

Journal of Advanced Research in Applied Sciences and Engineering Technology 48, Issue 2 (2025) 121-135

121

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Approximate Square and Square Root Calculation without Multiplication
or Division for DSP Applications

Dina Mohamed Ellaithy1,*

1 Department of Microelectronics, Electronics Research Institute (ERI), Cairo, Egypt

ARTICLE INFO ABSTRACT

Article history:
Received 26 November 2023
Received in revised form 17 April 2024
Accepted 15 June 2024
Available online 15 July 2024

Square and square root functions are a fundamental step in many real-time digital
signal processing applications such as image processing, signal processing, and filtering.
The evaluation performance of these applications depends on the hardware algorithm
used in the implementation of the square and square-root calculation. In this paper, we
present an efficient algorithm that is capable of performing square and square root
calculations without multiplication or division. Multiplier-less circuitry is introduced
throughout the architecture to avoid the use of costly multipliers and dividers. The
proposed square and square-root design exhibit good performance according to
accuracy, latency, and power dissipation. Implementation and synthesis using Synopsys
Design Compiler with a 90 nm CMOS process, 1.0 V supply voltage standard cell library,
demonstrates that the proposed architecture leads to a 45% reduction in power
dissipation while achieving higher accuracy when compared to the state-of-the-art
approximate architectures. In addition, the proposed architecture is able to process the
square and square-root calculation in 3 ns.

Keywords:
Square; square root; low power
consumption; approximation algorithm;
logarithm number system; logic
synthesis; energy-efficient processing

1. Introduction and Related Work

The wide range of applications of digital signal processing (DSP) in several fields such as image
compression, pattern recognition, demodulation, decoding, adaptive filtering, and least mean
squaring has increased the demand for efficient implementations of real-time functions [1,2]. Also,
real-time control systems applications in various fields such as motor drivers, power converters, and
power factor correctors require energy-efficient function processing [3-7]. The widely exploiting
arithmetic functions in digital signal processing (DSP) and control systems are multiplication function,
squaring function, division function, square root function, root mean squares and total harmonic
distortion. The exact hardware implementation of these functions consumes huge power dissipation,
large area, and great delay that slow down the overall computations. Consequently, the exact
computation makes limitations on the battery-powered devices due to power, speed and area
challenge [8,9]. For example, the exact hardware implementation of multiplication function requires
a generation of large number of partial products. Furthermore, a large amount of addition and

* Corresponding author.
E-mail address: dina_elessy@eri.sci.eg

https://doi.org/10.37934/araset.48.2.121135

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

122

shifting of these partial products are performed to obtain the final results. This cost high power, large
area, and long delay. Thus, the major source of overhead of the multiplication function comes from
the complete generation of the partial products. However, such mentioned DSP and control systems
applications are error resilient, which denotes that accuracy lack are allowed in the processing and
computations without affecting the overall performance [10,11]. Therefore, the approximate
arithmetic computations scheme might be exploited to relax the partial products generation and so
the power, area, and delay overhead. Approximate calculation algorithms are hardware efficient and
offer good accuracy solutions [12-23].

The ever-increasing demand for simple hardware implementation with appropriate accuracy for
DSP and control systems applications has led to utilize the approximate arithmetic in computation of
complex functions. Low power dissipation, less area, and low delay have been achieved according to
the algorithm and the method of approximation that being used. Since the square function and
square root function are frequently utilized in DSP and control systems applications, several previous
research efforts have studied the implementation of these two functions. There are many different
approximate algorithms to implement the square and square-root operations, each with trade-off
power, delay, and accuracy [1-26]. However, it isn't easy to have good accuracy with high-
performance computations. Therefore, these approximation algorithms deal with the design
complexity that sacrifices approximated errors.

The simple implementation of 2-bit exact multiplication uses four AND gate and two half adder
(HA) as shown in Figure 1(a). Squarer is a specific state of multiplier in which both the inputs are
same. The circuit implementation of 2-bit multiplier may be used as a 2-bit squarer by replacing the
second input operand by the first input operand as shown in Figure 1(b). The four-bit result from the
2-bit multiplication process presented in Figure 1(a) requires four AND gate and two half adder to
generate the partial products. While in case of A = B, the output bits of the 2-bit input circuit shown
in Figure 1(a) are: P0 (1-bit): A0 AND A0 which becomes A0. P1 (1-bit): (Sum bit of HA) = A1.A0 XOR
A0.A1 which results '0'. Carry bit of first HA is redirected as input to the second stage HA. P2 (1-bit):
sum of second HA. P3 (1-bit): carry of second HA. The final result is represented as (P3P2P1P0). Thus
the 2-bit binary squarer circuit is confirmed in Figure 1(b). This circuit uses one AND gate and one HA.
As the number of bits increases, the hardware cost is increases significantly.

(a) (b)

Fig. 1. Hardware architecture of (a) 2-bit exact multiplication
process, (b) 2-bit exact square process

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

123

Figure 2 presents the partial products of eight-bit squaring process showing the symmetry of
partial products. The complete computation of square function is performed by three phases. First
phase includes the generation of partial products. Then minimize the number of partial product rows
to two rows. At final, using adder for adding these two rows to obtain the final result. The
implementation of squarers can be approximated by removing several least significant columns of
the partial product matrix. Different error reduction techniques are proposed to control the overall
accuracy performance.

Fig. 2. Exact eight-by-eight multiplication partial products

For the square function approximation computation, previous work can be categorized in,
approximate Booth squarer technique, folding technique, Indian Vedic based computation technique
by Reddy [15], approximate square-accumulate technique by Gillani et al., [19], array based
approximate multiplier or truncated squarer technique, and approximate logarithmic squaring
technique [1,2,10-19].

In order to diminish the partial product generation, approximate Booth encoding of input
operands has been utilized in the approximate Booth squarer scheme [11,12]. This Booth encoding
relaxes the accumulation of the partial products. However, the encoder design becomes more
complex. Also, as the radix of the encoder increases, the hardware complexity of the squarer
increases. Moreover, the folding techniques exploits the similarity of partial products due to the two
inputs are the same [11,13,14]. Thus, the number of partial products for the squarer can be
decreased. Combining the prior two techniques, approximate Booth technique and folding of partial
products technique, reduces the number of partial products. For example, the Booth folding
encoding squarer by Banerjee and Das [13] employs both the radix-4 Booth encoding technique and
folding technique. As a result, the number of partial products is decreased by half as compared to
simple folding technique. Differently, Vedic by Reddy [15] based computation technique is one of the
ancient Indian mathematical that involves mainly 16 sutras that deals with the different branches in
mathematics based on arithmetic, algebra, geometry. In this technique, larger calculations are
reduced to be simpler in which the large magnitude number is divided into smaller magnitude
numbers and concatenated smaller magnitude numbers. Else, the approximate square-accumulate
technique that calculates the inner product of a vector with itself to confirm effective quality-
efficiency tradeoff by Gillani et al., [19]. Where the approximations are restricted in terms of
presenting errors and thus controlling the calculating efficiency. Ordinarily, the squaring operation is
carried out by utilizing generic multiplier. To reduce the partial products and hardware, truncated
squarer removes the least significant columns of the partial product array [16-18]. Also, approximate
generic adders and multipliers are employed in the array multiplier technique.

For extremely low power, approximate logarithmic squaring technique has been proposed as
essential technique that substitutes the prior approximate squarer techniques [1,2,10]. All these

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

124

approximation techniques to provide contribution to the final result, by reducing area, delay, and
power consumption at a price in terms of approximation error.

Similarly, the computation of the square root consumes a large amount of hardware resources
and a large delay which makes it necessary to exploit an approximate square root calculation
algorithm [3-5,20,21,27]. In order to eliminate the complexity of the implementation of the square
root operation, the modified restoring square root architecture by Bandil and Nagar [22], the
truncated or pruning scheme by Jiang et al., [23], and the logarithmic-based approximation scheme
by Arya et al., [24] have been proposed. These schemes compromise accuracy with hardware cost
[22-24]. The modified restoring array-based square root scheme by Bandil and Nagar [22] has been
proposed to decrease the power consumption and area with faster computation as compared to the
exact square root architecture. This scheme has achieved a simple planned exclusion and
enhancement of restoring subtractor cells within the conventional array square root circuit for
efficient square root execution. Moreover, an adaptive approximation approach has been achieved
to perform square root operation by Jiang et al., [23]. Some less important numbers of input bits are
pruned effectively to cut the width of the square root. This scheme reduces the maximum error
distance of the approximate square root circuit. In order to decrease the signal activity and the
operator's strength, the logarithmic-based approximate scheme has been targeted by Arya et al.,
[24] to implement the square root operation. The complex computations are converted to simple
addition and shifting operations in this scheme. Although the approximations due to the
transformation from binary field to logarithmic field produce some errors, the gaining of power
saving and speed enhancement is significantly increased.

Thus, this paper proposes approximate square and square root calculation without multiplication
or division that are correspondent with error-resilient DSP applications with less hardware resources.
The large number of partial products and accumulations in the square and square root operations
have been replaced by simple shifting and shifting-and-adding approach with the aid of piecewise
linear logarithm and antilogarithm converters. Simple hardware implementation of the piecewise
linear converters leads to significant savings of hardware cost and power consumption.

The rest of this paper is organized as follows. Section 2 presents the proposed square and square
root hardware architecture design. Also, the proposed logarithm and antilogarithm converters are
demonstrated in section 2. Section 3 analyzes the error and the evaluation results. VLSI hardware
implementation and synthesis results of the proposed square/square root are discussed in section 4.
The conclusion is demonstrated in section 5.

2. Proposed Square/Square Root Hardware Architecture Design

In this section, we present the hardware implementation of the square function, square root
function, logarithm converter, and antilogarithm converter.

In general, computations in logarithmic domain are performed in three steps as shown in Figure
3: 1) take the base-2 logarithm of the input operands, 2) operations in the logarithmic arithmetic
domain, and 3) take the antilogarithm of the results from 2). Among the existing approaches to the
hardware implementation of logarithmic conversion, piecewise linear approximation is usually the
most efficient solution.

Fig. 3. Logarithm arithmetic unit architecture

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

125

Exploiting the approximate logarithm arithmetic in the implementation of square function has its
significant improvement on the performance. Great saving in power, area, and delay is achieved at
expenses of accuracy. The method of accomplish the complete approximate computation in
logarithm domain strongly depends on the scheme that used for performing logarithm and
antilogarithm converters. Several prior works have proposed efficient logarithmic and
antilogarithmic converters that relay on the principle of Mitchell [28]. In the next subsection, the
proposed logarithm and antilogarithm converters are presented.

2.1 Proposed Logarithm and Antilogarithm Converters Implementation Structure

The logarithm arithmetic consists mainly of logarithm converters, antilogarithm converters, and
simple arithmetic unit. The logarithm converters are responsible for the transformation from binary
number form to logarithm number form. While the antilogarithm converters are responsible for the
transformation from logarithm number form to binary number form. Consequently, the hardware
implementation of these converters has a great impact on the overall performance. The first
investigation by Mitchell's [28] in the transformation method from binary number form to logarithm
number form began with representing the input operand x by integer part k and fraction part f. Also,
k may be named as the characteristic and demonstrates the position of the most significant bit. Thus,
x can be substituted by 2!(1 + 𝑓). After entering the input operand x into the logarithmic converter,
it is transformed to 𝑘 + log"(1 + 𝑓). Mitchell approximated the transformation curve into segments
and represented each segment by straight-line 𝑓 neglecting the rest of the approximated fraction.
Although this approximation is simple and consumes minimum hardware cost, the transformation
accuracy is decreased. Based on the piecewise linear approximation log"(1 + 𝑓) may be
approximated to 𝑓 + 𝛼 ∙ 𝑓 + 𝛽 in order to correct the error level. In the same way, for the
transformation from logarithm number form to binary number form, the input operand x is
represented by integer part k and fraction part f, where 𝑥 = 𝑘 + 𝑓. The representation of the input
operand x after entering into the antilogarithm converter is 2!2#. Also, the fraction term 2# is
approximated to 𝛼 ∙ 𝑓 + 𝛽 based on piecewise linear approximation. The transformation coefficients
𝛼 and 𝛽 for the logarithm or antilogarithm converters are chosen to be power of two for each
segment to simplify the hardware implementation. Consequently, a shift-and-add architecture is
used in the implementation of the transformation converters as will be discussed in section 4.

In order to enhance the performance of the transformation from binary number form to
logarithm number form and vice versa, different prior piecewise linear approximation have been
accomplished [29-37]. Several research have been approximated the transformation to logarithm
domain into large number of regions to provide higher accuracy. However, as the number of regions
increases, the complexity of hardware implementation increases. On the other hand, various
researches have proposed the advancements of hardware in terms of power consumption reduction
and speed upgrading.

The diversity of applications requires both significantly low power consumption and higher
accuracy level. Therefore, two mainly categories are specified to implement the transformation
converters from binary number domain to logarithmic domain or vice versa. Piecewise uniform
approximation and piecewise nonuniform approximation logarithm and antilogarithm converters
implementation are promising alternatives which produce a trade-off between energy consumption
and accuracy. In the piecewise uniform approximation converters, the dedicated interval for the
converters is divided into segments with the same size. The converters that exploit this scheme
consume less hardware implementation cost and consequently less energy dissipation. On the other
hand, the piecewise nonuniform approximation converters divide the dedicated interval into

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

126

segments with non-equal size. These converters optimize the accuracy level at the expense of
hardware cost.

Among of the different approaches in the implementation of the transformation from binary
number form to logarithm number form or vice versa, the prior research for the transformation that
is found to be a compromise between accuracy and hardware cost are the works of Ellaithy et al.,
[29,32], Kuo and Juang [30,34], Loukrakpam and Choudhury [31], and Lyu et al., [33]. We study the
trade-off for the transformation converters to propose the appropriate converters depending on the
requirements of the applications. The power consumption has become highly important metric than
chip area and accuracy. According to this demand, the proposed transformation converters has been
used to implement the square operation and the square root operation.

Thus, in this paper we have proposed a new piecewise eight-segment uniform approximation
converters for simpler hardware design and minimum power consumption. The proposed converters
exhibit efficient power saving with good accuracy level. The approximation coefficients of each
segment of the transformation converters are chosen in order to enhance the overall performance.
The selection of the transformation coefficients is based on the trade-off between accuracy and
hardware complexity. The transformation coefficients for each segment of the logarithm and
antilogarithm converters have been chosen by the aid of a linear programming according to the
algorithm demonstrated in Figure 4. The transformation coefficients of each segment are attained
using MATLAB software by compare the approximation coefficients to the true amount. The achieved
transformation coefficients enhance the hardware implementation with good accuracy level. Table
1 and Table 2 include the uniform eight-segment in column 1 and the proposed transformation
coefficients 𝛼 and 𝛽 in column 2-3, for each segment, for the logarithm and antilogarithm converters,
respectively. The proposed converters are able to decrease power consumption by more than 5% in
logarithm converter and more than 37% in antilogarithm converter as compared to prior work with
comparable accuracy level in section 4. The accuracy analysis and comparison with the previous work
have been presented in the next section 3.

Fig. 4. Proposed algorithm for the logarithm transformation
converters

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

127

Table 1
Proposed uniform eight-region logarithmic converter with its
transformation coefficient
 Subdivisions 𝛼 𝛽 x 2-14
1. [0 , 1/8) 1 + 92/256 0
2. [1/8 , 2/8) 1 + 55/256 296
3. [2/8 , 3/8) 1 + 24/256 792
4. [3/8 , 4/8) 1 1,380
5. [4/8 , 5/8) 1 – 20/256 2,032
6. [5/8 , 6/8) 1 – 36/256 2,668
7. [6/8 , 7/8) 1 – 52/256 3,432
8. [7/8 , 8/8) 1 – 64/256 4,096

Table 2
Proposed uniform eight-region antilogarithmic converter with its
transformation coefficient
 Subdivisions 𝛼 𝛽 x 2-14
1. [0 , 1/8) 1 – 71/256 16,386
2. [1/8 , 2/8) 1 − 54/256 16,252
3. [2/8 , 3/8) 1 – 36/256 15,966
4. [3/8 , 4/8) 1 − 16/256 15,489
5. [4/8 , 5/8) 1 + 6/256 14,786
6. [5/8 , 6/8) 1 + 30/256 13,826
7. [6/8 , 7/8) 1 + 56/256 12,578
8. [7/8 , 8/8) 1 + 84/256 11,008

2.2 Proposed Approximate Square/Square Root Function Implementation Structure

An optimal solution of the circuit hardware implementation of complex function in digital signal
processing is the transformation from the binary number computing domain to the logarithm
number computing domain by Ellaithy et al., [38]. The signal activity and the strength of the
operations are reduced. Consequently, the cost of hardware is reduced.

The implementation of square function (S) and square root function (SR) of input operand A can
be transformed to right shift or left shift in the logarithm domain, respectively, according to

𝑆 = 𝐴"
𝑙𝑜𝑔"𝑆 = 2 ∙ 𝑙𝑜𝑔"𝐴
𝑆 = 2["∙&'(!)]

 (1)

𝑆𝑅 = √𝐴 = 𝐴+/"

𝑙𝑜𝑔"𝑆𝑅 = 2-+ ∙ 𝑙𝑜𝑔"𝐴
𝑆𝑅 = 2[""#∙&'(!)]

 (2)

Eq. (1) confirms that the implementation of square function (S) is replaced by right shifting

operation after transferring to logarithm domain. In the same way, the implementation of square
root function (SR) is replaced by left shifting operation after converting to logarithm domain
according to Eq. (2). The implementation of the square and square root operations in logarithm
domain is much simpler as shown in Figure 5. After the transformation of the input operand from the
binary number form to logarithm number form by using the logarithm converter, only shifting right
(RSH) or shifting left (LSH) operation is performed in the logarithm domain for the square operation

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

128

or square root operation, respectively. The next step is the transformation from logarithm number
form to binary number form by using antilogarithm converter to obtain the final result.

Fig. 5. Proposed architecture of square/square root operation

The hardware implementation of the logarithm converter is composed of leading one detector
(LOD) block and sum of shifts block. To compute the characteristic value k, detecting the position of
leading one bit, the LOD block is utilized. The circuit implementation of the LOD is based on the
scheme by Abed and Siferd [39]. The bits following the leading one bit is considered the fraction value
f. The shifts and additions block are utilized to compute the approximated fractional value of
log"(1 + 𝑓). The logarithm computation results are generated by concatenating the characteristic
value and the approximated fractional part. Likewise, the implementation of the antilogarithm
converter is composed of sum of shifts block to compute the approximated fraction value 2# . The
final transformation result is generated by the final shifting by the characteristic value k.

A step-by-step example demonstrating the above process for employing the proposed
architecture of implementing the square and square root operations in the logarithm domain of input
operand A = 3 is presented in Figure 6. The first block in the logarithm converter is the LOD. As shown
in Figure 6, the position of the leading 1 bit is one (k=1), thus the fraction bits are the remaining bit
after the leading one bit. After that simple add and shift operations are performed according to the
value of the fraction bits. For the example in Figure 6, f = 0.5, this belongs to the fifth segment of the
proposed uniform eight-region logarithmic converter. According to the transformation coefficient in
the fifth segment, the logarithm of the fractional part is approximated to [1001 0101 1100]. The last
stage is to combine the characteristic and the approximated fractional part. As presented in Figure
6, the logarithm of the input operand A is [0001.1001 0101 1100]. For the implementation of the
square process, a right shifter (RSH) is employed while a left shifter (LSH) is employed for the square
root implementation as shown in Figure 5. The last step is the transformation from the logarithm
domain to the binary domain through the antilogarithm converters. The characteristic and fraction
bits are determined as demonstrated in Figure 6. The error analysis of the proposed logarithm

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

129

converter, antilogarithm converter, and square and square root operations are presented in the next
section.

Fig. 6. Example of proposed algorithm of square/square root operation

3. Error Analysis and Evaluation Results

MATLAB software is used to evaluate the error. For logarithm and antilogarithm converter, the
absolute error and relative error is defined as:

Absolute	Error = approximated	value − true	value (3)

Relative	Error(%) = K.//01234.567	9.:;6-50;6	9.:;6

50;6	9.:;6
L × 100 (4)

Figure 7 and Figure 8 demonstrate the absolute error graphs for the proposed piecewise eight-

segment uniform approximation logarithm and antilogarithm converters according to the
transformation coefficient listed in Table 1 and Table 2, respectively.

Fig. 7. Absolute error for the proposed logarithm
converter

Fig. 8. Absolute error for the proposed
antilogarithm converter

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

130

Also, Table 3 and Table 4 include the achieved results and prior work for comparison. Several efforts
have been attained to improve the accuracy of transformation converters [29-34]. However, certain
inaccuracies are occurred due to approximations. Consequently, some error level will produce within
implementing the logarithm based square and square root operation. The proposed transformation
converters are selected to trade off hardware complexity and accuracy. The proposed piecewise
uniform approximation logarithm converter achieves less error as compared to previous work. Also,
accuracy is improved by at least 17% for the piecewise uniform antilogarithm converter as compared
to prior work by Ellaithy et al., [29]. Using the proposed transformation converters in the
implementation of the square and square root operations, significant hardware complexity reduction
is accomplished.

Conventionally, the maximum absolute error (MAE), the relative error distance (RED), the mean
relative error distance (MRED), and the mean squared error (MSE) are usually utilized to evaluate the
accuracy of the investigated designs. The maximum absolute error (MAE) is computed as:

MAE = max	[Exact	square	value − 	approximated	square	value] (5)

The relative error distance (RED) is defined as:

RED = <2.=5	>?;.06	9.:;6-.//01234.567	>?;.06	9.:;6

<2.=5	>?;.06	9.:;6
 (6)

Moreover, the mean relative error distance (MRED), is denoted as follows:

MRED = +

@
∑ K.//01234.567	9.:;6-50;6	9.:;6

50;6	9.:;6
L@

3A+ (7)

The mean squared error (MSE) is expressed as [40]:

MSE = +
@
∑ K.//01234.567	9.:;6-50;6	9.:;6

50;6	9.:;6
L
"

@
3A+ (8)

Where N is the number of all possible input combinations. The average conversion error of the

binary number to logarithmic number square/square root operation is 0.04. The error percentage
resulting from approximation square/square root is less than this one, at 0.167 by Petra et al., [14].
A certain inaccuracy levels can be accepted for DSP applications.

Table 3
Error comparison between the proposed logarithm converter and the state-of-the-art work using Eq. (3)
Technique Kuo and Juang [30] Lyu et al., [33] Ellaithy et al., [32] Proposed Work
Segments 8 8 8 8
Max. Positive Error 0.92 × 10$% 2.501 × 10$% -- 2.5 × 10$%
Max. Negative Error 2.0 × 10$% −0.0934 × 10$% -- 0
Total Error Range 2.92 × 10$% 2.594 × 10$% 2.47 × 10$% 2.50 × 10$%

Table 4
Error comparison between the proposed antilogarithm converter and the state-of-the-art work using
Eq. (4)
Technique Ellaithy et al., [29] Loukrakpam and

Choudhury [31]
Kuo and Juang [34] Proposed Work

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

131

Segments 8 8 11 8
Max. Positive Error
(%)

+0.07528 0.0898 1.7327 +0.09747

Max. Negative
Error (%)

-0.05138 -0.0244 0.0992 -0.00668

Total Error Range
(%)

0.12666 0.0898 1.8319 0.10415

4. VLSI Hardware Implementation and Synthesis Results

In this section, we synthesize the proposed work with the CMOS 90-nm, 1.0 V supply voltage
standard cell library using Synopsys Design Compiler and evaluate the area and power overheads.
Two types of comparisons are presented as follows. First, the proposed transformation converters
are compared with prior logarithm and antilogarithm converters in Table 5 and Table 6. Second, the
logarithm based approximation square/square root operations are compared with the exact square
radix-4 implementation and prior approximation work in Table 7 [2,10,11,14,16].

Table 5
VLSI hardware implementation and synthesis results comparison between the proposed logarithm
converter and the state-of-the-art work
Approach Kuo and Juang [30] Lyu et al., [33] Ellaithy et al., [32] Proposed Work
Process (nm) 180 90 90 90
Power (µW) -- 864.3 660.49 628.181
Area (µm&) 27975.02 3611 8600.48 8976
Delay (ns) 3.5 0.95 1.77 1.53

Table 6
VLSI hardware implementation and synthesis results comparison between the proposed antilogarithm
converter and the state-of-the-art work
Approach Ellaithy et al., [29] Loukrakpam and

Choudhury [31]
Kuo and Juang [34] Proposed Work

Process (nm) 90 65 180 90
Power (µW) 153.343 271 -- 170.477
Area (µm&) 6098.736 701.28 2807 7309
Delay (ns) 1.41 1.34 1.4 1.39

Table 5 compares the proposed uniform eight-segment piecewise logarithm converter hardware

performance with the previous piecewise transformation converters [30,32,33]. The proposed
logarithm converter achieves less power consumption and high accuracy.

Moreover, Table 6 includes the comparison results of the proposed uniform eight-segment
antilogarithm converter with prior work [29,31,34]. As compared with prior work, the proposed
antilogarithm converter achieves high power saving and lower error level.

The synthesized hardware of 32-bit and 16-bit proposed square/square root scheme is compared
with the hardware characteristics of the ASIC-based 32-bit and 16-bit exact squarer scheme and
different approximation prior work [2,10,11,14,16,23]. Table 7 demonstrates the synthesized
hardware results in terms of area, power, and delay for the exact implementation scheme, five
different implementation schemes, and the proposed scheme. Our proposed square scheme incurs
approximately 3 ns delay.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

132

Table 7
VLSI hardware implementation and synthesis results comparison between the proposed square/square
root process and the state-of-the-art work
Approach Accurate Square

Radix4
Loukrakpam
et al., [10]

Reddy
et al.,
[11]

Shao
and Li
[16]

Ansari
et al.,
[2]

Jiang
et al.,
[23]

Petra
et al.,
[14]

Proposed
Work

Process (nm) 90 65 45 90 28 28 90 90
Number of Bits 32-Bit 16-

Bit
32-Bit 16 16 16 16 16 32-Bit 16-Bit

Power (mW) 1.865 0.89 0.87 0.5206 0.4816 0.0586 0.0626 0.701 0.735 0.367
Area (µm&) 28492.9 5623 3105.60 1649.4 2090 247.57 182.8 3566 15215 5130
Delay (ns) 8.06 4.15 2.58 1.382 2.45 0.81 4.09 1.11 3.09 1.4
Error
Metrics

MAE 0
0
0
0

0.03125
3.125
0.42
--

0.0396
3.96
--
--

--
--
--
0.11

--
--
0.0297
--

0.24 0.74
--
--
0.091

0.0195
1.95
0.04
0.0016

RED --
MRED 0.023
MSE --

The proposed square root operation exhibits a power efficiency 2.5 times higher than the exact

one. As demonstrates in Table 7, the proposed architecture occupies an area of 15215 𝜇𝑚" and
consumes a power of 0.735 mW with average error of 0.04.

Since they targeted different technologies, we scaled the original speed, area, and power
performances according to rules provided by Stillmaker and Baas [41]. We have normalized the
results for different technology nodes. Scaling down from 90 nm CMOS technology, 1.0 V supply
voltage standard cell library to 65 nm CMOS technology, 1.0 V supply voltage standard cell library is
attained according to Stillmaker and Baas [41]. The power consumption of the proposed square
scheme after scaling down from 90 nm process to 65 nm process becomes (0.647x0.735) 0.4755 mW.
Also, the delay in 65 nm process turns into (0.7554x3.09) 2.33 ns. Moreover, the area is reduced to
(0.53x15215) 8063.95 𝜇𝑚". The hardware implementation results of the proposed scheme achieve
saving in power by up to 45% as compared to approximate squaring hardware scheme by
Loukrakpam et al., [10]. Also, more than 9.6% saving in delay is attained with higher accuracy.

A straightforward optimization is accomplished to the logarithm and antilogarithm converters to
enhance the accuracy level. Consequently, overall improvement is obtained when performing the
square/square root operations. Finally, the proposed scheme has a lower power overhead.

In order to examine the efficiency of the proposed techniques in real advanced applications, some
works were presented by Bandil and Nagar [22], Jiang et al., [23], Ansari et al., [2], and Avramović et
al., [1] introduce an error-resilient application. Some applications in different domains include image
processing and computer vision applications specifically edge detection computation by Bandil and
Nagar [22] and envelope detection in ultrasound imaging by Jiang et al., [23]. Also, applications in
amplitude demodulation to obtain the Euclidian distances between the exact demodulation signal
and the approximated technique were examined by Ansari et al., [2], and Avramović et al., [1]. We
will include a dedicated application that confirms the efficiency of the proposed designs in an
extension work. Also, the extension work will involve designing and implementing the proposed
approximate architecture using downsizing of used CMOS technology.

5. Conclusions

A novel uniform eight-region piecewise transformation logarithm and antilogarithm converters
are proposed. A shift-and-add algorithm is exploited for hardware implementation of the
transformation converters. Up to 27% reduction of power is achieved for the logarithm converter.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

133

Also, not less than 17% high accuracy is attained for the antilogarithm converter. The proposed
converters are used in the hardware implementation of the square/square root functions. The
complex square function and square root function hardware implementation are simplified to right
and left shifting by adopting the proposed converters. The obtained results show power saving by up
to 60%, 45%, when compared with the exact square scheme, and prior approximate work by
Loukrakpam et al., [10].

Acknowledgement
This research was funded by Electronics Research Institute, Ministry of Scientific Research, Egypt.

References
[1] Avramović, Aleksej, Zdenka Babić, Dušan Raič, Drago Strle, and Patricio Bulić. "An approximate logarithmic squaring

circuit with error compensation for DSP applications." Microelectronics Journal 45, no. 3 (2014): 263-271.
https://doi.org/10.1016/j.mejo.2014.01.005

[2] Ansari, Mohammad Saeed, Bruce F. Cockburn, and Jie Han. "Low-power approximate logarithmic squaring circuit
design for DSP applications." IEEE Transactions on Emerging Topics in Computing 10, no. 1 (2020): 500-506.
https://doi.org/10.1109/TETC.2020.2989699

[3] Dianov, Anton, and Alecksey Anuchin. "Fast square root calculation for control systems of power electronics." In
2020 23rd International Conference on Electrical Machines and Systems (ICEMS), pp. 438-443. IEEE, 2020.
https://doi.org/10.23919/ICEMS50442.2020.9290816

[4] Dianov, Anton, and Aleksey Anuchin. "Review of fast square root calculation methods for fixed point
microcontroller-based control systems of power electronics." International Journal of Power Electronics and Drive
Systems 11, no. 3 (2020): 1153. https://doi.org/10.11591/ijpeds.v11.i3.pp1153-1164

[5] Dianov, Anton, Alecksey Anuchin, and Alexey Bodrov. "Fast square root calculation without division for high
performance control systems of power electronics." CES Transactions on Electrical Machines and Systems 6, no. 2
(2022): 145-152. https://doi.org/10.30941/CESTEMS.2022.00020

[6] Salam, Syed Munimus, and Muhammad Mahbubur Rashid. "Performance Analysis of a Designed Prototype of a
Motor Coupled Variable Inertia Flywheel System." Malaysian Journal on Composites Science and Manufacturing
12, no. 1 (2023): 62-72. https://doi.org/10.37934/mjcsm.12.1.6272

[7] Tan, Nurfarah Diana Mohd Ridzuan, Fudhail Abdul Munir, Musthafah Mohd Tahir, Herman Saputro, and Masato
Mikami. "Preliminary investigation of using DBD plasma for application in micro combustors." Journal of Advanced
Research in Fluid Mechanics and Thermal Sciences 82, no. 1 (2021): 105-112.
https://doi.org/10.37934/arfmts.82.1.105112

[8] Inn, Lai Qit, A. N. Oumer, Azizuddin Abd Aziz, Januar Parlaungan Siregar, and Tezara Cionita. "Numerical Analysis of
Battery Thermal Management System of Electric Vehicle." Journal of Advanced Research in Numerical Heat Transfer
13, no. 1 (2023): 106-114. https://doi.org/10.37934/arnht.13.1.106114

[9] Noranai, Zamri, Nurul Farahin Mohd Joharudin, Noradila Abdul Latif, Nur Liyana'Amirah Mohd Kamil, and Mohd
Azahari Razali. "A Case Study on Potential Saving of Energy Consumption at Hospital Putrajaya." Journal of
Advanced Research in Fluid Mechanics and Thermal Sciences 100, no. 2 (2022): 15-22.
https://doi.org/10.37934/arfmts.100.2.1522

[10] Loukrakpam, Merin, Ch Lison Singh, and Madhuchhanda Choudhury. "Energy-efficient approximate squaring
hardware for error-resilient digital systems." In 2018 IEEE Electron Devices Kolkata Conference (EDKCON), pp. 202-
206. IEEE, 2018. https://doi.org/10.1109/EDKCON.2018.8770453

[11] Reddy, K. Manikantta, Moodabettu Harishchandra Vasantha, YB Nithin Kumar, and Devesh Dwivedi. "Design of
approximate booth squarer for error-tolerant computing." IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 28, no. 5 (2020): 1230-1241. https://doi.org/10.1109/TVLSI.2020.2976131

[12] Datla, Satyendra R., Mitchell A. Thornton, and David W. Matula. "A low power high performance radix-4
approximate squaring circuit." In 2009 20th IEEE International Conference on Application-specific Systems,
Architectures and Processors, pp. 91-97. IEEE, 2009. https://doi.org/10.1109/ASAP.2009.35

[13] Banerjee, Arindam, and Debesh Kumar Das. "A New Squarer design with reduced area and delay." IET Computers
& Digital Techniques 10, no. 5 (2016): 205-214. https://doi.org/10.1049/iet-cdt.2015.0170

[14] Petra, Nicola, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio G. M. Strollo. "Truncated squarer with
minimum mean-square error." Microelectronics Journal 45, no. 6 (2014): 799-804.
https://doi.org/10.1016/j.mejo.2014.02.018

https://doi.org/10.1016/j.mejo.2014.01.005
https://doi.org/10.1109/TETC.2020.2989699
https://doi.org/10.23919/ICEMS50442.2020.9290816
https://doi.org/10.11591/ijpeds.v11.i3.pp1153-1164
https://doi.org/10.30941/CESTEMS.2022.00020
https://doi.org/10.37934/mjcsm.12.1.6272
https://doi.org/10.37934/arfmts.82.1.105112
https://doi.org/10.37934/arnht.13.1.106114
https://doi.org/10.37934/arfmts.100.2.1522
https://doi.org/10.1109/EDKCON.2018.8770453
https://doi.org/10.1109/TVLSI.2020.2976131
https://doi.org/10.1109/ASAP.2009.35
https://doi.org/10.1049/iet-cdt.2015.0170
https://doi.org/10.1016/j.mejo.2014.02.018

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

134

[15] Reddy, Beechu Naresh Kumar. "Design and implementation of high performance and area efficient square
architecture using Vedic Mathematics." Analog Integrated Circuits and Signal Processing 102, no. 3 (2020): 501-
506. https://doi.org/10.1007/s10470-019-01496-w

[16] Shao, Botang, and Peng Li. "Array-based approximate arithmetic computing: A general model and applications to
multiplier and squarer design." IEEE Transactions on Circuits and Systems I: Regular Papers 62, no. 4 (2015): 1081-
1090. https://doi.org/10.1109/TCSI.2015.2388839

[17] Shao, Botang, and Peng Li. "A model for array-based approximate arithmetic computing with application to
multiplier and squarer design." In Proceedings of the 2014 International Symposium on Low Power Electronics and
Design, pp. 9-14. 2014. https://doi.org/10.1145/2627369.2627617

[18] Haritha, H., and S. R. Ramesh. "Design of an enhanced array based approximate arithmetic computing model for
multipliers and squarers." In 2017 14th IEEE India Council International Conference (INDICON), pp. 1-5. IEEE, 2017.
https://doi.org/10.1109/INDICON.2017.8487762

[19] Gillani, Ghayoor A., Muhammad Abdullah Hanif, M. Krone, Sabih H. Gerez, Muhammad Shafique, and André BJ
Kokkeler. "SquASH: Approximate square-accumulate with self-healing." IEEE Access 6 (2018): 49112-49128.
https://doi.org/10.1109/ACCESS.2018.2868036

[20] Kim, Duhwan, and Sunggu Lee. "Approximate square root circuits with low latency and power dissipation."
Electronics 11, no. 1 (2021): 46. https://doi.org/10.3390/electronics11010046

[21] Park, In-Cheol, and Tae-Hwan Kim. "Multiplier-less and table-less linear approximation for square-related
functions." IEICE TRANSACTIONS on Information and Systems 93, no. 11 (2010): 2979-2988.
https://doi.org/10.1587/transinf.E93.D.2979

[22] Bandil, Lalit, and Bal Chand Nagar. "Modified restoring array-based power efficient approximate square root circuit
and its application." Integration 94 (2024): 102106. https://doi.org/10.1016/j.vlsi.2023.102106

[23] Jiang, Honglan, Fabrizio Lombardi, and Jie Han. "Low-power unsigned divider and square root circuit designs using
adaptive approximation." IEEE Transactions on Computers 68, no. 11 (2019): 1635-1646.
https://doi.org/10.1109/TC.2019.2916817

[24] Arya, Neelam, Manisha Pattanaik, and G. K. Sharma. "Energy-efficient logarithmic square rooter for error-resilient
applications." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, no. 11 (2021): 1994-1997.
https://doi.org/10.1109/TVLSI.2021.3114616

[25] Nasir, Sharifah Noha Zahirah Syed Abdul, Nurul Ain Ab Wahab, and Mohd Agos Salim Nasir. "Graphical User
Interface for Solving Non-Linear Equations for Undergraduate Students." International Journal of Advanced
Research in Future Ready Learning and Education 30, no. 1 (2023): 25-34.

[26] Eshan, Abdul Rauf, and Wah Yen Tey. "Investigation of Shape Parameter for Exponential Weight Function in Moving
Least Squares Method." Progress in Energy and Environment 2 (2017): 17-24.

[27] Abdullah, Aslam. "Comparative Study of the Condition for Non-Oscillatory Solution of a Singularly Perturbed
Problem on Uniform and Piecewise-Uniform Meshes." CFD Letters 12, no. 8 (2020): 108-120.
https://doi.org/10.37934/cfdl.12.8.108120

[28] Mitchell, John N. "Computer multiplication and division using binary logarithms." IRE Transactions on Electronic
Computers 4 (1962): 512-517. https://doi.org/10.1109/TEC.1962.5219391

[29] Ellaithy, Dina M., Magdy A. El-Moursy, Ghada Hamdy, Amal Zaki, and Abdelhalim Zekry. "Efficient piecewise non-
uniform approximation logarithmic and antilogarithmic converters." In 2017 International Conference on Advanced
Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology
(PEIT), pp. 149-152. IEEE, 2017. https://doi.org/10.1109/ACCS-PEIT.2017.8303034

[30] Kuo, Chao-Tsung, and Tso-Bing Juang. "Design of fast logarithmic converters with high accuracy for digital camera
application." Microsystem Technologies 24 (2018): 9-17. https://doi.org/10.1007/s00542-016-3105-y

[31] Loukrakpam, Merin, and Madhuchhanda Choudhury. "Error-aware design procedure to implement hardware-
efficient antilogarithmic converters." Circuits, Systems, and Signal Processing 38, no. 9 (2019): 4266-4279.
https://doi.org/10.1007/s00034-019-01062-9

[32] Ellaithy, Dina M., Magdy A. El-Moursy, Ghada Hamdy, Amal Zaki, and Abdelhalim Zekry. "Accurate piecewise
uniform approximation logarithmic/antilogarithmic converters for GPU applications." In 2017 29th International
Conference on Microelectronics (ICM), pp. 1-4. IEEE, 2017. https://doi.org/10.1109/ICM.2017.8268821

[33] Lyu, Fei, Zhelong Mao, Jin Zhang, Yu Wang, and Yuanyong Luo. "PWL-based architecture for the logarithmic
computation of floating-point numbers." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, no.
7 (2021): 1470-1474. https://doi.org/10.1109/TVLSI.2021.3081572

[34] Kuo, Chao-Tsung, and Tso-Bing Juang. "Area-efficient and highly accurate antilogarithmic converters with multiple
regions of constant compensation schemes." Microsystem Technologies 24 (2018): 219-225.
https://doi.org/10.1007/s00542-016-3238-z

https://doi.org/10.1007/s10470-019-01496-w
https://doi.org/10.1109/TCSI.2015.2388839
https://doi.org/10.1145/2627369.2627617
https://doi.org/10.1109/INDICON.2017.8487762
https://doi.org/10.1109/ACCESS.2018.2868036
https://doi.org/10.3390/electronics11010046
https://doi.org/10.1587/transinf.E93.D.2979
https://doi.org/10.1016/j.vlsi.2023.102106
https://doi.org/10.1109/TC.2019.2916817
https://doi.org/10.1109/TVLSI.2021.3114616
https://doi.org/10.37934/cfdl.12.8.108120
https://doi.org/10.1109/TEC.1962.5219391
https://doi.org/10.1109/ACCS-PEIT.2017.8303034
https://doi.org/10.1007/s00542-016-3105-y
https://doi.org/10.1007/s00034-019-01062-9
https://doi.org/10.1109/ICM.2017.8268821
https://doi.org/10.1109/TVLSI.2021.3081572
https://doi.org/10.1007/s00542-016-3238-z

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 48, Issue 2 (2025) 121-135

135

[35] Loukrakpam, Merin, and Madhuchhanda Choudhury. "Error-aware design procedure to implement hardware-
efficient logarithmic circuits." IEEE Transactions on Circuits and Systems II: Express Briefs 67, no. 5 (2020): 851-855.
https://doi.org/10.1109/TCSII.2020.2979937

[36] Xiong, Botao, Yuanfeng Sui, Zhi Jia, Sicun Li, and Yuchun Chang. "Utilize the shift-and-add architecture to
approximate multiple nonlinear functions." International Journal of Circuit Theory and Applications 49, no. 7 (2021):
2290-2297. https://doi.org/10.1002/cta.2994

[37] Dong, Hongxi, Manzhen Wang, Yuanyong Luo, Muhan Zheng, Mengyu An, Yajun Ha, and Hongbing Pan. "PLAC:
Piecewise linear approximation computation for all nonlinear unary functions." IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 28, no. 9 (2020): 2014-2027. https://doi.org/10.1109/TVLSI.2020.3004602

[38] Ellaithy, Dina M., Magdy A. El-Moursy, Ghada H. Ibrahim, Amal Zaki, and Abdelhalim Zekry. "Double logarithmic
arithmetic technique for GPU." In 2017 12th International Conference on Computer Engineering and Systems
(ICCES), pp. 373-376. IEEE, 2017. https://doi.org/10.1109/ICCES.2017.8275335

[39] Abed, Khalid H., and Raymond E. Siferd. "CMOS VLSI implementation of a low-power logarithmic converter." IEEE
Transactions on Computers 52, no. 11 (2003): 1421-1433. https://doi.org/10.1109/TC.2003.1244940

[40] Oleolo, Ibrahim, Hayati Abdullah, Maziah Mohamad, Mohammad Nazri Mohd Jaafar, and Akmal Baharain. "Model
Selection for the Control of Temperature in a Centralized Air Conditioning System." Journal of Advanced Research
in Applied Mechanics 74, no. 1 (2020): 10-20. https://doi.org/10.37934/aram.74.1.19

[41] Stillmaker, Aaron, and Bevan Baas. "Scaling equations for the accurate prediction of CMOS device performance
from 180 nm to 7 nm." Integration 58 (2017): 74-81. https://doi.org/10.1016/j.vlsi.2017.02.002

https://doi.org/10.1109/TCSII.2020.2979937
https://doi.org/10.1002/cta.2994
https://doi.org/10.1109/TVLSI.2020.3004602
https://doi.org/10.1109/ICCES.2017.8275335
https://doi.org/10.1109/TC.2003.1244940
https://doi.org/10.37934/aram.74.1.19
https://doi.org/10.1016/j.vlsi.2017.02.002

