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 ABSTRACT 

 
Corn is an essential dietary source for humans and animals. In addition to being a food 
source, corn has numerous benefits as a manufacturing commodity. The quality of grain 
crops must be considered to minimise the likelihood of disease and pest infestations. 
Therefore, the diseases and pests that attack corn plants must be classified so that 
farmers can control them during the growth period of corn plants. The fuzzy naive Bayes 
method is a statistical machine learning method that can be used to classify the diseases 
and pests of corn crops based on colour space-transformed digital images. This study 
aims to classify corn plant diseases and pests using the fuzzy naive Bayes method. Digital 
images of corn plant diseases and pests were transformed into a red, green and blue 
colour space model. The following seven classes of corn plant diseases and pests were 
classified: leaf rust disease, downy mildew disease, leaf blight disease, Locusta pest, 
Heliotis armigera pest, Spodoptera frugiperdita pest and non-pathogenic pest. With this 
method, the classification model achieves an accuracy of 87.83%, a macro precision of 
34.91%, a macro recall of 35.90% and a macro f-score of 33.82%. 
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1. Introduction 
 

Corn is a short-lived plant. After male flowers begin to emerge, the number of leaves is regulated 
by temperature, duration of light and genotype. Corn is not only useful as food but also for the 
industry. However, corn plantations often experience financial setbacks and even total crop failure 
due to infestations of various pests and diseases, including but not limited to, Spodoptera frugiperda 
pest (SFP), Locusta pest (LP), Heliotis armigera pest (HAP), leaf rust disease (LRD), downy mildew 
disease (DWD) and leaf blight disease (LBD) [1]. Specifically, S. frugiperda is a pest that recently 
entered Indonesia in 2019 [2] and has attacks with severity level ranging from 26.50% to 100% [3]. 
Therefore, corn quality considerations must be incorporated into strategies to meet domestic 
demand without relying on exports.  

Similar to other food crops [4-7], the use of digital images as a dataset for identifying corn plant 
diseases and pests is expanding rapidly [1, 7-17]. The current price rise can be attributed to the 
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technology’s lower cost than alternatives such as infrared light [18]. Classification requires the 
extraction of distinguishing characteristics from digital images, which are critical for identifying corn 
diseases and pests. Digital image processing using the red, green and blue (RGB) colour space 
paradigm is the most informative for the identification of diseases and pests in corn crops [16]. 

Naïve Bayes is a classification model in statistical machine learning that predicts target variables 
based on the Bayes theorem. The performance of this model can increase significantly if the 
continuous predictor variables are discretised into valid categories [19-22]. Discretisation can also 
improve other methods’ performance, such as decision tree and random forest [23-26]. In some 
cases, the result does not provide satisfactory performance [27] possibly due to the ambiguity in 
discretizing predictor variables. The implementation of fuzzy membership functions into the model 
to resolve discretisation ambiguity issues is known as fuzzy naïve Bayes [10, 28]. This work aims to 
classify the diseases and pests of corn plants using the fuzzy naïve Bayes model and show that the 
model’s performance of naïve Bayes can be improved by implementing fuzzy discretisation.  
 
2. Methodology  
 

Images of the pests and diseases of corn plants taken on corn plantations in Ogan Ilir Regency 
were used as data. The research stages were as follows: 
 

i. Data were collected by capturing images of corn plant diseases and pests in corn 
plantations around the Universitas Sriwijaya; 

ii. The images were cropped to focus only on the pests and diseases of corn plants and then 
resized to 32×32 pixels so that all images have the same size. The images were extracted 
into the RGB colour space model using Python programming language via Google Collab. 
The average image matrix value of each colour (red, green and blue) was determined; 

iii. The data were discretised using the concept of crisp sets. If an element of the universal set 

 is also a member of set 𝐴, then it is denoted as 𝑥∈𝐴 in the crisp set. If 𝑥 is not a member 
of A, then it is denoted as 𝑥∉𝐴. Therefore, the membership value of 𝑥 in set A can only be 
determined by either 𝜇𝐴(𝑥)=1or 𝜇𝐴(𝑥)=0 [29]; 

iv. The fuzzy membership functions were defined, and a fuzzy set was used for discretisation 
[9]. In the fuzzy set, the membership value 𝑥 in set A fell within the interval [0,1]. Fuzzy 
discretisation forms classes by connecting linguistic terms to fuzzy membership functions. 
In this research, the fuzzy membership function consisted of a shrinkage sigmoid curve, a 
beta bell curve and a growth sigmoid curve, all which have individual membership 
functions. 𝛽 is an inflection point, 𝛾 is the centre point of the curve that has an immense 
membership value, 𝑛 is the power multiplier value that determines the shape of the curve, 
𝛼 is the smallest element of the domain that has the smallest membership value and 𝑐 is 
the most prominent element of the domain that has the smallest membership value; 

 

𝜇𝐴(𝑥;  𝛼, 𝛽, 𝛾) =  {

1                  ; 𝑥 ≤ 𝛼

1−2(
𝑥−𝛼

𝛾−𝛼
)
2
    ; 𝛼 ≤ 𝑥 ≤ 𝛽

2(
𝛾−𝑥

𝛾−𝛼
)2           ; 𝛽 ≤ 𝑥 ≤ 𝛾

0                 ; 𝑥 ≥ 𝛾

                              (1) 

 

𝜇𝐴(𝑥: 𝛾, 𝛽, 𝑛) = {

0              ; 𝑥 < 𝛼
1

1+(
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𝛽
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𝜇𝐴(𝑥;  𝛼, 𝛽, 𝛾) =  {

0                 ; 𝑥 ≤ 𝛼

2(
𝑥−𝛼

𝛾−𝛼
)
2
          ; 𝛼 ≤ 𝑥 ≤ 𝛽

1−2(
𝛾−𝑥

𝛾−𝛼
)2     ; 𝛽 ≤ 𝑥 ≤ 𝛾

1                 ; 𝑥 ≥ 𝛾

          (3)  

    
v. The dataset was divided into 80% training data and 20% test data; 

vi. A classification model was built using naïve Bayes and fuzzy naïve Bayes methods by 
determining the posterior probability values for discretisation. For naive Bayes and fuzzy 
naïve Bayes, the posterior probability with Laplace smoothing was written as [10]: 
  

𝑃(𝑌𝑗|𝑋1, ⋯ , 𝑋𝐷) =  𝑃(𝑌𝑗)∏
∑ 𝑛𝑘(𝑋𝑑|𝑌𝑗)
𝑚
𝑘 +1 

𝑛(𝑋𝑑|𝑌𝑗)+𝑚
𝐷
𝑑=1                              (4) 

      

𝑃(𝑌𝑗|𝑋1, ⋯ , 𝑋𝐷)  = 𝑃(𝑌𝑗)  
∏ ∑ 𝑃(𝑥𝑓𝑧 |𝑌𝑗)𝜇�̃�𝑑(𝑥𝑓𝑧)+

1

𝑍
𝑍
𝑧=1

𝐷
𝑑=1

∏ ∑ 𝑃(𝑥𝑓𝑧)𝜇�̃�𝑑
(𝑥𝑓𝑧)+

1

𝑍
𝑍
𝑧=1

𝐷
𝑑=1

                            (5) 

     

where 𝑃(𝑌𝑗) is the prior probability, and the rest is the likelihood for each model. In the 

naïve Bayes formula, 𝑛(𝑋𝑑|𝑌𝑗) is the number of images related to the 𝑗-th class in all 

variables 𝑋, 𝑛𝑘(𝑋𝑑|𝑌𝑗) is the number of images related to the 𝑗-th class in a variable 𝑋𝑑 

with category 𝑘 and 𝑚 is the number of categories in the variable 𝑋𝑑. In the fuzzy naïve 

Bayes formula, �̃�𝑑 = {𝑥𝑓1 , 𝑥𝑓1⋯ , 𝑥𝑓𝑍} is the information space of the fuzzy sample of the 

predictor variable of 𝑋𝑑, 𝑥𝑓𝑧 ∈ 𝑋 is the independent event and 𝜇�̃�𝑑(𝑥𝑓𝑧) is the fuzzy 

membership function of 𝑋𝑑 with fuzzy sample 𝑥𝑓𝑍; 

vii. The test data were classified using the models built with naïve Bayes and fuzzy naïve Bayes 
methods; 

viii. The performance of naïve Bayes and fuzzy naïve Bayes methods was evaluated by 
calculating the accuracy, precision, recall and f-score values [30, 31]. The confusion matrix 
for the first class of corn plant diseases and pests is presented in Table 1 [1]. The remaining 
classes function similarly. 

ix. When the values of these metrics increase, the predictive performance of the employed 
method or model also improves; 

x. The results were analysed, and conclusions were drawn.  
 

Table 1 
Confusion matrix for the first class of disease and pest of corn plant 
  Prediction class 

 𝑗 LRD DWD LBD LP SFP HAP 

Actual class LRD TP FN FN FN FN FN 
DWD FP TN TN TN TN TN 
LBD FP TN TN TN TN TN 
LP FP TN TN TN TN TN 
SFP FP TN TN TN TN TN 
HAP FP TN TN TN TN TN 

     

Accuracy =  
∑

TP𝑗+TN𝑗

TP𝑗+FP𝑗+FN𝑗+TN
4
𝑗=1

4
                               (6) 
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Precision =   
∑

TP𝑗

TP𝑗+FP𝑗

4
𝑗=1

4
                                (7) 

    

Recall =   
∑

TP𝑗

TP𝑗+FN𝑗

4
𝑗=1

4
                                (8) 

    

F1Score =  
2Precision (Recall )

(Precision +Recall )
                               (9) 

 
3. Results 
 

Most corn plant pests and diseases attack the leaves. Only the cob borer pest attacks the corn 
cobs. I this research, digital images of pests and diseases of corn plants and healthy corn plants were 
collected. Healthy corn plants are characterised by their leaves, and Figure 1 presents their 
composition. The digital images were taken using a 12-megapixel cell phone camera in Tanjung Pering 
Village, Tanjung Baru Village and Tanjung Seteko Village and Ogan Ilir Regency.  
 

       
(a)   (b)           (c)                 (d) 

 

     
(e)                 (f)         (g) 

Fig.1. Corn plant class composition of non-pathogen, disease, and pest (a) NP (b) LRD (c) DWD (d) LBD (e) LP 
(f) SFP (g) HAP 

 
A total of 7052 digital images of corn plant pests and diseases were transformed into an RGB 

colour space model and resized to 32x32 pixels. A statistical summary of each pixel value R, G and B 
is presented in Table 2. 
 

Table 2 
Statistical summary of pixel value 
 Statistics Red Green  Blue 

min 27.75 38.69 10.02 
q1 102.02 113.82 69.81 
median 115.77 127.55 91.52 
mean 115.01 130.37 89.46 
modus 116.90 128.59 113.71 
q3 127.06 149.97 107.56 
max 199.43 217.89 196.98 
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Discretizing each pixel value R, G and B into five categories often leads to satisfactory classification 
model performance [10, 12]. These pixel values are predictor variables in the classification model. 
The results of discretisation using the crisp set for each of these variables are as follows. 
       

𝑅

{
 
 

 
 
Very Dark Red (VDR)        27.75 ≤ 𝑥 ≤ 62.08
Dark Red (DR)                     62.09 ≤ 𝑥 ≤ 96.42
Medium Red (MR)            96.43 ≤ 𝑥 ≤ 130.76
Light Red (LR)                 130.77 ≤ 𝑥 ≤ 165.09
Very Light Red (VLR)   165.10 ≤ 𝑥 ≤ 199.43

                                           (10)  

     

𝐺

{
 
 

 
 

      
Very Dark Green (VDG)       38.69 ≤ 𝑥 ≤ 74.53
Dark Green (DG)                 74.54 ≤ 𝑥 ≤ 110.37
Medium Green (MG)        110.38 ≤ 𝑥 ≤ 146.21
Light Green (LG)               146.22 ≤ 𝑥 ≤ 182.05

Very Light Green (VLG)  182.06 ≤ 𝑥 ≤ 217.89

                  (11)  

       

𝐵

{
 
 

 
 
Very Dark Blue (VDB)          10.02 ≤ 𝑥 ≤ 47.41 
Dark Blue (DB)                       47.42 ≤ 𝑥 ≤ 84.80
Medium Blue (MB)             84.81 ≤ 𝑥 ≤ 122.19
Light Blue (LB)                  122.20 ≤ 𝑥 ≤ 159.59

Very Light Blue (VLB)     159.60 ≤ 𝑥 ≤ 196.98

                          (12) 

 
Table 3 presents the likelihood for crisp set-based discretisation with zero likelihood value in 

several categories in the SFP, LBD and LRD classes. This problem can be solved using Laplace 
smoothing in Eq. (4). 
 

Table 3 
Likelihood for crisp set-based discretisation 
Red Likelihood 

LP HAP SFP DWD LBD LRD NP 

VDR 0.01 0.01 0.00 0.02 0.02 0.02 0.02 
DR 0.01 0.02 0.04 0.02 0.17 0.28 0.13 
MR 0.16 0.05 0.78 0.02 0.73 0.60 0.38 
LR 0.81 0.39 0.18 0.89 0.07 0.09 0.38 
VLR 0.01 0.53 0.00 0.04 0.00 0.00 0.10 

Green Likelihood 

LP HAP SFP DWD LBD LRD NP 

VDG 0.01 0.01 0.00 0.02 0.03 0.04 0.01 
DG 0.01 0.02 0.01 0.02 0.22 0.34 0.03 
MG 0.16 0.26 0.30 0.02 0.72 0.58 0.19 
LG 0.81 0.70 0.68 0.89 0.02 0.03 0.53 
VLG 0.01 0.01 0.01 0.04 0.00 0.01 0.24 

Blue Likelihood 

LP HAP SFP DWD LBD LRD NP 

VDB 0.05 0.01 0.35 0.02 0.02 0.04 0.02 
DB 0.13 0.36 0.39 0.54 0.29 0.40 0.10 
MB 0.78 0.60 0.22 0.39 0.66 0.53 0.34 
LB 0.02 0.02 0.04 0.02 0.03 0.03 0.45 
VLB 0.01 0.01 0.00 0.02 0.00 0.00 0.09 
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The performance of the naive Bayes classification model using crisp set-based discretisation is 
presented in Table 4. However, only accuracy has satisfactory performance above 85% [32]. Other 
performance measures, namely, precision, recall and F-score, are unsatisfactory because their values 
are below 50%. In terms of accuracy, only the LBD and LRD classes have an accuracy of less than 85%. 
For precision, only the HAP class has more than 85% and even reach a perfect value (100%). With 
regards to recall and F-score, no class has reached 85%. 
 

Table 4 
Classification performance using the naïve Bayes model 
Class Accuracy Precision Recall F-score 

LP 98.58% 0.00% 0.00% 0.00% 
HAP 99.15% 100.00% 47.83% 64.71% 
SFP 89.79% 78.64% 64.07% 70.61% 
DWD 99.43% 0.00% 0.00% 0.00% 
LBD 71.93% 48.77% 56.62% 52.40% 
LRD 66.55% 51.10% 53.00% 52.03% 
NP 88.94% 64.22% 67.12% 65.64% 
Average 87.61% 48.96% 41.23% 43.63% 

 
This research implemented discretisation based on a fuzzy set for classification model using the 

fuzzy naïve Bayes method. The fuzzy membership functions used to discretise the three predictor 
variables are the shrinkage sigmoid curve for the dark and dark categories, the beta bell curve for the 
medium category and the growth sigmoid curve for the light and very light categories. The results of 
discretisation using fuzzy sets for five categories for each variable R, G and B are as follows. 
    

𝑅

{
 
 

 
 
Very Dark Red (VDR)          27.75 ≤ 𝑥 ≤ 67.23
Dark Red (DR)                     31.18 ≤ 𝑥 ≤ 110.15
Medium Red (MR)             56.79 ≤ 𝑥 ≤ 170.38
Light Red (LR)                  117.02 ≤ 𝑥 ≤ 196.00
Very Light Red (VLR)    159.94 ≤ 𝑥 ≤ 199.43

                           (13) 

       

𝐺

{
 
 

 
 
Very Dark Green (VDG)      38.69 ≤ 𝑥 ≤ 79.90
Dark Green (DG)                 42.27 ≤ 𝑥 ≤ 124.70
Medium Green (MG)          64.14 ≤ 𝑥 ≤ 192.43
Light Green (LG)               131.87 ≤ 𝑥 ≤ 214.30

Very Light Green (VLG)  176.67 ≤ 𝑥 ≤ 217.89

                          (14) 

       

𝐵

{
 
 

 
 
Very Dark Blue (VDB)          10.02 ≤ 𝑥 ≤ 53.02 
Dark Blue (DB)                        13.78 ≤ 𝑥 ≤ 99.76
Medium Blue (MB)              51.75 ≤ 𝑥 ≤ 155.25
Light Blue (LB)                  107.24 ≤ 𝑥 ≤ 193.24

Very Light Blue (VLB)      153.98 ≤ 𝑥 ≤ 196.98

                          (15) 

 
Similar to the likelihood for crisp set-based discretisation, several categories in several classes of 

corn plant pests and diseases, including the NP class, have a zero value in the fuzzy set-based 
likelihood as presented in Table 5. The solution can be obtained by determining the prior probability 
based on Laplace smoothing in Eq. (5) for classification using the fuzzy naïve Bayes method. 

Table 6 displays the results of the fuzzy naive Bayes classification model when fuzzy set-based 
discretisation was implemented. According to Aronoff [32], model performance surpassing 85% is 
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considered adequate for accuracy. By contrast, low precision, recall and F-score under 50% indicate 
unsatisfactory performance levels.  
 

Table 5 
Likelihood for fuzzy set-based discretisation 
Red Likelihood 

LP HAP SFP DWD LBD LRD NP 

VDR 0.01 0.01 0.00 0.02 0.00 0.01 0.00 
DR 0.01 0.01 0.02 0.02 0.12 0.20 0.08 
MR 0.28 0.07 0.89 0.15 0.85 0.74 0.52 
LR 0.69 0.79 0.09 0.78 0.02 0.05 0.37 
VLR 0.01 0.12 0.00 0.02 0.00 0.00 0.02 

Green Likelihood 

LP HAP SFP DWD LBD LRD NP 

VDG 0.01 0.01 0.00 0.02 0.01 0.01 0.00 
DG 0.01 0.01 0.00 0.02 0.15 0.25 0.02 
MG 0.58 0.72 0.70 0.13 0.83 0.73 0.34 
LG 0.39 0.25 0.29 0.80 0.01 0.02 0.58 
VLG 0.01 0.01 0.00 0.02 0.00 0.00 0.06 

Blue Likelihood 

LP HAP SFP DWD LBD LRD NP 

VDB 0.03 0.01 0.12 0.02 0.00 0.01 0.01 
DB 0.04 0.22 0.57 0.35 0.21 0.32 0.09 
MB 0.90 0.75 0.28 0.59 0.78 0.66 0.45 
LB 0.01 0.02 0.03 0.02 0.01 0.01 0.43 
VLB 0.01 0.01 0.00 0.02 0.00 0.00 0.02 

 
Table 6 
Classification performance using the fuzzy naïve Bayes model 
Class Accuracy Precision Recall F-score 

LP 98.58% 0% 0% 0% 
HAP 98.37% 0% 0% 0% 
SFP 89.51% 73.11% 71.48% 72.28% 
DWD 99.43% 0% 0% 0% 
LBD 67.75% 44.76% 77.66% 56.79% 
LRD 70.02% 63.51% 29.19% 40.00% 
NP 89.01% 63.04% 72.97% 67.64% 
Average 87.83% 34.92% 35.90% 33.82% 

 
Compared with that of a naïve Bayes model which uses crisp sets, the performance of a fuzzy 

naïve Bayes model which uses fuzzy sets has better accuracy. However, this premise is not true for 
other performance measures such as precision, recall and F-score. Discretizing each pixel value R, G 
and B into five categories leads to satisfactory classification model performance [10, 12]. However, 
this finding is in contrast to the results of this study which only satisfy the accuracy. Some reports 
also provided unsatisfactory performance by implementing fuzzy discretisation, such as in the case 
of predicting heart disease [33], diabetes mellitus and liver disease [34]. Other investigations 
provided satisfactory performance, such as in the prediction of driver behaviour [26], breast cancer 
[35] and heart disease [36]. This possibility is related to the choice of fuzzy membership function [9, 
12, 37]. Further exploration and analysis are needed to obtain a good performance. 
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4. Conclusions 
 

This work classifies the pests and diseases of corn plants using the fuzzy naïve Bayes method. The 
performance of the classification model built on fuzzy discretisation is evaluated and compared with 
that of a naive Bayes method built on crisp discretisation. The fuzzy naïve Bayes method is generally 
better than the Naïve Bayes method. However, these two methods have a performance measure of 
more than 85% in accuracy. Their precision, recall and F-score are below 40%. Additional in-depth 
analysis is needed to improve the prediction performance of maize disease and pest classification 
models. For example, investigations must apply statistical learning techniques or multiply the sample 
sizes. 
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