achieving the best possible results.

2.2 Ant Colony Optimization (ACO) Algorithm

ACO algorithm is inspired by a colony of ant searches for the shortest route from its nest in an
attempt to mimic the behavior of an ant colony looking for food. Each ant will lay down a
pheromone at each path it chooses, informing other ants in its colony that this path has been
chosen. In the end, the ants use the greatest quantity of pheromones deposited by their colony to
create the shortest routes from the nest to the food source. Details on ACO applied in the strategy
are described in Section 3.

3. Proposed Strategy

iTTSGA adopts a metaheuristic algorithm, ACO. It has solved a variety of optimization issues,
including those pertaining to software testing. Additionally, ACO has been applied in the t-way
testing field. The first strategy named as ACO strategy supports uniform strength [14] while Ant
Colony System strategy supports variable strength [20]. Nevertheless, iTTSGA is different than both
strategies whereby iTTSGA supports other types of t-way, namely IOR. iTTSGA implements Route
Selection Rule in order to exploit the same route or explore new route [20]. In our strategy, iTTSGA
will explore more new routes than exploit the same route to ensure all routes are covered at least
once. Besides that, iTTSGA also introduces a new IOR fitness function that will be explained later in
this section.

Figure 3 demonstrates the proposed strategy, iTTSGA strategy which consists of three
generators namely Tuples, Search Space and Test Case Generator. Relationship of input parameters
and outputs of the SUT are required to trigger the strategy to produce a test suite.

In the Tuples Generator component, the relationship of input parameters and its output are
interacted by using IOR t-way testing technique. Each output is called function output. It produces
interactions between values of related input parameters or known as tuples. All tuples produced

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

7

are stored in the IOR Tuples List. Figure 4 presents a structure of IOR Tuples List. The structure
contains the interaction of related input parameter values based on function output (i.e. f(n)). The
symbol (*) means the input parameter does not have any interaction in the function output. The
component’s algorithm is illustrated in Figure 5. The algorithm requires function outputs and the
related input parameters. For each function output, the algorithm interacts with the related input
parameters and its values. This algorithm will produce IOR interactions for each function output,
namely IOR interaction set, S.

Fig. 3. Illustration of iTTSGA strategy framework Fig. 4. A structure of IOR tuple list

Fig. 5. Tuple generator algorithm

While the Tuple Generator is focused on determining the interaction among input parameters,
the Search Space Generator component concentrates on generating a path for the ants to travel.
This path is created based on the input parameters and the potential values associated with them.
Since this strategy applies ACO algorithm, this route corresponds to the ants’ route, from a nest to a
food source. Search Space Generator converts input parameters of SUT to nodes. Each value of
input parameter will be the edge of a node. Figure 6 displays the structure of Search Space
Generator. For example, input parameter A has two values. In the Search Space Generator, node A,
has two edges. This process continues for every input parameter of SUT. The last node is a food
node which only contains incoming edges.

FoodNode
A

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

8

Fig. 6. Search space generator
The final component in our strategy is the Test Case Generator. This component constructs a

single best test. ACO algorithm is adopted in this component. Heuristic and pheromone values are
two important parameters to assist ants to make a decision. Heuristic is the early information
before ants start travelling to search for food. It refers to the uncovered tuples in the IOR Tuples
List. Whilst pheromone is a value deposited by the previous ants to tell the next ants that this edge
has been travelled by him. The next ants have a high tendency to choose edge with the highest
pheromone value. At the last node or known as Food node, the chosen edges for each node will
form a single test case. Figure 7 depicts the Test Case Generator’s structure.

Fig. 7. Test case generator

The algorithm for this component is depicted in Figure 8. The IOR interaction set, S is used as a
stopping criterion in generating Test Suite Algorithm. Once IOR interaction set, S is empty, the
algorithm finishes its task and final test suite is completed. This algorithm aims to generate the
most covered single test of IOR interaction test, S by using formulas or rules to calculate certain
criteria.

Fig. 8. Test suite generation algorithm

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

9

At the initialization stage (i.e. line 5-6), pheromone, τi,j t is initialized to 0.5 (i.e. constant
value). In contrast, heuristic value, the information of uncovered tuples in the IOR Tuple List is
calculated using Eq. (3).
η(�,�) = Ei,max− Ei,j+ 1

Ei,max− Ei,min+ 1
(3)

where Ei,j is the number of test cases that contain edgei,j in the given test set, Ei,min is min1≤ j ≤valuei

{Ei,j} and Ei,max is max1≤ j ≤valuei {Ei,j}.

While travelling from one node to another, Route Selection Rule is being used as in line 9. Ant
either explores new edge or exploits similar edge as previous ant. A probability indicator, q0 (where
0 ≤ q ≤ 1), is utilized. A random variable, q, is generated uniformly within the range of [0,1] and
compared to q0. If q is less than or equal to q0, the exploitation of edge is happened by applying
the formula mentioned in Eq. (4).

argmax1≤h≤ li [τi,h t α(ηi,h t β
(4)

However, if q>q0, ant is exploring new edge using a Eq. (5).

pi,j t =
τi,j t α ηi,j

β

h=1
li [τi,h t α ηi,h

β
�

(5)

Ant will travel until it reaches the food node. Then, the ant deposits a pheromone at the chosen
edge as in line 17. Indirectly, the ant is updating any pheromone value deposited by the previous
ants. The formula for updating a pheromone is as in Eq. (6).

τi,j t + 1 =
1 − ρ τi,j t + ρ∆τi,j

bs if ei,j ∈ testbs

τi,j t otherwise
(6)

where ∆τi,j
bs is fitness function.

In addition of incorporating ACO algorithm, this research also focuses on metaheuristic search
technique for IOR t-way testing. Metaheuristic search technique can produce smaller test suite size
in many cases [17, 45]. It also has been applied to search-based software testing and produces good
result in a reasonable of time [46]. Metaheuristic works by producing a set of test cases. Rather
than making assumptions like greedy-based algorithm, metaheuristic uses fitness function to search
for the best coverage test case. Later on, a set of high-quality test cases can be found. For that
reason, this paper is introducing fitness function for IOR t-way testing. Fitness function of IOR t-way
testing is number of interactions that covered the current test but were not covered by the earlier
test. An Eq. (7) presents the IOR t-way testing for fitness function which is adopted from previous
researchers [47].

f(ti) = p=0
programOutput wp� (7)

where wp is the number of interactions covered by current test but not covered by the previous
test and programOutput is the function output of a SUT.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

10

An illustration of how to calculate the fitness function is shown in Figure 9. There are three
function outputs in this scenario: f(V), f(W), and f(X). The IOR interaction that needs to be covered is
the interaction that IOR t-way testing on the basis of these function outputs produces. The fitness
function is used to identify which agent (ant) generates the best test, presuming there are two ants
acting as agents to generate their respective tests. To assess the caliber of the generated test, the
fitness function computes the IOR interaction derived from the function output. Then, by
comparing each IOR interaction to the IOR interaction table, the highest number of coverage
interactions is determined. The best test is chosen as the one with the highest fitness function.
Finally, the best test I placed into the final test suite.

Fig. 9. Fitness functions calculation example

4. Results
4.1 Evaluations with Benchmarking IOR Strategies

Evaluation of iTTSGA with current benchmarking IOR strategies has been performed. Two
different experiments were conducted based on parameters presented in Table 4. Some of the
parameters are based on the parameter tuning done by researchers [48].

Table 4. iTTSGA design parameters
Parameter Value
Number of ants 20
Pheromone control, α 1.0
Heuristic control, β 0.5
Pheromone evaporation rate, ρ 0.1
Initial pheromone, τ0 0.5
q0 0.5
Iteration 300
Stale period 5

The first experiment is to represent uniform configurations, IOR (N, 33, R) with 10 parameters.
Each parameter has three possible values. The second experiment consists of 10 non-uniform
configurations, IOR (N, 23 334351, R). The parameters contain 3 parameters of 2 values, 3
parameters of 3 values, 3 parameters of 4 values and a parameter of 5 values. For both
experiments, the relationship, R are as follows:

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

11

i. R1 = [{1,2,7,8}, {0,1,2,9}, {4,5,7,8}, {0,1,3,9}, {0,3,8}, {6,7,8}, {4,9}, {1,3,4}, {0,2,6,7}, {4,6}]
ii. R2 = [{1,2,7,8}, {0,1,2,9}, {4,5,7,8}, {0,1,3,9}, {0,3,8}, {6,7,8}, {4,9}, {1,3,4}, {0,2,6,7}, {4,6},

{2,3,4,8}, {2,3,5}, {5,6}, {0,6,8}, {8,9}, {0,5}, {1,3,5,9}, {1,6,7,9}, {0,4}, {0,2,3}]
iii. R3 = [{1,2,7,8}, {0,1,2,9}, {4,5,7,8}, {0,1,3,9}, {0,3,8}, {6,7,8}, {4,9}, {1,3,4}, {0,2,6,7}, {4,6},

{2,3,4,8}, {2,3,5}, {5,6}, {0,6,8}, {8,9}, {0,5}, {1,3,5,9}, {1,6,7,9}, {0,4}, {0,2,3}, {1,3,6,9},
{2,4,7,8}, {0,2,6,9}, {0,1,7,8}, {0,3,7,9}, {3,4,7,8}, {1,5,7,9}, {1,3,6,8}, {1,2,5}, {3,4,5,7}]

iv. R4 = [{1,2,7,8}, {0,1,2,9}, {4,5,7,8}, {0,1,3,9}, {0,3,8}, {6,7,8}, {4,9}, {1,3,4}, {0,2,6,7}, {4,6},
{2,3,4,8}, {2,3,5}, {5,6}, {0,6,8}, {8,9}, {0,5}, {1,3,5,9}, {1,6,7,9}, {0,4}, {0,2,3}, {1,3,6,9},
{2,4,7,8}, {0,2,6,9}, {0,1,7,8}, {0,3,7,9}, {3,4,7,8}, {1,5,7,9}, {1,3,6,8}, {1,2,5}, {3,4,5,7},
{0,2,7,9}, {1,2,3}, {1,2,6}, {2,5,9}, {3,6,7},{1,2,4,7}, {2,5,8}, {0,1,6,7}, {3,5,8}, {0,1,2,8}]

v. R5 = [{1,2,7,8}, {0,1,2,9}, {4,5,7,8}, {0,1,3,9}, {0,3,8}, {6,7,8}, {4,9}, {1,3,4}, {0,2,6,7}, { 4,6},
{2,3,4,8}, {2,3,5}, {5,6}, {0,6,8}, {8,9}, {0,5}, {1,3,5,9}, {1,6,7,9}, {0,4}, {0,2,3}, {1,3,6,9},
{2,4,7,8}, {0,2,6,9}, {0,1,7,8}, {0,3,7,9}, {3,4,7,8}, {1,5,7,9}, {1,3,6,8}, {1,2,5}, {3,4,5,7},
{0,2,7,9}, {1,2,3}, {1,2,6}, {2,5,9}, {3,6,7}, {1,2,4,7}, {2,5,8}, {0,1,6,7}, {3,5,8}, {0,1,2,8},
{2,3,9}, {1,5,8}, {1,3,5,7}, {0,1,2,7}, {2,4,5,7}, {1,4,5}, {0,1,7,9}, {0,1,3,6}, {1,4,8}, {3,5,7,9}

vi. R6 = [{1,2,7,8}, {0,1,2,9}, {4,5,7,8}, {0,1,3,9}, {0,3,8}, {6,7,8}, {4,9}, {1,3,4}, {0,2,6,7}, {4,6},
{2,3,4,8}, {2,3,5},{ 5,6}, {0,6,8}, {8,9}, {0,5}, {1,3,5,9}, {1,6,7,9}, {0,4}, {0,2,3}, {1,3,6,9},
{2,4,7,8}, {0,2,6,9}, {0,1,7,8}, {0,3,7,9}, {3,4,7,8}, {1,5,7,9}, {1,3,6,8}, {1,2,5}, {3,4,5,7},
{0,2,7,9},{1,2,3}, {1,2,6}, {2,5,9}, {3,6,7}, {1,2,4,7}, {2,5,8}, {0,1,6,7}, {3,5,8}, {0,1,2,8},
{2,3,9}, {1,5,8}, {1,3,5,7}, {0,1,2,7}, {2,4,5,7}, {1,4,5},{0,1,7,9}, {0,1,3,6}, {1,4,8}, {3,5,7,9},
{0,6,7,9}, {2,6,7,9}, {2,6,8}, {2,3,6}, {1,3,7,9}, {2,3,7}, {0,2,7,8}, {0,1,6,9}, {1,3,7,8}, {0,1,3,7}].

For both experiments, R starts with the first 10 relationships. Then, it adds another 10
relationships and continues until all 60 relationships. As a result, 12 independent sub-experiments
have been conducted for both experiments.

Results obtained from the experiments is compared to benchmark experiments of IOR
strategies as in [27] and [36]. The comparison of our strategy to benchmarked strategies has been
widely used in the t-way research field to evaluate iTTSGA's performance in producing test suite
size.

Figures 10 and 11 demonstrate results from experiments for uniform configurations and non-
uniform configurations respectively. Coloured cell is the best test suite size produced by each |R|.
For example, ITTDG produced the best test suite size as compared to other strategies for |R|=10.
The best test suite size is referring to the smallest number of test suite, which means the strategy
produces a near optimum test suit size.

Fig. 10. Test suite size for IOR (N, 310, R)

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

12

Fig. 11. Test suite size for IOR (N, 23 334351, R)
Figure 10 compares iTTSGA with other existing IOR strategies in the first experiment, focused on

uniform configurations. It is worth noting that most of these strategies employ computational
search techniques, except for the CTJ strategy. From the table, iTTSGA consistently achieves the
optimal test suite size compared to other algorithms for |R|=30 to |R|=60. It shares the same test
suite size with ITTDG for |R|=20. However, for |R|=10, ITTDG outperforms iTTSGA and produces
the best test suite size with only 81 test cases. The results indicate that strategies utilizing
metaheuristic search techniques outperform those based on computational methods, as reported
in the literature [3]. This finding further supports the advantage of employing metaheuristic
approaches in optimizing various tasks or problems.

In the second experiment, the performance of iTTSGA is not as strong as in the first experiment.
It achieves the best test suite size for |R|=30 and 60. While iTTSGA may not outperform other
strategies in all cases, it still delivers highly promising results. For |R|=10 to 20, Greedy produces
the smallest test suite size, whereas Density performs the best for |R|=40 to 60. Interestingly,
Density and iTTSGA produce the same number of test cases for |R|=60. Overall, these findings
demonstrate the capability of these strategies to generate near-optimal test suites. Producing an
optimum test suite size is NP-hard problem [41, 49]. Due to this reason, no strategies could perform
the best results for all configurations. In contrast to the results that are the closest best, iTTSGA
displays results that are very competitive.

4.2. Statistical Analysis

The performance of iTTSGA against other IOR based strategies (i.e. Density, TVG, ReqOrder,
ParaOrder, Union, Greedy, ITTDG and AURA) has been conducted using statistical analysis. The
significant value has been set to 0.05. The hypothesis null for this analysis is there is no significant
difference between iTTSGA and other strategies. This hypothesis is rejected if the significant value
is less than 0.05 where there are significant differences between iTTSGA and other strategies. The
non-parametric tests (i.e. Friedman and Wilcoxon Rank Test) are required to conduct the test due
to the result is not normally distributed. Friedman test is used to rank the strategies involved based
on mean rank. Next, Wilcoxon Rank Test is executed to analyse the significant differences of test
suite size produced by all strategies. The differences can be either iTTSGA produces larger or
smaller test suite size than other strategies. Based on Friedman Test Rank, it can be concluded
which is the differences (smaller or larger size) based on the rank.

The results obtained in Figures 10 and 11 have been used to conduct the statistical tests. Tables
5 and 6 present statistical analyses for Wilcoxon Rank and Friedman test respectively. In Table 5,
the Wilcoxon Rank test presents that there is no significant difference of test suite size produced
between iTTSGA and ITTDG strategy as well as GVS strategy. From this result, it is proven that
iTTSGA strategy is at the same level with both strategies. Whereas, there are significant differences
of test suite size with other strategies. Nevertheless, the Friedman test mean rank shows that

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

13

iTTSGA is at the first rank, which means that, iTTSGA produces smaller test suite size as compared
to the other strategies. Meanwhile, Table 6 exhibits statistical analysis of the Wilcoxon Rank and
the Friedman test for IOR (N, 23 334351, R). Based on the Wilcoxon Rank test significant value, it
shows that there is no significant difference between iTTSGA strategy and ITTDG, Greedy and
Density strategy in producing number of test cases. On the other hand, the Friedman test mean
rank demonstrates that the iTTSGA strategy is the second best after Density.

Table 7
Statistical analysis for IOR (N, 310, R)
Strategy Wilcoxon rank test Friedman test

Pair Significant value Mean rank
iTTSGA 1.75
ReqOrder ReqOrder - iTTSGA 0.027 10.00
Union Union - iTTSGA 0.028 11.00
Greedy Greedy - iTTSGA 0.028 6.92
ITTDG ITTDG - iTTSGA 0.492 2.42
AURA AURA - iTTSGA 0.027 7.67
TVG TVG - iTTSGA 0.043 7.00
Density Density - iTTSGA 0.042 4.25
ParaOrder ParaOrder - iTTSGA 0.027 6.17
GVS GVS - iTTSGA 0.168 3.17
CTJ CTJ - iTTSGA 0.027 5.67

Table 8
Statistical analysis for IOR (N, 23 334351, R)
Strategy Wilcoxon rank test Friedman test

Pair Significant value Mean rank
iTTSGA 2.58
ReqOrder ReqOrder - iTTSGA 0.028 9.83
Union Union - iTTSGA 0.028 11.00
Greedy Greedy - iTTSGA 0.115 4.92
ITTDG ITTDG - iTTSGA 0.109 3.67
AURA AURA - iTTSGA 0.043 8.58
TVG TVG - iTTSGA 0.042 6.00
Density Density - iTTSGA 0.564 2.33
ParaOrder ParaOrder - iTTSGA 0.042 6.25
GVS GVS - iTTSGA 0.043 5.08
CTJ CTJ - iTTSGA 0.043 5.75

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

14

5. Conclusions

The development of iTTSGA, a new metaheuristic t-way strategy that supports IOR t-way testing
is discussed in this paper. iTTSGA consists of three components, namely tuples generator, search
space generator and test case generator. the strategy has introduced IOR t-way fitness functions to
choose the best test cases. Benchmark experiments for uniform and non-uniform configurations (i.e.
IOR (N, 33, R) and IOR (N, 23 334351, R) respectively) has been executed and results have been
compared to other existing IOR strategies. The obtained results by iTTSGA were compared with
other existing IOR strategies. As far as test suite size is concerned, iTTSGA produced the optimum
test suite size for uniform configuration except for |R|=10. Based on statistical tests, iTTSGA
achieved the first mean rank in Friedman Test although the test suite size produced by iTTSGA has
no significant difference with ITTDG and GVS. Meanwhile, for non-uniform configurations, the
results are very competitive and iTTSGA is in the second mean rank in Friedman Tests and has no
significant difference with ITTDG, Greedy and Density strategy. The statistical tests have proven
that iTTSGA manage to compete other existing IOR t-way testing strategies. For the future works,
iTTSGA is planned to support other constraints in t-way testing. Besides that, the strategy is
planned to hybrid with other algorithm to produce better results

Acknowledgement
The author would like to acknowledge the support from the Fundamental Research Grant Scheme
(FRGS) under a grant number of FRGS/1/2020/ICT01/UNIMAP/02/1 from the Ministry of Education
Malaysia.

References
[1] Muazu, Aminu Aminu, Ahmad Sobri Hashim, and Aliza Sarlan. "Application and adjustment of “don’t care” Values

in t-way testing techniques for generating an optimal test suite." Journal of Advances in Information Technology
Vol 13, no. 4 (2022). https://doi.org/10.12720/jait.13.4.347-357

[2] Muazu, Aminu Aminu, Ahmad Sobri Hashim, Aliza Sarlan, and Mujaheed Abdullahi. "SCIPOG: Seeding and
constraint support in IPOG strategy for combinatorial t-way testing to generate optimum test cases." Journal of
King Saud University-Computer and Information Sciences 35, no. 1 (2023): 185-201.
https://doi.org/10.1016/j.jksuci.2022.11.010

[3] Zamli, Kamal Z., Fakhrud Din, Graham Kendall, and Bestoun S. Ahmed. "An experimental study of hyper-heuristic
selection and acceptance mechanism for combinatorial t-way test suite generation." Information Sciences 399
(2017): 121-153. https://doi.org/10.1016/j.ins.2017.03.007

[4] Zamli, Kamal Z., Basem Y. Alkazemi, and Graham Kendall. "A tabu search hyper-heuristic strategy for t-way test
suite generation." Applied Soft Computing 44 (2016): 57-74. https://doi.org/10.1016/j.asoc.2016.03.021

[5] Hu, Linghuan, W. Eric Wong, D. Richard Kuhn, and Raghu N. Kacker. "How does combinatorial testing perform in
the real world: An empirical study." Empirical Software Engineering 25 (2020): 2661-2693.
https://doi.org/10.1007/s10664-019-09799-2

[6] Othman, Rozmie R., Kamal Z. Zamli, and Sharifah Mashita Syed Mohamad. "T-way testing strategies: A critical
survey and analysis." International Journal of Digital Content Technology and its Applications 7, no. 9 (2013): 222.

[7] Zamli, Kamal Z., Fakhrud Din, Salmi Baharom, and Bestoun S. Ahmed. "Fuzzy adaptive teaching learning-based
optimization strategy for the problem of generating mixed strength t-way test suites." Engineering Applications of
Artificial Intelligence 59 (2017): 35-50. https://doi.org/10.1016/j.engappai.2016.12.014

[8] Othman, Rozmie R., and Kamal Z. Zamli. "T-way strategies and its applications for combinatorial
testing." International Journal of New Computer Architectures and their Applications 1, no. 2 (2011): 459-73.

[9] Lei, Yu, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. "IPOG: A general strategy for t-way
software testing." In 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS'07), p. 549-556. IEEE, 2007. https://doi.org/10.1109/ECBS.2007.47

https://doi.org/10.12720/jait.13.4.347-357
https://doi.org/10.1016/j.jksuci.2022.11.010
https://doi.org/10.1016/j.ins.2017.03.007
https://doi.org/10.1016/j.asoc.2016.03.021
https://doi.org/10.1007/s10664-019-09799-2
https://doi.org/10.1016/j.engappai.2016.12.014
https://doi.org/10.1109/ECBS.2007.47

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

15

[10] Zamli, Kamal Z., Mohammad FJ Klaib, Mohammed I. Younis, Nor Ashidi Mat Isa, and Rusli Abdullah. "Design and
implementation of a t-way test data generation strategy with automated execution tool support." Information
Sciences 181, no. 9 (2011): 1741-1758. https://doi.org/10.1016/j.ins.2011.01.002

[11] Lin, Jinkun, Chuan Luo, Shaowei Cai, Kaile Su, Dan Hao, and Lu Zhang. "TCA: An efficient two-mode meta-heuristic
algorithm for combinatorial test generation (T)." In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), p. 494-505. IEEE, 2015. https://doi.org/10.1109/ASE.2015.61

[12] Xiang, Lai Y., A. A. Alsewari, and Kamal Z. Zamli. "Pairwise test suite generator tool based on harmony search
algorithm (HS-PTSGT)." International Journal on Artificial Intelligence 2, p. 62-65. 2015.

[13] Chen, Xiang, Qing Gu, Jingxian Qi, and Daoxu Chen. "Applying particle swarm optimization to pairwise testing."
In 2010 IEEE 34th Annual Computer Software and Applications Conference, p. 107-116. IEEE, 2010.
https://doi.org/10.1109/COMPSAC.2010.17

[14] Shiba, Toshiaki, Tatsuhiro Tsuchiya, and Tohru Kikuno. "Using artificial life techniques to generate test cases for
combinatorial testing." In Proceedings of the 28th Annual International Computer Software and Applications
Conference, 2004. COMPSAC 2004., p. 72-77. IEEE, 2004. https://doi.org/10.1109/CMPSAC.2004.1342808

[15] Ali, Mohd Shaiful Aziz Rashid, Rozmie Razif Othman, Zainor Ridzuan Yahya, and Mohd Zamri Zahir. "A modified
artificial bee colony based test suite generation strategy for uniform T-way testing." In IOP Conference Series:
Materials Science and Engineering, vol. 767, no. 1, p. 012020. IOP Publishing, 2020.
https://doi.org/10.1088/1757-899X/767/1/012020

[16] Ahmed, Bestoun S., Taib Sh Abdulsamad, and Moayad Y. Potrus. "Achievement of minimized combinatorial test
suite for configuration-aware software functional testing using the cuckoo search algorithm." Information and
Software Technology 66 (2015): 13-29. https://doi.org/10.1016/j.infsof.2015.05.005

[17] Wu, Huayao, Changhai Nie, Fei-Ching Kuo, Hareton Leung, and Charles J. Colbourn. "A discrete particle swarm
optimization for covering array generation." IEEE Transactions on Evolutionary Computation 19, no. 4 (2014): 575-
591. https://doi.org/10.1109/TEVC.2014.2362532

[18] Ahmed, Bestoun S., and Kamal Z. Zamli. "A variable strength interaction test suites generation strategy using
particle swarm optimization." Journal of Systems and Software 84, no. 12 (2011): 2171-2185.
https://doi.org/10.1016/j.jss.2011.06.004

[19] Alsewari, Abdul Rahman A., and Kamal Z. Zamli. "Design and implementation of a harmony-search-based
variable-strength t-way testing strategy with constraints support." Information and Software Technology 54, no. 6
(2012): 553-568. https://doi.org/10.1016/j.infsof.2012.01.002

[20] Chen, Xiang, Qing Gu, Ang Li, and Daoxu Chen. "Variable strength interaction testing with an ant colony system
approach." In 2009 16th Asia-Pacific Software Engineering Conference, p. 160-167. IEEE, 2009.
https://doi.org/10.1109/APSEC.2009.18

[21] Cohen, Myra B., Charles J. Colbourn, and Alan CH Ling. "Augmenting simulated annealing to build interaction test
suites." In 14th International Symposium on Software Reliability Engineering, 2003. ISSRE 2003., p. 394-405. IEEE,
2003. https://doi.org/10.1109/ISSRE.2003.1251061

[22] Othman, Rozmie Razif, Kamal Zuhairi Zamli, and Lukito Edi Nugroho. "General variable strength t-way strategy
supporting flexible interactions."Maejo International Journal of Science and Technology 6, no. 3 (2012): 415.

[23] Othman, Rozmie R., Norazlina Khamis, and Kamal Z. Zamli. "Variable strength t-way test suite generator with
constraints support."Malaysian Journal of Computer Science 27, no. 3 (2014): 204-217.

[24] Ahmed, Bestoun S., and Kamal Z. Zamli. "A variable strength interaction test suites generation strategy using
particle swarm optimization." Journal of Systems and Software 84, no. 12 (2011): 2171-2185.
https://doi.org/10.1016/j.jss.2011.06.004

[25] Rahman, Mostafijur, Rozmie Razif Othman, R. Badlishah Ahmad, and Md Mijanur Rahman. "Event driven input
sequence t-way test strategy using simulated annealing." In 2014 5th International Conference on Intelligent
Systems, Modelling and Simulation, p. 663-667. IEEE, 2014. https://doi.org/10.1109/ISMS.2014.119

[26] Ramli, N., R. R. Othman, R. Hendradi, and I. Iszaidy. "T-way test suite generation strategy based on ant colony
algorithm to support t-way variable strength." In Journal of Physics: Conference Series 1755, no. 1, p. 012034. IOP
Publishing, 2021. https://doi.org/10.1088/1742-6596/1755/1/012034

[27] Alsewari, A. A., Nasser M. Tairan, and Kamal Z. Zamli. "Survey on input output relation based combination test
data generation strategies." ARPN J Eng Appl Sci 10, no. 18 (2015): 8427-8430.

[28] Wang, Ziyuan, Baowen Xu, and Changhai Nie. "Greedy heuristic algorithms to generate variable strength
combinatorial test suite." In 2008 The Eighth International Conference on Quality Software, p. 155-160. IEEE, 2008.
https://doi.org/10.1109/QSIC.2008.52

[29] Ziyuan, Wang, Nie Changhai, and Xu Baowen. "Generating combinatorial test suite for interaction relationship."
In Fourth International Workshop on Software Quality assurance: in conjunction with the 6th ESEC/FSE joint
meeting, p. 55-61. 2007. https://doi.org/10.1145/1295074.1295085

https://doi.org/10.1016/j.ins.2011.01.002
https://doi.org/10.1109/ASE.2015.61
https://doi.org/10.1109/COMPSAC.2010.17
https://doi.org/10.1109/CMPSAC.2004.1342808
https://doi.org/10.1088/1757-899X/767/1/012020
https://doi.org/10.1016/j.infsof.2015.05.005
https://doi.org/10.1109/TEVC.2014.2362532
https://doi.org/10.1016/j.jss.2011.06.004
https://doi.org/10.1016/j.infsof.2012.01.002
https://doi.org/10.1109/APSEC.2009.18
https://doi.org/10.1109/ISSRE.2003.1251061
https://doi.org/10.1016/j.jss.2011.06.004
https://doi.org/10.1109/ISMS.2014.119
https://doi.org/10.1088/1742-6596/1755/1/012034
https://doi.org/10.1109/QSIC.2008.52
https://doi.org/10.1145/1295074.1295085

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 63, Issue 1 (2026) 1-16

16

[30] Schroeder, Patrick J., and Bogdan Korel. "Black-box test reduction using input-output analysis." ACM SIGSOFT
Software Engineering Notes 25, no. 5 (2000): 173-177. https://doi.org/10.1145/347636.349042

[31] Cheng, Christine, Adrian Dumitrescu, and Patrick Schroeder. "Generating small combinatorial test suites to cover
input-output relationships." In Third International Conference on Quality Software, 2003. Proceedings., p. 76-82.
IEEE, 2003. https://doi.org/10.1109/QSIC.2003.1319088

[32] Schroeder, Patrick J., Eok Kim, Jerry Arshem, and Pankaj Bolaki. "Combining behavior and data modeling in
automated test case generation." In Third International Conference on Quality Software, 2003. Proceedings., p.
247-254. IEEE, 2003. https://doi.org/10.1109/QSIC.2003.1319108

[33] Othman, Rozmie R., and Kamal Z. Zamli. "ITTDG: Integrated T-way test data generation strategy for interaction
testing." Scientific Research and Essays 6, no. 17 (2011): 3638-3648. https://doi.org/10.5897/SRE10.1196

[34] Ong, H. Y., and Kamal Z. Zamli. "Development of interaction test suite generation strategy with input-output
mapping supports." Scientific Research and Essays 6, no. 16 (2011): 3418-3430.

[35] Wang, Ziyuan, and Haixiao He. "Generating variable strength covering array for combinatorial software testing
with greedy strategy." Journal of Software 8, no. 12 (2013): 3173-3181. https://doi.org/10.4304/jsw.8.12.3173-
3181

[36] Younis, Mohammed Issam, Abdul Rahman A. Alsewari, Ng Yeong Khang, and Kamal Z. Zamli. "CTJ: Input-output
based relation combinatorial testing strategy using jaya algorithm." Baghdad Science Journal 17, no. 3 (Suppl.)
(2020): 1002-1002. http://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1002

[37] Muazu, Aminu Aminu, Ahmad Sobri Hashim, and Aliza Sarlan. "Review of nature inspired metaheuristic algorithm
selection for combinatorial t-way testing." IEEE Access 10 (2022): 27404-27431.
https://doi.org/10.1109/ACCESS.2022.3157400

[38] Mahmoud, Thair, and Bestoun S. Ahmed. "An efficient strategy for covering array construction with fuzzy logic-
based adaptive swarm optimization for software testing use." Expert Systems with Applications 42, no. 22 (2015):
8753-8765. https://doi.org/10.1016/j.eswa.2015.07.029

[39] Rahman, Mostafijur, Rozmie Razif Othman, R. Badlishah Ahmad, and Md Mijanur Rahman. "A meta heuristic
search based t-way event driven input sequence test case generator." Int. J. Simul. Syst. Sci. Technol 15, no. 3
(2014): 65-71. https://doi.org/10.5013/IJSSST.a.15.03.10

[40] Beheshti, Zahra, and Siti Mariyam Hj Shamsuddin. "A review of population-based meta-heuristic algorithms." Int. j.
adv. soft comput. appl 5, no. 1 (2013): 1-35.

[41] Al-Sewari, AbdulRahman A., and Kamal Z. Zamli. "An orchestrated survey on t-way test case generation strategies
based on optimization algorithms." In The 8th International Conference on Robotic, Vision, Signal Processing &
Power Applications: Innovation Excellence Towards Humanistic Technology, p. 255-263. Springer Singapore, 2014.
https://doi.org/10.1007/978-981-4585-42-2_30

[42] Alazzawi, Ammar K., Helmi Md Rais, Shuib Basri, and Yazan A. Alsariera. "PhABC: A hybrid artificial bee colony
strategy for pairwise test suite generation with constraints support." In 2019 IEEE Student Conference on
Research and Development (SCOReD), p. 106-111. IEEE, 2019. https://doi.org/10.1109/SCORED.2019.8896324

[43] Reid, Stuart C. "An empirical analysis of equivalence partitioning, boundary value analysis and random testing."
In Proceedings fourth international software metrics symposium, p. 64-73. IEEE, 1997.
https://doi.org/10.1109/METRIC.1997.637166

[44] Ramli, Nuraminah, Rozmie Razif Othman, Zahereel Ishwar Abdul Khalib, and Muzammil Jusoh. "A review on
recent t-way combinatorial testing strategy." In MATEC Web of Conferences, 140, p. 01016. EDP Sciences, 2017.
https://doi.org/10.1051/matecconf/201714001016

[45] Torres-Jimenez, Jose, and Idelfonso Izquierdo-Marquez. "Survey of covering arrays." In 2013 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, p. 20-27. IEEE, 2013.
https://doi.org/10.1109/SYNASC.2013.10

[46] Sahin, Omur, and Bahriye Akay. "Comparisons of metaheuristic algorithms and fitness functions on software test
data generation." Applied Soft Computing 49 (2016): 1202-1214. https://doi.org/10.1016/j.asoc.2016.09.045

[47] Ramli, Nuraminah, Rozmie R. Othman, and Mohd Shaiful Aziz Rashid Ali. "Optimizing combinatorial input-output
based relations testing using Ant Colony algorithm." In 2016 3rd International Conference on Electronic Design
(ICED), p. 586-590. IEEE, 2016. https://doi.org/10.1109/ICED.2016.7804713

[48] Ramli, N., R. R. Othman, and S. S. M. Fauzi. "Ant colony optimization algorithm parameter tuning for t-way IOR
testing." In Journal of Physics: Conference Series, vol. 1019, no. 1, p. 012086. IOP Publishing, 2018.
https://doi.org/10.1088/1742-6596/1019/1/012086

[49] Yeh, Ong Hui, and Kamal Zuhairi Zamli. "Development of a non-deterministic input-output based relationship test
data set minimization strategy." In 2011 IEEE Symposium on Computers & Informatics, pp. 800-805. IEEE, 2011.
https://doi.org/10.1109/ISCI.2011.5959020

https://doi.org/10.1145/347636.349042
https://doi.org/10.1109/QSIC.2003.1319088
https://doi.org/10.1109/QSIC.2003.1319108
https://doi.org/10.5897/SRE10.1196
https://doi.org/10.4304/jsw.8.12.3173-3181
https://doi.org/10.4304/jsw.8.12.3173-3181
http://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1002
https://doi.org/10.1109/ACCESS.2022.3157400
https://doi.org/10.1016/j.eswa.2015.07.029
https://doi.org/10.5013/IJSSST.a.15.03.10
https://doi.org/10.1007/978-981-4585-42-2_30
https://doi.org/10.1109/SCORED.2019.8896324
https://doi.org/10.1109/METRIC.1997.637166
https://doi.org/10.1051/matecconf/201714001016
https://doi.org/10.1109/SYNASC.2013.10
https://doi.org/10.1016/j.asoc.2016.09.045
https://doi.org/10.1109/ICED.2016.7804713
https://doi.org/10.1088/1742-6596/1019/1/012086
https://doi.org/10.1109/ISCI.2011.5959020

