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 ABSTRACT 

 
The presence of PM2.5 (particulate matter 2.5) poses a significant threat to human 
health. Urban activities are where PM2.5 is predominantly produced, and the built 
environment may have an impact on how it forms and spreads. To analyse PM2.5 data, 
one can use the coefficient of variation of inverse Gaussian distribution. This study aims 
to generate simultaneous confidence intervals using the generalized confidence 
interval, the adjusted generalized confidence interval, the fiducial confidence interval, 
and the highest posterior density confidence interval methods for all pairs between the 
coefficients of variation of inverse Gaussian distributions. By using a simulation of 
Monte Carlo, the effectiveness of the simultaneous confidence interval approaches was 
evaluated with a focus on two crucial metrics: coverage probabilities and average 
lengths. The findings demonstrated that the coverage probability conditions were 
satisfied by the confidence interval obtained by the adjusted generalized confidence 
interval and the highest posterior density confidence interval methods. The 
effectiveness of the suggested strategies was shown using PM2.5 data from five 
Bangkok, Thailand areas. 
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1. Introduction 
 

Numerous urban and rural locations around the world are experiencing a decline in air quality. 
According to the World Bank report, the global economy lost nearly $5 trillion in 2013 due to the 
consequences of air pollution on health [1].  Air pollution being the most significant factor for 
fatalities worldwide and is currently seen as a serious problem in Thailand [2]. The government places 
great importance on addressing this issue and has taken proactive measures by implementing several 
solutions. Dust particles are produced for various reasons, including waste burning, tree burning, and 
engine exhaust emissions from multiple cars. These particles are responsible for creating hazy and 
obscured skylines in cities, including Bangkok. It is widely acknowledged that poor air quality and 
exposure to air pollution have negative impacts on human health, including respiratory and 
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cardiovascular disorders [3]. These impacts have garnered significant attention, especially in 
metropolitan regions with high human activity concentrations and population densities. Accurate 
forecasting of concentrations of fine PM2.5 with a diameter of less than 2.5 micrometers is crucial 
for more efficient air pollution control. In order to gather the required information for developing 
policies aimed at reducing such occurrences, it is imperative to conduct research on the distribution 
of PM2.5 in each location. 

The inverse Gaussian distribution (IG) is a continuous probability distribution that is used in 
statistics to model data that is continuous and positive-valued. It is particularly useful in modeling 
waiting times, failure times, and reaction times [4-9]. Furthermore, there have been numerous 
research studies involving PM2.5 and its association with the IG. For instance, the IG was shown to 
be appropriate for fitting PM fixed-site data probability density curves by [10]. Gavril et al., [11] 
discovered that the IG generated better outcomes than the beta, gamma, and Weibull distributions. 
Authors [12] investigated the PM2.5 concentration data in Chaing Mai at Yupparaj Wittayalai School 
and city hall, it found that the IG is the most suitable probability density function of the daily average 
PM2.5 concentration for two stations.  

In addition, many scholars are interested in the studies on constructing confidence intervals for 
a number of inverse Gaussian distribution parameters that are employed in statistical inference. As 
an illustration, Chhikara and Folks [4] presented a precise method for determining confidence 
intervals (CIs) for the ratio means when the shape parameters of the two populations are identical. 
Ye et al., [13] utilized the generalized confidence interval (GCI) approach to calculate intervals and 
test their predictions concerning the mean of IG populations. Ismail and Auda [14] provided estimates 
for the scale parameter and posterior density using Gibbs sampling and Jeffreys' prior for the scale 
parameter when the mean is known. In their effort to conduct a comprehensive survival analysis for 
IG using the Gibbs sampling methodology, Jayalath and Chhikara [15] employed Bayesian and fiducial 
methodologies, requiring the utilization of a Monte Carlo Markov Chain (MCMC) method. 

The coefficient of variation (CV) is a statistical measure utilized to compare the variability of two 
or more data sets relative to their mean. The PM2.5 concentration dispersion in different areas can 
be compared using the CV. Wong and Wu [16] reported that a small sample asymptotic method 
provided better CIs for the CV. Using the modified method of variance estimates recovery (MOVER), 
GCI, and large sample approaches, Thangjai and Niwitpong [17] produced CIs for the weighted CVs 
of two-parameter exponential distributions. To produce a CI for the difference between two CVs for 
normal distributions, Donner and Zou [18] proposed MOVER. Yosboonruang et al., [19] produced the 
CIs for the CV of a lognormal distribution using Bayesian and fiducial GCI methods. By generating CIs 
for the ratio of the CVs of delta-lognormal distributions using both the GCI approach and the MOVER-
based Wald interval, Buntao and Niwitpong [20] concluded that the GCI method was the most 
appropriate. Keawprasert et al., [21] used the scoring technique, the Wald method, and the 
percentile bootstrap confidence interval to give the CIs for CV in the inverse gamma distribution. 
Additionally, Chankham et al., [22] presented CIs for the CV of an IG distribution. 

Simultaneous estimation of dispersion for numerous locations has been studied using a variety 
of distributions and parameters because it can either be the same or different for distinct data series 
for different areas. Donner and Zou [23] constructed simultaneous confidence intervals (SCIs) for 
multiple contrasts of binomial proportions using a two-step MOVER technique; their proposed 
method was successful for samples of small to medium size. Zhang [24] offered SCIs for all pairwise 
IG mean comparisons. According to Li et al., [25], parametric bootstrapping should be used to 
construct SCIs for all pairwise discrepancies between the means of two-parameter exponential 
distributions. Using the percentile bootstrap, GCI, and MOVER, Puggard et al., [26] constructed 
estimation methods for SCIs for all pairwise differences between the CVs and various Birnbaum-
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Saunders distributions. These approaches performed well in nearly all of the examples studied. No 
previous studies developed SCIs for all differences between CVs of the inverse Gaussian distributions. 
This research tackles a critical deficiency in current literature concerning IG distributions, particularly 
focusing on CVs. It underscores the lack of SCIs for differences in CVs across IG distributions. To 
address this gap, the study introduces innovative methods for calculating these SCIs. By advancing 
statistical techniques in this area, the research aims to enhance the analysis of air pollution data. 
Ultimately, these developments hold promise for bolstering strategies in air quality management, 
offering valuable insights for environmental and public health practitioners alike. 

The paper is structured as follows. The procedures to estimate SCIs are presented in Section 2. 
The results are reported in Section 3. Section 4 exhibits the validation of the proposed SCIs. Finally, 
the conclusion is provided in Section 5. 

 
2. Methodology 
 

Let 𝑊𝑖 = (𝑊𝑖1,𝑊𝑖2, . . . ,𝑊𝑖𝑛𝑖), 𝑖 = 1,2, . . . , 𝑟 be a random sample from 𝑟 independent inverse 

Gaussian distributions, represented by 𝑋𝑖𝑗 ∼ 𝐼𝐺(𝜇𝑖 , 𝜆𝑖). The distribution function of an inverse 

Gaussian distribution presented by: 
 

𝑓(𝑤𝑖𝑗 , 𝜇𝑖 , 𝜆𝑖) = (
𝜆𝑖

2𝜋𝑤𝑖𝑗
2)

1

2
𝑒𝑥𝑝 {−

𝜆𝑖(𝑤𝑖𝑗−𝜇𝑖)
2

2𝜇𝑖
2𝑤𝑖𝑗

} , 𝑤𝑖𝑗 > 0, 𝜇𝑖 > 0, 𝜆𝑖 > 0,      (1) 

 
where 𝜇𝑖 and 𝜆𝑖 are the mean and scale parameters. Following Ye et al., [13], the corresponding 
mean and variance of 𝑊𝑖 are 
 
𝐸(𝑊𝑖) = 𝜇𝑖 , and             (2) 
 

𝑉𝑎𝑟(𝑊𝑖) =
𝜇𝑖
3

𝜆𝑖
                (3) 

 
In the aftermath, the CV of 𝑊𝑖 can be represented as: 
 

𝐶𝑉(𝑊𝑖) = 𝜃𝑖 = √
𝑉𝑎𝑟(𝑊𝑖)

𝐸(𝑊𝑖)
= √

𝜇𝑖

𝜆𝑖
           (4) 

 
Given that we aimed to establish SCIs of the CVs of IGs. 
 

𝜃𝑖𝑙 = 𝜃𝑖 − 𝜃𝑙 = √
𝜇𝑖

𝜆𝑖
−√

𝜇𝑙

𝜆𝑙
            (5) 

 
where𝑖, 𝑙 = 1,2, . . , 𝑟and𝑖 ≠ 𝑙. The maximum likelihood estimators of 𝜇𝑖 and 𝜆𝑖 are shown in Eqs. (6) 
and (7): 
 
�̂�𝑖 = �̄�𝑖              (6) 
 

�̂�𝑖
−1

=
1

𝑛𝑖
∑ (𝑊𝑖𝑗

−1𝑛𝑖
𝑗=1 − �̄�𝑖

−1)            (7) 
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Considering that �̂�𝑖 and �̂�𝑖 are hypothetically independent, the maximum likelihood estimator of𝜃𝑖 
can be described as: 
 

𝜃𝑖 = √
�̂�𝑖

�̂�𝑖
              (8) 

 
Similarly, 
 

𝜃𝑖𝑙 = 𝜃𝑖 − 𝜃𝑙 = √
�̂�𝑖

�̂�𝑖
−√

�̂�𝑙

�̂�𝑙
     (9) 

 
where 𝑖, 𝑙 = 1,2, . . . , 𝑟 and 𝑖 ≠ 𝑙. The next subsection provides a more thorough explanation of the 
steps involved in creating the SCIs for 𝜃𝑖𝑙 . 
 
2.1 GCI 
 

Weerahandi [27] was the first to introduce the GCI technique concept. GCI is a development of 
the conventional idea of a confidence interval. When a crucial metric has a known distribution and is 
free of nuisance characteristics, conventional confidence intervals can be created. Suppose that 
𝑊𝑖 = (𝑊𝑖1,𝑊𝑖2, . . ,𝑊𝑖𝑛), 𝑖 = 1,2, . . , 𝑟 be a random sample drawn from 𝑟  independent inverse 
Gaussian distribution with relevant parameters. 𝜃𝑖 = (𝜇𝑖 , 𝜆𝑖) and nuisance parameter𝜐𝑖 . Let 𝑤𝑖 =
(𝑤𝑖1, 𝑤𝑖2, . . . , 𝑤𝑖𝑛), 𝑖 = 1,2, . . , 𝑟be an observed value of 𝑊𝑖. The generalized pivotal quantity (GPQ),  
𝑅(𝑊𝑖; 𝑤𝑖 , 𝜃𝑖 , 𝜐𝑖) has the following properties: 
 

i. The distribution of 𝑅(𝑊𝑖; 𝑤𝑖 , 𝜃𝑖 , 𝜐𝑖) is free of unidentified parameters. 
ii. The observed value of 𝑅(𝑊𝑖; 𝑤𝑖 , 𝜃𝑖 , 𝜐𝑖) is free of nuisance parameter of 𝜐𝑖 . 
Subsequently, the 100(1 − 𝛼)%  generalized confidence interval for 𝜃𝑖  is given 

by[𝑅𝜃𝑖 (
𝛼

2
) , 𝑅𝜃𝑖 (1 −

𝛼

2
)],  where 𝑅𝜃𝑖 (

𝛼

2
)  is obtained by using 100(

𝛼

2
) − 𝑡ℎ  percentiles of 𝑅𝜃𝑖 .  Let 

𝑊𝑖𝑗 ∼ 𝐼𝐺(𝜇𝑖 , 𝜆𝑖), 𝑖 = 1, . . , 𝑟, 𝑗 = 1, . . , 𝑛𝑖 be an independent random sample from 𝑟 IG populations. 

Let 𝑛 = ∑ 𝑛𝑖
𝑟
𝑖=1  be the total sample size,  

 

�̄�𝑖 = ∑
𝑊𝑖𝑗

𝑛𝑖

𝑛𝑖
𝑗=1   and,                         (9)

  

𝑆𝑖 = ∑ (
1

𝑊𝑖𝑗
−

1

�̄�𝑖
)

𝑛𝑖
𝑖=1                        (10)  

The independent maximum likelihood estimators for 𝜇𝑖and 𝜆𝑖 are �̂�𝑖 = �̄�𝑖 , and �̂�𝑖 =
𝑛𝑖

𝑆𝑖
. �̄�𝑖 and 

𝑆𝑖 are independent. The GPQs for parameters of an inverse Gaussian distribution are proposed by Ye 
et al., [13]. The corresponding GPQs for 𝜇𝑖 and 𝜆𝑖 are as follows: 
 

𝑅𝜆𝑖 =
𝑛𝑖𝜆𝑖𝑉𝑖

𝑛𝑖𝜐𝑖
∼

𝜒𝑛𝑖−1
2

𝑛𝑖𝜐𝑖
, 𝑖 = 1,2, . . , 𝑟 and,                     (11) 

 

𝑅𝜇𝑖 =
�̄�𝑖

|1+
√𝑛𝑖𝜆𝑖(�̄�𝑖−𝜇𝑖)

𝜇𝑖√�̄�𝑖
√

�̄�𝑖
𝑛𝑖𝑅𝜆𝑖

|

�̰�
�̄�𝑖

|1+𝑍𝑖√
�̄�𝑖

𝑛𝑖𝑅𝜆𝑖

|

                    (12) 
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where �̰� is approximately distributed and 𝑍𝑖 ∼ 𝑁(0,1). The approximate distribution is generated 
from the moment matching method of Chhikara and Folk [4]. Note that a limiting distribution of 
𝑁(0,1) as follow: 
 
√𝑛𝑖𝜆𝑖(�̄�𝑖𝑖−𝜇𝑖)

𝜇𝑖√�̄�𝑖
                         (13) 

 
 As a result, 𝜇𝑖 is the observed value of 𝑅𝜇𝑖 . Consequently, the GCI for the CV of an IG distribution is 

provided by: 
 

𝑅𝜃𝑖 = √
𝑅𝜇𝑖

𝑅𝜆𝑖
                        (14) 

 
In light of this, the GCI for the variations between two independent CVs can be written as: 

𝑅𝜃𝑖𝑙 = 𝑅𝜃𝑖 − 𝑅𝜃𝑙 = √
𝑅𝜇𝑖

𝑅𝜆𝑖
−√

𝑅𝜇𝑙

𝑅𝜆𝑙
                     (15) 

 
where  𝑖, 𝑙 = 1,2, . . . , 𝑟  and 𝑖 ≠ 𝑙. Therefore, the 100(1 − 𝛼)% two-sided SCI for 𝜃𝑖𝑙based on GCI 
method can be written as 𝐿𝑖𝑙 ≤ 𝜃𝑖𝑙 ≤ 𝑈𝑖𝑙 ,  where 𝐿𝑖𝑙 and 𝑈𝑖𝑙  are the 𝛼/2 -th and (1 − 𝛼/2) -th 
quantiles of 𝑅𝜃𝑖𝑙 , respectively. 

 

𝑆𝐶𝐼𝐺𝐶𝐼 = [𝑅𝜃𝑖𝑙 (
𝛼

2
) , 𝑅𝜃𝑖𝑙 (1 − (

𝛼

2
))]                                  (16) 

 
Algorithm 1 describes the procedures for constructing SCIs using GCI method. 

i. Generate datasets 𝑊𝑖𝑗 based on IG. 

ii. Calculate �̂�𝑖and �̂�𝑖 . 
iii. Estimate 𝜒𝑛𝑖−1

2 and 𝑍𝑖from a Chi-square distribution and a standard normal distribution, 

respectively. 
iv. Compute 𝑅𝜆𝑖 , 𝑅𝜇𝑖 , 𝑅𝜃𝑖 , and 𝑅𝜃𝑖𝑙from Eqs. (11), (12), (14), and (15), respectively. 

v. Complete m (m = 2,500) iterations of steps (3) and (4). 

vi. Compute 𝑅𝜃𝑖𝑙 (
𝛼

2
)and 𝑅𝜃𝑖𝑙 (1 −

𝛼

2
). 

 
2.2 AGCI 
 

Ye et al., [13] claimed that a strategy resembling the GCI method can be applied to the SCIs for 
all pairwise comparisons of CV from the 𝑟 IG population. Krishnamoorthy and Tian [28] developed 
the GPQ as follows: 
 

𝑄𝜇𝑖 =
�̄�𝑖

𝑚𝑎𝑥{0,1+𝑡𝑛𝑖−1√
�̄�𝑖𝜈𝑖
𝑛𝑖−1

}
                      (17) 

 
where 𝑡𝑛𝑖−1denotes a 𝑡  -distribution with 𝑛𝑖 − 1degrees of freedom. However, if 𝑡𝑛𝑖−1  takes a 

negative value, the denominator could become zero. Thus 𝑄𝜇𝑖can be determined as follows: 
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𝑄𝜃𝑖 = √
𝑄𝜇𝑖

𝑅𝜆𝑖
                        (18) 

 
The GPQs for 𝜃𝑖𝑙 can then be written as: 

𝑄𝜃𝑖𝑙 = 𝑄𝜃𝑖 − 𝑄𝜃𝑙 = √
𝑄𝜇𝑖

𝑅𝜆𝑖
−√

𝑄𝜇𝑙

𝑅𝜆𝑙
                     (19) 

 
for𝑖and 𝑙 = 1,2, . . . , 𝑟 𝑖 ≠ 𝑙. Hence, SCIs for AGCI is formulated as follows: 
 

𝑆𝐶𝐼𝐴𝐺𝐶𝐼 = [𝑄𝜃𝑖𝑙 (
𝛼

2
) , 𝑄𝜃𝑖𝑙 (1 − (

𝛼

2
))]                     (20) 

 

where 𝑄𝜃𝑖𝑙 (
𝛼

2
) and 𝑄𝜃𝑖𝑙 (1 − (

𝛼

2
))  stands for the 100 (

𝛼

2
) − 𝑡ℎand 100 (1 −

𝛼

2
) − 𝑡ℎ percentiles of 

the distribution of 𝑄𝜃𝑖𝑙 . The notion of Algorithm 1 illustrates the processes to compute SCIs based on 

the AGCI technique. 
 
2.3 FCI 
 

The fiducial inference was first proposed by Fisher [29]. It serves as an alternative to frequentist 
and Bayesian inference techniques. Fiducial inference seeks to produce, using observable data, a 
probability distribution for an unknown parameter. This fiducial distribution depicts the parameter's 
uncertainty prior to data observation. The observed data are used to build the fiducial distribution, 
along with a few models or assumptions. Gibbs sampling is a general-purpose MCMC algorithm that 
can be used to sample from various probability distributions, including those representing fiducial 
confidence intervals. However, it's important to note that Gibbs sampling itself is not specific to 
fiducial intervals; rather, it's a method for sampling from complex multivariate distributions [30]. In 
the case of IG, the sampling distributions of the Maximum Likelihood Estimators (MLEs) for both and 
are employed. When these MLEs are represented in their respective sample distributions, they can 
be readily substituted to generate their fiducial distributions. 
 

𝜇𝑖(𝑓) ∼ 𝐼𝐺(�̂�𝑖 , 𝑛𝑖�̂�𝑖), and                      (21) 

 

𝜆𝑖(𝑓) ∼ (
�̂�𝑖

𝑛𝑖
) 𝜒𝑛𝑖−1

2                        (22) 

 

where �̂�𝑖and �̂�𝑖are MLEs of the 𝜇𝑖and 𝜆𝑖 . The result is that 𝜇𝑖(𝑓) and 𝜆𝑖(𝑓) can be replaced, resulting 
in: 
 

𝜃𝑖(𝑓) = √
𝜇𝑖(𝑓)

𝜆𝑖(𝑓)
                       (22) 

 
thus, the 𝜃𝑖𝑙(𝑓) is given: 
 

𝜃𝑖𝑙(𝑓) = 𝜃𝑖(𝑓) − 𝜃𝑙(𝑓) = √
𝜇𝑖(𝑓)

𝜆𝑖(𝑓)
−√

𝜇𝑙(𝑓)

𝜆𝑙(𝑓)
                    (23) 
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Hence, the 100(1 − 𝛼)% two-sided SCIs for 𝜃𝑖𝑗using FCI method can be defined by: 

 

𝑆𝐶𝐼𝐹𝐶𝐼 = [𝜃𝑖𝑗(𝑓) (
𝛼

2
) , 𝜃𝑖𝑗(𝑓) (1 − (

𝛼

2
))]                    (24) 

 

where 𝜃𝑖𝑗(𝑓) (
𝛼

2
)and 𝜃𝑖𝑗(𝑓) (1 − (

𝛼

2
))denoted the 100(

𝛼

2
) − 𝑡ℎ  and 100(1 −

𝛼

2
) − 𝑡ℎ  percentiles 

of 𝜃𝑖𝑗(𝑓), respectively. The value of 𝜃𝑖𝑗(𝑓) for two-sided 𝑆𝐶𝐼𝐹𝐶𝐼can be estimated using the Gibbs 

sampling procedure as follows (algorithm 2): 
 

i. Consider the parameter (𝜇𝑖
(0)
, 𝜆𝑖

(0)
) initial values (MLEs). 

ii. Generate 𝜇𝑖
(𝑡)(𝑓) ∼ 𝐼𝐺(�̂�𝑖

(𝑡−1), 𝑛𝑖�̂�𝑖
(𝑡−1)). 

iii. Generate  𝜆𝑖
(𝑡)(𝑓) ∼ (

�̂�𝑖
(𝑡−1)

𝑛𝑖
) 𝜒𝑛𝑖−1

2 . 

iv. Repeat Steps 2-3, T(T=20,000) Times, where T is the quantity of MCMC replications.  
v. Calculate the desired parameter after burning in 1,000 samples. 

vi. Using the fiducial inference Eq. (24), calculate the 95% SCIs. 
 
2.4 HPD 
 

The HPD method can be used to estimate credible intervals after an MCMC algorithm has 
generated a batch of samples from the posterior distribution [31]. The narrowest interval that 
encompasses a specific proportion of the posterior distribution is known as the HPD interval. It offers 
a method to encapsulate the parameter estimate uncertainty, indicating the range of tenable values 
[32]. Therefore, 100(1 − 𝛼)% the two-sided SCIs for all pairwise differences between CVs of an IG 
distribution based on the HPD can be obtained using the R statistical program with the HDInterval 
package as follows: 
 

𝑆𝐶𝐼𝐻𝑃𝐷 = [𝜃𝑖𝑙(ℎ) (
𝛼

2
) , 𝜃𝑖𝑙(ℎ) (1 −

𝛼

2
)]                    (25) 

 

where 𝜃𝑖𝑙(ℎ) (
𝛼

2
) and 𝜃𝑖𝑙(ℎ) (1 −

𝛼

2
) are the lower and upper bound of HPD interval for 𝜃𝑖𝑙 . The HPD 

technique employs the following algorithm to build a confidence interval for the SCIs of an IG 
distribution (algorithm 3): 
 

i. Consider using the initial values, also known as maximum likelihood estimates (MLEs), for 

the parameters (𝜇𝑖
(0), 𝜆𝑖

(0)). 

ii. Calculate the parameter of interest using algorithm 2. 
iii. Compute the 95% SCIs based on HPD according to Eq. (25). 

 
3. Results  
 

To assess the finite sample qualities of the proposed GCI, AGCI, FCI, and HPD methods, it is 
acceptable to use the coverage probability (CP) values that are greater than or comparable to the 
nominal confidence level at 0.95. Additionally, the SCI should have a small average length (AL), as 
demonstrated below. 
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𝐶𝑃 =
∑ 𝑐𝑀5,000
𝑀=1 (𝐿𝑖𝑙

𝑀≤𝜃𝑖𝑙≤𝑈𝑖𝑙
𝑀)

5,000
, and                     (26) 

 

𝐴𝐿 =
∑ (𝑈𝑖𝑙

𝑀−𝐿𝑖𝑙
𝑀)5,000

𝑀=1

5,000
                       (27) 

 

where 𝑐𝑀(𝐿𝑖𝑙
𝑀 ≤ 𝜃𝑖𝑙 ≤ 𝑈𝑖𝑙

𝑀) is the number of 𝜃𝑖𝑙 contained in the interval, the lower and upper 

boundaries of the interval are 𝐿𝑖𝑙
𝑀 and 𝑈𝑖𝑙

𝑀, respectively, and M is the number of simulations. The R 
statistical software package was used to conduct the Monte Carlo simulation investigation. The 
factors used in the simulation study were as follows: (1) cases: r = 3 and 5; (2) sample sizes are 10,50, 
and 100; (3) population means: 𝜇𝑖 = 0.5,1; and (4) population scales: 𝜆𝑖 = 1,5,10. The simulations 
were conducted 5,000 times for each set of parameters. Additionally, 2,500 replications of the GCI, 
AGCI, and FCI techniques were carried out for each parameter combination. 

Tables 1 and 2, correspondingly, show the outcomes for 𝑟 = 3 and 5. The ALs of the approaches 
with different sample sizes and the CP are summarized in Figures 1 and 2. In every situation, the ALs 
of all the techniques tended to get shorter as sample numbers were raised. In all cases, the GCI, AGCI, 
FCI, and HPD CPs were above or very close to 0.95. The shortest length is therefore thought to be the 
optimal CI based on the ALs of these CIs. We found that the ALs of FCI-HPD were the shortest lengths 
CP > 0.95 in practically all cases. 
 
     Table 1 
     CPs and ALs for the 95% SCIs for 𝜃𝑖𝑙of inverse Gaussian distributions (r = 3) 

𝑛 𝜇 𝜆 CPs (ALs) 

GCI AGCI FCI HPD 

103 0.53 13 0.9770 0.9540 0.9570 0.9750 
   (1.7627) (1.1817) (1.2660) (1.2580) 
  53 0.9530 0.9430 0.9410 0.9613 
   (0.5712) (0.5299) (0.5376) (0.5332) 
  103 0.9600 0.9550 0.9533 0.9690 
   (0.3894) (0.3752) (0.3760) (0.3740) 
  1:5:10 0.9670 0.9477 0.9563 0.9620 
   (0.9534) (0.7228) (0.7618) (0.7386) 
 13 13 0.9890 0.9480 0.9593 0.9817 
   (3.6509) (1.6757) (1.8984) (1.8816) 
  53 0.9553 0.9430 0.9447 0.9627 
   (0.8663) (0.7449) (0.7699) (0.7625) 
  103 0.9533 0.9463 0.9457 0.9663 
   (0.5632) (0.5234) (0.5325) (0.5263) 
  1:5:10 0.9753 0.9490 0.9517 0.9523 
   (1.8087) (1.0296) (1.1338) (1.0963) 
503 0.53 13 0.9857 0.9523 0.9540 0.9610 
   (0.5182) (0.4157) (0.4587) (0.4574) 
  53 0.9630 0.9540 0.9543 0.9573 
   (0.1950) (0.1852) (0.1894) (0.1889) 
  103 0.9473 0.9417 0.9450 0.9503 
   (0.1345) (0.1310) (0.1325) (0.1321) 
  1:5:10 0.9723 0.9487 0.9490 0.9500 
   (0.3082) (0.2607) (0.2819) (0.2794) 
 13 13 0.9923 0.9487 0.9500 0.9560 
   (0.8707) (0.5872) (0.7111) (0.7087) 
  53 0.9630 0.9470 0.9450 0.9513 
   (0.2884) (0.2615) (0.2731) (0.2723) 
  103 0.9593 0.9473 0.9443 0.9510 
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Table 1. Continued 
CPs and ALs for the 95% SCIs for 𝜃𝑖𝑙of inverse Gaussian distributions (r = 3) 
𝑛 𝜇 𝜆 CPs (ALs) 

GCI AGCI FCI HPD 

   (0.1956) (0.1858) (0.1897) (0.1895) 
  1:5:10 0.9800 0.9533 0.9550 0.9507 
   (0.4996) (0.3698) (0.4277) (0.4237) 
1003 0.53 13 0.9853 0.9520 0.9497 0.9523 
   (0.3522) (0.2850) (0.3170) (0.3163) 
  53 0.9567 0.9437 0.9460 0.9480 
   (0.1341) (0.1276) (0.1303) (0.1301) 
  103 0.9527 0.9493 0.9507 0.9503 
   (0.0924) (0.0901) (0.0912) (0.0909) 
  1:5:10 0.9750 0.9540 0.9460 0.9473 
   (0.2113) (0.1798) (0.1942) (0.1932) 
 13 13 0.9913 0.9510 0.9510 0.9540 
   (0.5830) (0.4038) (0.4913) (0.4901) 
  53 0.9650 0.9457 0.9487 0.9513 
   (0.1982) (0.1802) (0.1888) (0.1884) 
  103 0.9627 0.9497 0.9507 0.9537 
   (0.1342) (0.1277) (0.1306) (0.1303) 
  1:5:10 0.9820 0.9523 0.9497 0.9500 
   (0.3396) (0.2550) (0.2964) (0.2947) 
10:50:100 0.53 13 0.9807 0.9500 0.9580 0.9577 
   (0.9359) (0.6744) (0.7299) (0.7008) 
  53 0.9620 0.9537 0.9563 0.9567 
   (0.3234) (0.3032) (0.3074) (0.2943) 
  103 0.9550 0.9467 0.9483 0.9547 
   (0.2201) (0.2129) (0.2146) (0.2055) 
  1:5:10 0.9567 0.9667 0.9733 0.9600 
   (0.8075) (0.5890) (0.5989) (0.5620) 
 13 13 0.9897 0.9373 0.9523 0.9533 
   (1.8282) (0.9590) (1.1117) (1.0682) 
  53 0.9697 0.9510 0.9620 0.9610 
   (0.4910) (0.4301) (0.4451) (0.4264) 
  103 0.9597 0.9497 0.9487 0.9517 
   (0.3216) (0.3015) (0.3065) (0.2935) 
  1:5:10 0.9867 0.9507 0.9580 0.9440 
   (1.5830) (0.8163) (0.9196) (0.8617) 

Note: Bold denotes the best performing method 

 
      Table 2 
       CPs and ALs for the 95% SCIs for 𝜃𝑖𝑙of inverse Gaussian distributions (r = 5) 

𝑛 𝜇 𝜆 CPs (ALs) 

GCI AGCI FCI HPD 

105 0.55 15 0.9786 0.9561 0.9556 0.9754 
   (1.7438) (1.1727) (1.2605) (1.2493) 
  55 0.9643 0.9552 0.9577 0.9719 
   (0.5658) (0.5251) (0.5323) (0.5284) 
  105 0.9503 0.9458 0.9478 0.9659 
   (0.3863) (0.3721) (0.3747) (0.3719) 
  12:5:102 0.9729 0.9578 0.9604 0.9650 
   (1.0112) (0.7529) (0.7958) (0.7731) 
 15 15 0.9876 0.9491 0.9547 0.9758 
   (3.6160) (1.6643) (1.9180) (1.8968) 
  55 0.9668 0.9518 0.9560 0.9753 
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 Table 2. Continued 
 CPs and ALs for the 95% SCIs for 𝜃𝑖𝑙of inverse Gaussian distributions (r = 5) 
𝑛 𝜇 𝜆 CPs (ALs) 

GCI AGCI FCI HPD 

   (0.8626) (0.7433) (0.7659) (0.7600) 
  105 0.9601 0.9542 0.9534 0.9705 
   (0.5688) (0.5278) (0.5348) (0.5307) 
  12:5:102 0.9751 0.9498 0.9496 0.9528 
   (1.9607) (1.0761) (1.1837) (1.1479) 
505 0.55 15 0.9793 0.9479 0.9519 0.9581 
   (0.5171) (0.4140) (0.4584) (0.4572) 
  55 0.9609 0.9505 0.9533 0.9570 
   (0.1947) (0.1851) (0.1891) (0.1886) 
  105 0.9562 0.9520 0.9508 0.9550 
   (0.1345) (0.1310) (0.1322) (0.1318) 
  12:5:102 0.9709 0.9455 0.9481 0.9509 
   (0.3258) (0.2725) (0.2961) (0.2937) 
 15 15 0.9925 0.9493 0.9540 0.9605 
   (0.8673) (0.5863) (0.7077) (0.7056) 
  55 0.9680 0.9499 0.9523 0.9569 
   (0.2893) (0.2621) (0.2743) (0.2736) 
  105 0.9594 0.9491 0.9497 0.9535 
   (0.1947) (0.1851) (0.1888) (0.1883) 
  12:5:102 0.9831 0.9520 0.9555 0.9550 
   (0.5300) (0.3851) (0.4479) (0.4441) 
1005 0.55 15 0.9818 0.9470 0.9473 0.9502 
   (0.3518) (0.2847) (0.3170) (0.3162) 
  55 0.9612 0.9533 0.9531 0.9558 
   (0.1340) (0.1276) (0.1305) (0.1302) 
  105 0.9461 0.9400 0.9431 0.9453 
   (0.0924) (0.0902) (0.0912) (0.0910) 
  12:5:102 0.9741 0.9484 0.9479 0.9476 
   (0.2231) (0.1882) (0.2048) (0.2037) 
 15 15 0.9946 0.9515 0.9523 0.9551 
   (0.5817) (0.4029) (0.4898) (0.4886) 
  55 0.9645 0.9480 0.9468 0.9490 
   (0.1983) (0.1805) (0.1888) (0.1883) 
  105 0.9580 0.9494 0.9499 0.9521 
   (0.1338) (0.1274) (0.1303) (0.1300) 
  12:5:102 0.9825 0.9470 0.9474 0.9480 
   (0.3588) (0.2656) (0.3110) (0.3093) 
102:50:1002 0.55 15 0.9787 0.9472 0.9553 0.9565 
   (1.0118) (0.7154) (0.7730) (0.7446) 
  55 0.9546 0.9456 0.9490 0.9531 
   (0.3435) (0.3218) (0.3272) (0.3146) 
  105 0.9505 0.9450 0.9502 0.9533 
   (0.2331) (0.2256) (0.2275) (0.2187) 
  12:5:102 0.9718 0.9501 0.9582 0.9507 
   (0.8873) (0.6290) (0.6723) (0.6363) 
 15 15 0.9914 0.9538 0.9601 0.9556 
   (1.9580) (1.0092) (1.1631) (1.1212) 
  55 0.9681 0.9505 0.9559 0.9579 
   (0.5155) (0.4515) (0.4661) (0.4486) 
  105 0.9574 0.9481 0.9509 0.9548 
   (0.3407) (0.3187) (0.3235) (0.3111) 
  12:5:102 0.9810 0.9511 0.9538 0.9436 
   (1.7812) (0.8976) (1.0129) (0.9583) 

Note: Bold denotes the best performing method 
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Fig. 1. Graphs of (A) coverage probability and (B) averaged length of SCIs for the difference of the coefficients 
of variation of inverse Gaussian distributions (k = 3)  

 

 
Fig. 2. Graphs of (A) coverage probability and (B) averaged length of SCIs for the difference of the coefficients 
of variation of inverse Gaussian distributions (k = 5)  
 

 4. Empirical study 
 

In this section, we consider empirical examples PM2.5 dataset from five districts in Bangkok 
Thailand, (http://air4thai.pcd.go.th/webV3/#/History) i.n., Bangkapi district (D1), Wang Thong lang 
district (D2), Thon Buri district (D3), Bang Na district (D4), and Pathum wan district (D5). PM2.5 
datasets from these regions in January and February 2022 were used to validate the effectiveness of 
suggested approaches. The summary statistics of PM 2.5 datasets from five districts are present in 
Table 3. As a result, the least Akaike information criterion (AIC) and the lowest Bayesian information 
criterion (BIC) assessed how well the distributions fit with the data. The IG was appropriate for all of 
the PM2.5 datasets from the five districts, according to the AIC and BIC results as shown in Table 4. 
Additionally, Figure 3 shows Q-Q plots for the positive PM2.5 data based on IG. 

The 95% SCIs for of PM2.5 datasets from five districts in Bangkok, Thailand, are shown in Table 5. 
The findings support the model findings in that the average Table 5 displays the 95% SCIs for PM2.5 
datasets from five Bangkok, Thailand, districts. The AL of the AGCI was the shortest, which is 
consistent with the model results. It is a good alternative for creating the SCIs for all of the dispersion 
of PM2.5 datasets from the five districts of Bangkok, Thailand. 
 

  Table 3 
  The summary statistics of PM 2.5 datasets from five districts in  
  Bangkok Thailand 
Districts 𝜂 �̂� �̂� �̂� 
Bangkapi 50 24.98 198.2181 0.355 
Wang Thong Lang 50 25.96 293.2322 0.298 
Thon Buri 50 28.94 174.9499 0.407 
Bang Na 50 30.62 228.3665 0.366 
Pathum Wan 50 30.74 227.9669 0.367 
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   Table 4 
   The results of AIC and BIC 

Districts AIC BIC 

Normal Cauchy Weibull Inverse 
Gaussian 

Normal Cauchy Weibull Inverse 
Gaussian 

Bangkapi 360.4302 376.4821 359.6558 355.3920 364.2543 380.3062 363.4798 359.2160 
Wang Thong Lang 352.9858 364.6568 354.0612 343.8110 356.8098 368.4808 357.8853 347.6351 
Thon Buri 386.7206 405.1236 384.0753 381.1828 390.5447 408.9476 387.8993 385.0069 
Bang Na 385.0997 401.9569 383.4442 378.1737 388.9237 405.7810 387.2682 381.9977 
Pathum wan 375.9883 393.5688 375.6609 370.5355 379.8123 397.3928 379.4850 374.3596 

 

 
Fig. 3. Q-Q plots of the daily PM 2.5 data from five districts in Bangkok Thailand 

 
 Table 5 
 The 95% SCIs for 𝜃𝑖𝑙 of PM 2.5 

Comparisons GCI AGCI FCI HPD 

L U Le L U Le L U Le L U Le 
D1-D2 -0.0504 0.1555 0.2059 -0.0406 0.1593 0.1999 -0.0388 0.1620 0.2008 -0.0410 0.1595 0.2005 
D1-D3 -0.1795 0.0598 0.2393 -0.1650 0.0560 0.2210 -0.1718 0.0626 0.2344 -0.1706 0.0634 0.2340 
D1-D4 -0.1295 0.0950 0.2245 -0.1177 0.0940 0.2117 -0.1204 0.0994 0.2198 -0.1232 0.0957 0.2189 
D1-D5 -0.0834 0.1259 0.2093 -0.0779 0.1251 0.2030 -0.0831 0.1282 0.2113 -0.0865 0.1236 0.2101 
D2-D3 -0.2404 -0.0054 0.2350 -0.2247 -0.0075 0.2172 -0.2255 -0.0070 0.2185 -0.2208 -0.0042 0.2166 
D2-D4 -0.1769 0.0332 0.2101 -0.1671 0.0238 0.1909 -0.1746 0.0307 0.2053 -0.1706 0.0331 0.2037 
D2-D5 -0.1386 0.0611 0.1997 -0.1345 0.0551 0.1896 -0.1354 0.0605 0.1959 -0.1395 0.0561 0.1956 
D3-D4 -0.0810 0.1767 0.2577 -0.0688 0.1640 0.2328 -0.0770 0.1630 0.2400 -0.0815 0.1579 0.2394 
D3-D5 -0.0422 0.2026 0.2448 -0.0284 0.1891 0.2175 -0.0367 0.1924 0.2291 -0.0416 0.1867 0.2283 
D4-D5 -0.0782 0.1464 0.2246 -0.0704 0.1387 0.2091 -0.0716 0.1419 0.2135 -0.0732 0.1402 0.2134 

Notes: L=Lower; U=Upper; Le=Length 
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5. Conclusions 
 

We constructed SCIs for of the IG obtained from GCI, AGCI, FCI, and HPD. The CP of the best 
performing CI was found to be near to or greater than the nominal confidence level of 0.95 and to 
have the lowest average length. The outcomes show that AGCI and HPD are the best techniques in 
every situation. Furthermore, these techniques may be used to develop SCIs for all pairs differences 
between the CVs of PM2.5 concentration datasets from five different Bangkok, Thailand, districts. 
The obtained results and the simulation results are identical. 
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