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 ABSTRACT 

 
An essential component of the Internet Protocol Suite is Transmission Control Protocol 
(TCP). In this article, the effectiveness of three distinct TCP congestion control 
algorithms, namely Reno, NewReno, and Cubic, in the context of wired lines has been 
examined. In a series of simulations, we changed the congestion control technique 
while maintaining the other parameters constantly using Network Simulator (NS3). 
With its distinctive fast recovery mechanism, TCP Reno has shown a strong ability to 
recover from packet losses quickly, cutting down on the time needed to go back to the 
highest attainable throughput. The TCP congestion control technique selected can have 
a big impact on a network's performance, notably in terms of throughput and stability. 
While our findings demonstrate major differences between the examined algorithms. 
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1. Introduction 
 

The Transmission Control Protocol (TCP) [1], a vital part of the Internet Protocol Suite, functions 
at the transport layer. It ensures the accurate, sequenced, and error-verified exchange of data 
streams between applications operating on hosts that interact via an IP network [2-4]. TCP ensures 
that data sent from one end of a connection reaches the other end without errors and in the correct 
order [5]. TCP establishes a connection using a three-way handshake mechanism [6] before data 
transmission begins, and it employs an acknowledgment mechanism to confirm the receipt of 
packets. The protocol also implements flow control to match the sending rate to the receiving 
capacity of the receiver and congestion control to adapt the sending rate to network conditions [7]. 
Congestion in a TCP network occurs when the total demand for network resources exceeds the 
available capacity [8]. It is a state of excessive buffer occupation and network load, causing a 
degradation of network performance. The major symptoms of congestion include an increase in 
packet loss rate and round-trip time (RTT) [9]. If not well controlled, congestion can lead to a scenario 
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known as congestion collapse, where the network transmits many packets but delivers few useful 
packets, causing a decline in network performance.  

To avert network congestion, TCP introduces a collection of control measures. The fundamental 
congestion control for TCP was suggested by V. Jacobson in his 1988 paper [10], comprising slow start 
and congestion avoidance mechanisms. Subsequently, the TCP Reno version incorporated fast 
retransmit and fast recovery. The TCP NewReno modification further enhanced the fast recovery 
approach [11]. The essential concept behind TCP congestion control is the use of a congestion 
window (cwnd) as a regulatory tool. TCP also utilizes a receiver-announced window (Receive 
Window, rwnd) for flow control. The size of the window value represents the maximum amount of 
data segments that can be sent but have not yet received an acknowledgment (ACK). Clearly, the 
larger the window, the faster the data can be sent, but this also increases the likelihood of network 
congestion. If the window value is set to 1, it simplifies to a stop-and-wait protocol. For each piece of 
data sent, the sender must wait for an acknowledgment from the receiver before sending the next 
data packet, which obviously results in low data transmission efficiency. The TCP congestion control 
algorithm is crafted to maintain equilibrium between these two elements, choosing the ideal cwnd 
value that boosts network throughput without bringing congestion. This research aims to analyse 
and compare the performance of TCP Reno, NewReno, and Cubic [12] on wired links using NS3 [13]. 
In the rest of this paper, we will first discuss the technology that used to implement congestion 
control. Following this, we will present our experimental setup, explaining the network topology, 
traffic patterns, types of links and the results of our simulations. Finally, the conclusion part will 
summarize our simulation works to understanding of TCP congestion control algorithms. 

 
2. Congestion Control Mechanism  
2.1 Slow Start 

 
Slow Start is the initial state of a TCP connection [14,15]. It is used to prevent a connection from 

sending more data than the network is capable of handling. As shown in Figure 1, when initial a 
connection, the sender sets the congestion window size to a small value, typically a maximum 
segment size (MSS). For every Acknowledgment (ACK) received, the congestion window is increased 
by one MSS. This leads to an exponential growth in the congestion window size. To keep the cwnd 
from expanding too much and leading to network congestion, a state variable named slow start 
threshold (ssthresh) is also established. When cwnd is less than ssthresh, the state stays on slow 
start. When cwnd is more than ssthresh, the congestion avoidance algorithm is implemented instead. 
When cwnd is equal to ssthresh, these two algorithms can be used. Until it reaches a threshold, it 
will be called the slow start threshold (SSThresh), or until packet loss is detected. 
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Fig. 1. Process of slow start 

 
2.2 Congestion Avoidance 

 
Once the congestion window size has reached the SSThresh, the TCP sender enters the 

Congestion Avoidance phase. In this phase, the congestion window is increased more conservatively 
to probe for additional network capacity. Specifically, for every round-trip time (RTT), the congestion 
window is increased by approximately 1 MSS. This results in a linear increase in the congestion 
window size, thereby avoiding a rapid surge in network traffic that could lead to congestion. If packet 
loss is detected during this phase, it's an indication of network congestion, and the TCP sender 
reduces the SSThresh and the congestion window size and re-enters the Slow Start phase. 

 
2.3 Fast Retransmit 

 
Fast Retransmit is a mechanism in TCP’s congestion control suite used for accelerating the 

retransmission of lost packets [16]. At first, TCP uses timers to detect lost packets. If an 
acknowledgment (ACK) for a packet is not received within a specified timeout period, the packet is 
considered lost and retransmitted. However, this method may often lead to unnecessary delays in 
loss detection. To mitigate this delay, TCP uses the Fast Retransmit algorithm, which leverages 
duplicate acknowledgments (dupACKs) to quickly detect packet losses. As shown in Figure 2, when a 
packet is lost, out-of-order packets prompt the receiver to send duplicate ACKs. The sender receives 
three duplicate ACKs, infers that a packet has been lost then immediately retransmits the lost packet 
without waiting for the retransmission timer to expire. This is a more responsive method than timer-
based retransmission. 
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Fig. 2. Fast retransmit 

 
2.4 Fast Recovery 

 
Fast Recovery is a mechanism works with fast retransmit to address packet loss swiftly and 

maintain high throughput rates [17]. During Fast Recovery, the TCP sender does not reset the cwnd 
to the initial size. Instead, it deflates the cwnd by a certain amount but keeps it relatively high. This 
mechanism allows TCP to continue transmitting new packets at a higher rate instead of throttling 
down to the minimum cwnd. Once entering fast recovery, the cwnd is typically cut in half, and the 
slow start threshold (ssthresh) is adjusted to this new value. However, TCP continues to transmit new 
packets, maintaining a level of throughput more consistent with the estimated network capacity. 
Once the sender receives an ACK for the retransmitted packet, it ends the fast recovery phase. The 
cwnd is then set to the ssthresh value, and the sender re-enters the Congestion Avoidance phase, 
where the cwnd is gradually increased until a new loss event occurs or until the cwnd reaches the 
receiver's advertised window size. 

 
3. Simulation and Results 
3.1 Experiment Setup 

 
 This simulation is set up to investigate the congestion control algorithm in TCP protocol. The 

network topology consists of 2 routers and 2 nodes (user A and user B) connected in a linear fashion 
as shown in Figure 3.  

 

 
Fig. 3. Network topology 
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Each node is connected to a router through a point-to-point link with a data rate of 10 Mbps and 
delay of 1 ms. The two routers are also connected with a point-to-point link, but with a data rate of 
1 Mbps and a delay of 10 ms. A bulk send application is installed at the source node (user A), and a 
packet sink is installed at the destination node (user B). In this simulation, TCP congestion control 
algorithm is the only variable to change. Other configurations are listed in the Table 1. 
 

Table 1 
Configuration 
Items Details 

Operating system Ubuntu 22.04 
NS3 version 3.36.1 
Network model Wired 
Bottleneck of topology 1 Mbps bottleneck 
Buffer discipline First in first out 
Initial cwnd 10 

 
3.2 TCP Reno 

 
Transmission Control Protocol (TCP) Reno was designed to improve upon its predecessor, TCP 

Tahoe, with the introduction of more refined congestion control mechanisms [18-20]. TCP Reno 
implements the same slow-start, congestion avoidance, and fast retransmit algorithms as TCP Tahoe. 
However, where it stands out is its introduction of a new mechanism called "fast recovery." In 
contrast to TCP Tahoe, which responds to packet loss events by dropping its congestion window 
(cwnd) size to one segment and entering slow-start mode, TCP Reno's fast recovery algorithm allows 
it to keep the cwnd size at half of its current value this is shown in Figure 4. This allows TCP Reno to 
recover more quickly from packet losses, reducing the time taken to return to the maximum 
achievable throughput. 

 

 
Fig. 4. Reno cwnd 

 
In this simulation result presented in Figure 5, when the connection starts, the TCP Reno will enter 

slow start phase, where it doubles the cwnd every round trip time (RTT) until a packet loss is detected 
or reach the ssthresh. At this point, it will enter the congestion avoidance phase, increasing it one 
segment every RTT (Eq. (1)). When a packet loss is detected during the congestion avoidance phase, 
the cwnd is halved (Eq. (2)) and enter into the fast retransmit and fast recovery status.  
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𝑐𝑤𝑛𝑑 += 1/𝑐𝑤𝑛𝑑              (1) 
 

𝑐𝑤𝑛𝑑 −=
𝑐𝑤𝑛𝑑

2
              (2) 

 

 
Fig. 5. Reno throughput 

 
This simulation shows that the throughput of the TCP Reno connection shown in Figure 6 

fluctuates. It increases during the slow start and drops whenever a packet loss is detected. When in 
the congestion avoidance process, the throughput stays stable around 1 Mbps. 
 

 
Fig. 6. NewReno cwnd 

 
3.3 TCP NewReno 

 
TCP NewReno is an enhancement of the TCP Reno congestion control algorithm [21-23]. In TCP 

Reno, after a packet loss, the protocol reduces the congestion window size and starts the fast 
recovery phase. However, it exits this fast recovery phase as soon as it receives an acknowledgement, 
which may not account for multiple lost packets. This can lead to additional round-trip times to detect 
and recover from the loss of these packets. TCP NewReno improves upon this by remaining in the 
fast recovery phase until all lost packets within a window of data are acknowledged. This way, it can 
recover from multiple losses within a window without needing additional round-trip times, thereby 
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improving efficiency and throughput. In this simulation, result shows that NewReno has better 
performance on stability of cwnd as shown in Figure 6 and throughput as shown in Figure 7. 

 

 
Fig. 7. NewReno throughput 

 
3.4 TCP Cubic 

 
TCP Cubic diverges from the traditional TCP protocols, designed to make more effective use of 

available bandwidth, particularly on high-speed, high-latency networks [24-26]. It is the next 
generation version of BIC-TCP, smooth the congestion window growth curve via a cubic function (Eq. 
(3) and Eq. (4)), enabling it to maintain for a longer period when approaching the previous cwnd 
maximum. Furthermore, it decouples the growth of cwnd from the Round-Trip Time (RTT) duration, 
meaning it does not increase cwnd with each Acknowledgement (ACK) received. Instead. This results 
in a fairer network, where connections with shorter RTTs cannot monopolize the resources of those 
with longer RTTs. Figure 8 and Figure 9 shows the result of congestion windows and throughput 
respectively for TCP Cubic. Compared with previous traditional protocols, TCP Cubic performs a 
higher congestion window. 

 
𝑊(𝑡) = 𝐶(𝑡 − 𝐾)3 +  𝑊𝑚𝑎𝑥                 (3)  
 

𝐾 =  √
𝑊𝑚𝑎𝑥∗𝛽

𝐶

3
                          (4) 
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Fig. 8. Cubic cwnd 

 

 
Fig. 9. Cubic throughput 

 
4. Conclusions 

 
In this article, we have analysed the performance of three different TCP congestion control 

algorithms, namely Reno, NewReno, and Cubic, in the context of wired links. We used NS3 to conduct 
a series of simulations, altering the congestion control algorithm while keeping other parameters 
constant. TCP Reno, with its unique fast recovery mechanism, demonstrated a strong ability to 
quickly recover from packet losses, thereby reducing the time taken to return to maximum 
achievable throughput. However, it is easily impacted by the buffer of link. When the buffer is small, 
packet loss may occur on the link before the data reaches the Bandwidth Delay Product (BDP), 
causing Reno to immediately halve its transmission rate and fail to efficiently utilize the network 
bandwidth. If the buffer is large, exceeding the BDP, it may enter a "Buffer Bloat" state, characterized 
by excessively high latency. Each time Reno reduces its speed due to packet loss, it will retransmit 
data, resulting in previously transmitted data possibly still queued on the link, occupying resources 
without being effective and eventually being discarded. TCP Cubic showcased a higher congestion 
window among these three congestion control algorithms. It is good at effectively utilizing available 
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bandwidth. The algorithm's distinctive feature of decoupling congestion window growth from Round-
Trip Time, led to a fairer network environment. 

In conclusion, the choice of a TCP congestion control algorithm can significantly impact the 
performance of a network, especially in terms of throughput and stability. While our results show 
clear distinctions between the tested algorithms. In other words, the best TCP congestion control 
algorithm is highly dependent on the specific use case and network environment. 
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