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Square and square root functions are a fundamental step in many real-time digital 
signal processing applications such as image processing, signal processing, and filtering. 
The evaluation performance of these applications depends on the hardware algorithm 
used in the implementation of the square and square-root calculation. In this paper, we 
present an efficient algorithm that is capable of performing square and square root 
calculations without multiplication or division. Multiplier-less circuitry is introduced 
throughout the architecture to avoid the use of costly multipliers and dividers. The 
proposed square and square-root design exhibit good performance according to 
accuracy, latency, and power dissipation. Implementation and synthesis using Synopsys 
Design Compiler with a 90 nm CMOS process, 1.0 V supply voltage standard cell library, 
demonstrates that the proposed architecture leads to a 45% reduction in power 
dissipation while achieving higher accuracy when compared to the state-of-the-art 
approximate architectures. In addition, the proposed architecture is able to process the 
square and square-root calculation in 3 ns. 
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1. Introduction and Related Work 
 

The wide range of applications of digital signal processing (DSP) in several fields such as image 
compression, pattern recognition, demodulation, decoding, adaptive filtering, and least mean 
squaring has increased the demand for efficient implementations of real-time functions [1,2]. Also, 
real-time control systems applications in various fields such as motor drivers, power converters, and 
power factor correctors require energy-efficient function processing [3-7]. The widely exploiting 
arithmetic functions in digital signal processing (DSP) and control systems are multiplication function, 
squaring function, division function, square root function, root mean squares and total harmonic 
distortion. The exact hardware implementation of these functions consumes huge power dissipation, 
large area, and great delay that slow down the overall computations. Consequently, the exact 
computation makes limitations on the battery-powered devices due to power, speed and area 
challenge [8,9]. For example, the exact hardware implementation of multiplication function requires 
a generation of large number of partial products. Furthermore, a large amount of addition and 
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shifting of these partial products are performed to obtain the final results. This cost high power, large 
area, and long delay. Thus, the major source of overhead of the multiplication function comes from 
the complete generation of the partial products. However, such mentioned DSP and control systems 
applications are error resilient, which denotes that accuracy lack are allowed in the processing and 
computations without affecting the overall performance [10,11]. Therefore, the approximate 
arithmetic computations scheme might be exploited to relax the partial products generation and so 
the power, area, and delay overhead. Approximate calculation algorithms are hardware efficient and 
offer good accuracy solutions [12-23]. 

The ever-increasing demand for simple hardware implementation with appropriate accuracy for 
DSP and control systems applications has led to utilize the approximate arithmetic in computation of 
complex functions. Low power dissipation, less area, and low delay have been achieved according to 
the algorithm and the method of approximation that being used. Since the square function and 
square root function are frequently utilized in DSP and control systems applications, several previous 
research efforts have studied the implementation of these two functions. There are many different 
approximate algorithms to implement the square and square-root operations, each with trade-off 
power, delay, and accuracy [1-26]. However, it isn't easy to have good accuracy with high-
performance computations. Therefore, these approximation algorithms deal with the design 
complexity that sacrifices approximated errors. 

The simple implementation of 2-bit exact multiplication uses four AND gate and two half adder 
(HA) as shown in Figure 1(a). Squarer is a specific state of multiplier in which both the inputs are 
same. The circuit implementation of 2-bit multiplier may be used as a 2-bit squarer by replacing the 
second input operand by the first input operand as shown in Figure 1(b). The four-bit result from the 
2-bit multiplication process presented in Figure 1(a) requires four AND gate and two half adder to 
generate the partial products. While in case of A = B, the output bits of the 2-bit input circuit shown 
in Figure 1(a) are: P0 (1-bit): A0 AND A0 which becomes A0. P1 (1-bit): (Sum bit of HA) = A1.A0 XOR 
A0.A1 which results '0'. Carry bit of first HA is redirected as input to the second stage HA. P2 (1-bit): 
sum of second HA. P3 (1-bit): carry of second HA. The final result is represented as (P3P2P1P0). Thus 
the 2-bit binary squarer circuit is confirmed in Figure 1(b). This circuit uses one AND gate and one HA. 
As the number of bits increases, the hardware cost is increases significantly. 
 

  
(a) (b) 

 
Fig. 1. Hardware architecture of (a) 2-bit exact multiplication 
process, (b) 2-bit exact square process 
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Figure 2 presents the partial products of eight-bit squaring process showing the symmetry of 
partial products. The complete computation of square function is performed by three phases. First 
phase includes the generation of partial products. Then minimize the number of partial product rows 
to two rows. At final, using adder for adding these two rows to obtain the final result. The 
implementation of squarers can be approximated by removing several least significant columns of 
the partial product matrix. Different error reduction techniques are proposed to control the overall 
accuracy performance. 
 

 
 

Fig. 2. Exact eight-by-eight multiplication partial products 
 

For the square function approximation computation, previous work can be categorized in, 
approximate Booth squarer technique, folding technique, Indian Vedic based computation technique 
by Reddy [15], approximate square-accumulate technique by Gillani et al., [19], array based 
approximate multiplier or truncated squarer technique, and approximate logarithmic squaring 
technique [1,2,10-19]. 

In order to diminish the partial product generation, approximate Booth encoding of input 
operands has been utilized in the approximate Booth squarer scheme [11,12]. This Booth encoding 
relaxes the accumulation of the partial products. However, the encoder design becomes more 
complex. Also, as the radix of the encoder increases, the hardware complexity of the squarer 
increases. Moreover, the folding techniques exploits the similarity of partial products due to the two 
inputs are the same [11,13,14]. Thus, the number of partial products for the squarer can be 
decreased. Combining the prior two techniques, approximate Booth technique and folding of partial 
products technique, reduces the number of partial products. For example, the Booth folding 
encoding squarer by Banerjee and Das [13] employs both the radix-4 Booth encoding technique and 
folding technique. As a result, the number of partial products is decreased by half as compared to 
simple folding technique. Differently, Vedic by Reddy [15] based computation technique is one of the 
ancient Indian mathematical that involves mainly 16 sutras that deals with the different branches in 
mathematics based on arithmetic, algebra, geometry. In this technique, larger calculations are 
reduced to be simpler in which the large magnitude number is divided into smaller magnitude 
numbers and concatenated smaller magnitude numbers. Else, the approximate square-accumulate 
technique that calculates the inner product of a vector with itself to confirm effective quality-
efficiency tradeoff by Gillani et al., [19]. Where the approximations are restricted in terms of 
presenting errors and thus controlling the calculating efficiency. Ordinarily, the squaring operation is 
carried out by utilizing generic multiplier. To reduce the partial products and hardware, truncated 
squarer removes the least significant columns of the partial product array [16-18]. Also, approximate 
generic adders and multipliers are employed in the array multiplier technique. 

For extremely low power, approximate logarithmic squaring technique has been proposed as 
essential technique that substitutes the prior approximate squarer techniques [1,2,10]. All these 
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approximation techniques to provide contribution to the final result, by reducing area, delay, and 
power consumption at a price in terms of approximation error. 

Similarly, the computation of the square root consumes a large amount of hardware resources 
and a large delay which makes it necessary to exploit an approximate square root calculation 
algorithm [3-5,20,21,27]. In order to eliminate the complexity of the implementation of the square 
root operation, the modified restoring square root architecture by Bandil and Nagar [22], the 
truncated or pruning scheme by Jiang et al., [23], and the logarithmic-based approximation scheme 
by Arya et al., [24] have been proposed. These schemes compromise accuracy with hardware cost 
[22-24]. The modified restoring array-based square root scheme by Bandil and Nagar [22] has been 
proposed to decrease the power consumption and area with faster computation as compared to the 
exact square root architecture. This scheme has achieved a simple planned exclusion and 
enhancement of restoring subtractor cells within the conventional array square root circuit for 
efficient square root execution. Moreover, an adaptive approximation approach has been achieved 
to perform square root operation by Jiang et al., [23]. Some less important numbers of input bits are 
pruned effectively to cut the width of the square root. This scheme reduces the maximum error 
distance of the approximate square root circuit. In order to decrease the signal activity and the 
operator's strength, the logarithmic-based approximate scheme has been targeted by Arya et al., 
[24] to implement the square root operation. The complex computations are converted to simple 
addition and shifting operations in this scheme. Although the approximations due to the 
transformation from binary field to logarithmic field produce some errors, the gaining of power 
saving and speed enhancement is significantly increased. 

Thus, this paper proposes approximate square and square root calculation without multiplication 
or division that are correspondent with error-resilient DSP applications with less hardware resources. 
The large number of partial products and accumulations in the square and square root operations 
have been replaced by simple shifting and shifting-and-adding approach with the aid of piecewise 
linear logarithm and antilogarithm converters. Simple hardware implementation of the piecewise 
linear converters leads to significant savings of hardware cost and power consumption. 

The rest of this paper is organized as follows. Section 2 presents the proposed square and square 
root hardware architecture design. Also, the proposed logarithm and antilogarithm converters are 
demonstrated in section 2. Section 3 analyzes the error and the evaluation results. VLSI hardware 
implementation and synthesis results of the proposed square/square root are discussed in section 4. 
The conclusion is demonstrated in section 5. 
 
2. Proposed Square/Square Root Hardware Architecture Design 
 

In this section, we present the hardware implementation of the square function, square root 
function, logarithm converter, and antilogarithm converter. 

In general, computations in logarithmic domain are performed in three steps as shown in Figure 
3: 1) take the base-2 logarithm of the input operands, 2) operations in the logarithmic arithmetic 
domain, and 3) take the antilogarithm of the results from 2). Among the existing approaches to the 
hardware implementation of logarithmic conversion, piecewise linear approximation is usually the 
most efficient solution. 
 

 
 

Fig. 3. Logarithm arithmetic unit architecture 
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Exploiting the approximate logarithm arithmetic in the implementation of square function has its 
significant improvement on the performance. Great saving in power, area, and delay is achieved at 
expenses of accuracy. The method of accomplish the complete approximate computation in 
logarithm domain strongly depends on the scheme that used for performing logarithm and 
antilogarithm converters. Several prior works have proposed efficient logarithmic and 
antilogarithmic converters that relay on the principle of Mitchell [28]. In the next subsection, the 
proposed logarithm and antilogarithm converters are presented. 
 
2.1 Proposed Logarithm and Antilogarithm Converters Implementation Structure 
 

The logarithm arithmetic consists mainly of logarithm converters, antilogarithm converters, and 
simple arithmetic unit. The logarithm converters are responsible for the transformation from binary 
number form to logarithm number form. While the antilogarithm converters are responsible for the 
transformation from logarithm number form to binary number form. Consequently, the hardware 
implementation of these converters has a great impact on the overall performance. The first 
investigation by Mitchell's [28] in the transformation method from binary number form to logarithm 
number form began with representing the input operand x by integer part k and fraction part f. Also, 
k may be named as the characteristic and demonstrates the position of the most significant bit. Thus, 
x can be substituted by 2!(1 + 𝑓). After entering the input operand x into the logarithmic converter, 
it is transformed to 𝑘 + log"(1 + 𝑓). Mitchell approximated the transformation curve into segments 
and represented each segment by straight-line 𝑓 neglecting the rest of the approximated fraction. 
Although this approximation is simple and consumes minimum hardware cost, the transformation 
accuracy is decreased. Based on the piecewise linear approximation log"(1 + 𝑓) may be 
approximated to 𝑓 + 𝛼 ∙ 𝑓 + 𝛽 in order to correct the error level. In the same way, for the 
transformation from logarithm number form to binary number form, the input operand x is 
represented by integer part k and fraction part f, where 𝑥 = 𝑘 + 𝑓. The representation of the input 
operand x after entering into the antilogarithm converter is 2!2#. Also, the fraction term 2# is 
approximated to 𝛼 ∙ 𝑓 + 𝛽 based on piecewise linear approximation. The transformation coefficients 
𝛼 and 𝛽 for the logarithm or antilogarithm converters are chosen to be power of two for each 
segment to simplify the hardware implementation. Consequently, a shift-and-add architecture is 
used in the implementation of the transformation converters as will be discussed in section 4. 

In order to enhance the performance of the transformation from binary number form to 
logarithm number form and vice versa, different prior piecewise linear approximation have been 
accomplished [29-37]. Several research have been approximated the transformation to logarithm 
domain into large number of regions to provide higher accuracy. However, as the number of regions 
increases, the complexity of hardware implementation increases. On the other hand, various 
researches have proposed the advancements of hardware in terms of power consumption reduction 
and speed upgrading. 

The diversity of applications requires both significantly low power consumption and higher 
accuracy level. Therefore, two mainly categories are specified to implement the transformation 
converters from binary number domain to logarithmic domain or vice versa. Piecewise uniform 
approximation and piecewise nonuniform approximation logarithm and antilogarithm converters 
implementation are promising alternatives which produce a trade-off between energy consumption 
and accuracy. In the piecewise uniform approximation converters, the dedicated interval for the 
converters is divided into segments with the same size. The converters that exploit this scheme 
consume less hardware implementation cost and consequently less energy dissipation. On the other 
hand, the piecewise nonuniform approximation converters divide the dedicated interval into 
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segments with non-equal size. These converters optimize the accuracy level at the expense of 
hardware cost. 

Among of the different approaches in the implementation of the transformation from binary 
number form to logarithm number form or vice versa, the prior research for the transformation that 
is found to be a compromise between accuracy and hardware cost are the works of Ellaithy et al., 
[29,32], Kuo and Juang [30,34], Loukrakpam and Choudhury [31], and Lyu et al., [33]. We study the 
trade-off for the transformation converters to propose the appropriate converters depending on the 
requirements of the applications. The power consumption has become highly important metric than 
chip area and accuracy. According to this demand, the proposed transformation converters has been 
used to implement the square operation and the square root operation. 

Thus, in this paper we have proposed a new piecewise eight-segment uniform approximation 
converters for simpler hardware design and minimum power consumption. The proposed converters 
exhibit efficient power saving with good accuracy level. The approximation coefficients of each 
segment of the transformation converters are chosen in order to enhance the overall performance. 
The selection of the transformation coefficients is based on the trade-off between accuracy and 
hardware complexity. The transformation coefficients for each segment of the logarithm and 
antilogarithm converters have been chosen by the aid of a linear programming according to the 
algorithm demonstrated in Figure 4. The transformation coefficients of each segment are attained 
using MATLAB software by compare the approximation coefficients to the true amount. The achieved 
transformation coefficients enhance the hardware implementation with good accuracy level. Table 
1 and Table 2 include the uniform eight-segment in column 1 and the proposed transformation 
coefficients 𝛼 and 𝛽 in column 2-3, for each segment, for the logarithm and antilogarithm converters, 
respectively. The proposed converters are able to decrease power consumption by more than 5% in 
logarithm converter and more than 37% in antilogarithm converter as compared to prior work with 
comparable accuracy level in section 4. The accuracy analysis and comparison with the previous work 
have been presented in the next section 3. 
 

 
 
Fig. 4. Proposed algorithm for the logarithm transformation 
converters 
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Table 1 
Proposed uniform eight-region logarithmic converter with its 
transformation coefficient 
 Subdivisions 𝛼 𝛽 x 2-14 
1. [0 , 1/8) 1 + 92/256 0 
2. [1/8 , 2/8) 1 + 55/256 296 
3. [2/8 , 3/8) 1 + 24/256 792 
4. [3/8 , 4/8) 1  1,380 
5. [4/8 , 5/8) 1 – 20/256 2,032 
6. [5/8 , 6/8) 1 – 36/256 2,668 
7. [6/8 , 7/8) 1 – 52/256 3,432 
8. [7/8 , 8/8) 1 – 64/256 4,096 

 
Table 2 
Proposed uniform eight-region antilogarithmic converter with its 
transformation coefficient 
 Subdivisions 𝛼 𝛽 x 2-14 
1. [0 , 1/8) 1 – 71/256 16,386 
2. [1/8 , 2/8) 1 − 54/256 16,252 
3. [2/8 , 3/8) 1 – 36/256 15,966 
4. [3/8 , 4/8) 1 − 16/256 15,489 
5. [4/8 , 5/8) 1 + 6/256 14,786 
6. [5/8 , 6/8) 1 + 30/256 13,826 
7. [6/8 , 7/8) 1 + 56/256 12,578 
8. [7/8 , 8/8) 1 + 84/256 11,008 

 
2.2 Proposed Approximate Square/Square Root Function Implementation Structure 
 

An optimal solution of the circuit hardware implementation of complex function in digital signal 
processing is the transformation from the binary number computing domain to the logarithm 
number computing domain by Ellaithy et al., [38]. The signal activity and the strength of the 
operations are reduced. Consequently, the cost of hardware is reduced. 

The implementation of square function (S) and square root function (SR) of input operand A can 
be transformed to right shift or left shift in the logarithm domain, respectively, according to 
 

𝑆 = 𝐴"
𝑙𝑜𝑔"𝑆 = 2 ∙ 𝑙𝑜𝑔"𝐴
𝑆 = 2["∙&'(!)]

             (1) 

 
𝑆𝑅 = √𝐴 = 𝐴+/"

𝑙𝑜𝑔"𝑆𝑅 = 2-+ ∙ 𝑙𝑜𝑔"𝐴
𝑆𝑅 = 2[""#∙&'(!)]

            (2) 

 
Eq. (1) confirms that the implementation of square function (S) is replaced by right shifting 

operation after transferring to logarithm domain. In the same way, the implementation of square 
root function (SR) is replaced by left shifting operation after converting to logarithm domain 
according to Eq. (2). The implementation of the square and square root operations in logarithm 
domain is much simpler as shown in Figure 5. After the transformation of the input operand from the 
binary number form to logarithm number form by using the logarithm converter, only shifting right 
(RSH) or shifting left (LSH) operation is performed in the logarithm domain for the square operation 
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or square root operation, respectively. The next step is the transformation from logarithm number 
form to binary number form by using antilogarithm converter to obtain the final result. 
 

 
 

Fig. 5. Proposed architecture of square/square root operation 
 

The hardware implementation of the logarithm converter is composed of leading one detector 
(LOD) block and sum of shifts block. To compute the characteristic value k, detecting the position of 
leading one bit, the LOD block is utilized. The circuit implementation of the LOD is based on the 
scheme by Abed and Siferd [39]. The bits following the leading one bit is considered the fraction value 
f. The shifts and additions block are utilized to compute the approximated fractional value of 
log"(1 + 𝑓). The logarithm computation results are generated by concatenating the characteristic 
value and the approximated fractional part. Likewise, the implementation of the antilogarithm 
converter is composed of sum of shifts block to compute the approximated fraction value 2# . The 
final transformation result is generated by the final shifting by the characteristic value k. 

A step-by-step example demonstrating the above process for employing the proposed 
architecture of implementing the square and square root operations in the logarithm domain of input 
operand A = 3 is presented in Figure 6. The first block in the logarithm converter is the LOD. As shown 
in Figure 6, the position of the leading 1 bit is one (k=1), thus the fraction bits are the remaining bit 
after the leading one bit. After that simple add and shift operations are performed according to the 
value of the fraction bits. For the example in Figure 6, f = 0.5, this belongs to the fifth segment of the 
proposed uniform eight-region logarithmic converter. According to the transformation coefficient in 
the fifth segment, the logarithm of the fractional part is approximated to [1001 0101 1100]. The last 
stage is to combine the characteristic and the approximated fractional part. As presented in Figure 
6, the logarithm of the input operand A is [0001.1001 0101 1100]. For the implementation of the 
square process, a right shifter (RSH) is employed while a left shifter (LSH) is employed for the square 
root implementation as shown in Figure 5. The last step is the transformation from the logarithm 
domain to the binary domain through the antilogarithm converters. The characteristic and fraction 
bits are determined as demonstrated in Figure 6. The error analysis of the proposed logarithm 
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converter, antilogarithm converter, and square and square root operations are presented in the next 
section. 

 
 

Fig. 6. Example of proposed algorithm of square/square root operation 
       
3. Error Analysis and Evaluation Results 
 

MATLAB software is used to evaluate the error. For logarithm and antilogarithm converter, the 
absolute error and relative error is defined as: 
 
Absolute	Error = approximated	value − true	value        (3) 
 
Relative	Error(%) = K.//01234.567	9.:;6-50;6	9.:;6

50;6	9.:;6
L × 100        (4) 

 
Figure 7 and Figure 8 demonstrate the absolute error graphs for the proposed piecewise eight-

segment uniform approximation logarithm and antilogarithm converters according to the 
transformation coefficient listed in Table 1 and Table 2, respectively. 
 

 

 

 
 
Fig. 7. Absolute error for the proposed logarithm 
converter 

  
Fig. 8. Absolute error for the proposed 
antilogarithm converter 
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Also, Table 3 and Table 4 include the achieved results and prior work for comparison. Several efforts 
have been attained to improve the accuracy of transformation converters [29-34]. However, certain 
inaccuracies are occurred due to approximations. Consequently, some error level will produce within 
implementing the logarithm based square and square root operation. The proposed transformation 
converters are selected to trade off hardware complexity and accuracy. The proposed piecewise 
uniform approximation logarithm converter achieves less error as compared to previous work. Also, 
accuracy is improved by at least 17% for the piecewise uniform antilogarithm converter as compared 
to prior work by Ellaithy et al., [29]. Using the proposed transformation converters in the 
implementation of the square and square root operations, significant hardware complexity reduction 
is accomplished. 

Conventionally, the maximum absolute error (MAE), the relative error distance (RED), the mean 
relative error distance (MRED), and the mean squared error (MSE) are usually utilized to evaluate the 
accuracy of the investigated designs. The maximum absolute error (MAE) is computed as: 
 
MAE = max	[Exact	square	value − 	approximated	square	value]       (5) 
 
The relative error distance (RED) is defined as: 
 
RED = <2.=5	>?;.06	9.:;6-.//01234.567	>?;.06	9.:;6

<2.=5	>?;.06	9.:;6
         (6) 

 
Moreover, the mean relative error distance (MRED), is denoted as follows: 
 
MRED = +

@
∑ K.//01234.567	9.:;6-50;6	9.:;6

50;6	9.:;6
L@

3A+          (7) 
 
The mean squared error (MSE) is expressed as [40]: 
 

MSE = +
@
∑ K.//01234.567	9.:;6-50;6	9.:;6

50;6	9.:;6
L
"

@
3A+           (8) 

 
Where N is the number of all possible input combinations. The average conversion error of the 

binary number to logarithmic number square/square root operation is 0.04. The error percentage 
resulting from approximation square/square root is less than this one, at 0.167 by Petra et al., [14]. 
A certain inaccuracy levels can be accepted for DSP applications. 
 

Table 3 
Error comparison between the proposed logarithm converter and the state-of-the-art work using Eq. (3) 
Technique Kuo and Juang [30] Lyu et al., [33] Ellaithy et al., [32] Proposed Work 
Segments 8 8 8 8 
Max. Positive Error 0.92 × 10$% 2.501 × 10$% -- 2.5 × 10$% 
Max. Negative Error 2.0 × 10$% −0.0934 × 10$% -- 0 
Total Error Range 2.92 × 10$% 2.594 × 10$% 2.47 × 10$% 2.50 × 10$% 

 
Table 4 
Error comparison between the proposed antilogarithm converter and the state-of-the-art work using 
Eq. (4) 
Technique Ellaithy et al., [29] Loukrakpam and 

Choudhury [31] 
Kuo and Juang [34] Proposed Work 
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Segments 8 8 11 8 
Max. Positive Error 
(%) 

+0.07528 0.0898 1.7327 +0.09747 

Max. Negative 
Error (%) 

-0.05138 -0.0244 0.0992 -0.00668 

Total Error Range 
(%) 

0.12666 0.0898 1.8319 0.10415 

 
4. VLSI Hardware Implementation and Synthesis Results 
 

In this section, we synthesize the proposed work with the CMOS 90-nm, 1.0 V supply voltage 
standard cell library using Synopsys Design Compiler and evaluate the area and power overheads. 
Two types of comparisons are presented as follows. First, the proposed transformation converters 
are compared with prior logarithm and antilogarithm converters in Table 5 and Table 6. Second, the 
logarithm based approximation square/square root operations are compared with the exact square 
radix-4 implementation and prior approximation work in Table 7 [2,10,11,14,16]. 
 

Table 5 
VLSI hardware implementation and synthesis results comparison between the proposed logarithm 
converter and the state-of-the-art work 
Approach Kuo and Juang [30] Lyu et al., [33] Ellaithy et al., [32] Proposed Work 
Process (nm) 180 90 90 90 
Power (µW) -- 864.3 660.49 628.181 
Area (µm&) 27975.02 3611 8600.48 8976 
Delay (ns) 3.5 0.95 1.77 1.53 

 
Table 6 
VLSI hardware implementation and synthesis results comparison between the proposed antilogarithm 
converter and the state-of-the-art work 
Approach Ellaithy et al., [29] Loukrakpam and 

Choudhury [31] 
Kuo and Juang [34] Proposed Work 

Process (nm) 90 65 180 90 
Power (µW) 153.343 271 -- 170.477 
Area (µm&) 6098.736 701.28 2807 7309 
Delay (ns) 1.41 1.34 1.4 1.39 

 
Table 5 compares the proposed uniform eight-segment piecewise logarithm converter hardware 

performance with the previous piecewise transformation converters [30,32,33]. The proposed 
logarithm converter achieves less power consumption and high accuracy. 

Moreover, Table 6 includes the comparison results of the proposed uniform eight-segment 
antilogarithm converter with prior work [29,31,34]. As compared with prior work, the proposed 
antilogarithm converter achieves high power saving and lower error level. 

The synthesized hardware of 32-bit and 16-bit proposed square/square root scheme is compared 
with the hardware characteristics of the ASIC-based 32-bit and 16-bit exact squarer scheme and 
different approximation prior work [2,10,11,14,16,23]. Table 7 demonstrates the synthesized 
hardware results in terms of area, power, and delay for the exact implementation scheme, five 
different implementation schemes, and the proposed scheme. Our proposed square scheme incurs 
approximately 3 ns delay. 
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Table 7 
VLSI hardware implementation and synthesis results comparison between the proposed square/square 
root process and the state-of-the-art work 
Approach Accurate Square 

Radix4 
Loukrakpam 
et al., [10] 

Reddy 
et al., 
[11] 

Shao 
and Li 
[16] 

Ansari 
et al., 
[2] 

Jiang 
et al., 
[23] 

Petra 
et al., 
[14] 

Proposed 
Work 

Process (nm) 90 65 45 90 28 28 90 90 
Number of Bits 32-Bit 16-

Bit 
32-Bit 16 16 16 16 16 32-Bit 16-Bit 

Power (mW) 1.865 0.89 0.87 0.5206 0.4816 0.0586 0.0626 0.701 0.735 0.367 
Area (µm&) 28492.9 5623 3105.60 1649.4 2090 247.57 182.8 3566 15215 5130 
Delay (ns) 8.06 4.15 2.58 1.382 2.45 0.81 4.09 1.11 3.09 1.4 
Error 
Metrics 

MAE 0 
0 
0 
0 

0.03125 
3.125 
0.42 
-- 

0.0396 
3.96 
-- 
-- 

-- 
-- 
-- 
0.11 

-- 
-- 
0.0297 
-- 

0.24 0.74 
-- 
-- 
0.091 

0.0195 
1.95 
0.04 
0.0016 

RED -- 
MRED 0.023 
MSE -- 

 
The proposed square root operation exhibits a power efficiency 2.5 times higher than the exact 

one. As demonstrates in Table 7, the proposed architecture occupies an area of 15215 𝜇𝑚" and 
consumes a power of 0.735 mW with average error of 0.04. 

Since they targeted different technologies, we scaled the original speed, area, and power 
performances according to rules provided by Stillmaker and Baas [41]. We have normalized the 
results for different technology nodes. Scaling down from 90 nm CMOS technology, 1.0 V supply 
voltage standard cell library to 65 nm CMOS technology, 1.0 V supply voltage standard cell library is 
attained according to Stillmaker and Baas [41]. The power consumption of the proposed square 
scheme after scaling down from 90 nm process to 65 nm process becomes (0.647x0.735) 0.4755 mW. 
Also, the delay in 65 nm process turns into (0.7554x3.09) 2.33 ns. Moreover, the area is reduced to 
(0.53x15215) 8063.95 𝜇𝑚". The hardware implementation results of the proposed scheme achieve 
saving in power by up to 45% as compared to approximate squaring hardware scheme by 
Loukrakpam et al., [10]. Also, more than 9.6% saving in delay is attained with higher accuracy. 

A straightforward optimization is accomplished to the logarithm and antilogarithm converters to 
enhance the accuracy level. Consequently, overall improvement is obtained when performing the 
square/square root operations. Finally, the proposed scheme has a lower power overhead. 

In order to examine the efficiency of the proposed techniques in real advanced applications, some 
works were presented by Bandil and Nagar [22], Jiang et al., [23], Ansari et al., [2], and Avramović et 
al., [1] introduce an error-resilient application. Some applications in different domains include image 
processing and computer vision applications specifically edge detection computation by Bandil and 
Nagar [22] and envelope detection in ultrasound imaging by Jiang et al., [23]. Also, applications in 
amplitude demodulation to obtain the Euclidian distances between the exact demodulation signal 
and the approximated technique were examined by Ansari et al., [2], and Avramović et al., [1]. We 
will include a dedicated application that confirms the efficiency of the proposed designs in an 
extension work. Also, the extension work will involve designing and implementing the proposed 
approximate architecture using downsizing of used CMOS technology. 
 
5. Conclusions 
 

A novel uniform eight-region piecewise transformation logarithm and antilogarithm converters 
are proposed. A shift-and-add algorithm is exploited for hardware implementation of the 
transformation converters. Up to 27% reduction of power is achieved for the logarithm converter. 
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Also, not less than 17% high accuracy is attained for the antilogarithm converter. The proposed 
converters are used in the hardware implementation of the square/square root functions. The 
complex square function and square root function hardware implementation are simplified to right 
and left shifting by adopting the proposed converters. The obtained results show power saving by up 
to 60%, 45%, when compared with the exact square scheme, and prior approximate work by 
Loukrakpam et al., [10]. 
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