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  ABSTRACT 

  

 

 

 

The aim of reducing the size of a transistor is not only to compress more transistors 
into a denser area and increase switching speed, but also to reduce the intrinsic gate 
delay. This paper introduces a predictive approach to reduce intrinsic gate delay in 
Junctionless Double Gate Strained Transistor (JLDGST). The study involves 2D 
simulation and a hybrid Multiple Regression Analysis – Genetic Algorithm (MRA-GA) 
model for device simulation and optimization respectively. Initially, 18 sets of 
experiment are employed for obtaining multiple magnitude of intrinsic gate delay. 
Based on the retrieved results, the objective function that relates multiple input 
parameters (Ge mole fraction, high-k material thickness, source/drain doping 
concentration and metal work-function) with the output response (intrinsic gate delay) 
is derived using MRA. The derived objective function is then utilized as an input to the 
GA for searching the local minima of the fitness function. The final result shows that 
the proposed hybrid MRA-GA model has significantly reduced the intrinsic gate delay 
of the device by approximately 70%. The most optimum magnitude of Ge mole fraction, 
Thigh-k, Nsd and WF for the lowest possible intrinsic gate delay of the JLDGST are 
predicted to be 0.3 (30%), 3 nm, 2.96x1013 cm-3 and 4.6 eV respectively. 
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1. Introduction 
 

Intrinsic gate delay is a crucial transistor’s characteristic contributed due to the internal 
capacitances which is normally influenced by the geometrical and process parameters of the 
transistor especially in nano-scale regime. The intrinsic gate delay (τint) of a transistor is the time it 
takes for a transistor's gate voltage to reach a given threshold level and then switch the transistor 
between the ON and OFF states. It is a crucial parameter in digital circuits due to the way it affects 
the circuit's overall efficiency and efficacy. The primary factor that affects the intrinsic gate delay is 
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how the parasitic capacitances of the transistor's gate and the load capacitance linked to the output 
of the gate charge and drain. The gate delay is affected by the capacitance of the load connected to 
the output of the gate. Larger capacitance of the load necessitates more time to charge or discharge, 
resulting in a longer gate delay. Reducing the capacitance of the load may be useful in decreasing the 
intrinsic gate delay. 

Kumar et al., [1] reported that the optimization in geometrical and process parameters of gate-
all-around transistor caused the rate of increase of drain current to be dominated by the increase in 
the device's intrinsic capacitance, thereby reducing the intrinsic gate delay. The optimized device 
reduced the optimal gate delay from 8.5 to 6.3 psec. Seifollahi et al., [2] reported that the variation 
in gate length of double-gate FET has a substantial effect on intrinsic gate delay, with the optimized 
device exhibiting the lowest intrinsic delay time recorded at 0.442 psec. According to Ryu et al., [3], 
the increased spacer area reduces the parasitic capacitance. With a 1nm-wide silicon nitride spacer 
material, the device's performance was optimized, and the smallest intrinsic delay time recorded was 
approximately 0.3 psec. Yiming Li et al., [4] reported that work function variations had a substantial 
effect on the intrinsic gate delay caused by load capacitance fluctuations. With an increasingly work-
function value, the Vth of the N-type gate-all-around FET increases, and it becomes more difficult to 
turn on the device, resulting in a longer intrinsic gate delay. Jegadheesan et al., [5] reported that 
when narrower nanosheets are utilized, the intrinsic latency increases marginally due to a reduction 
in on-current (ION). For varying nanosheet width from 10 to 24 nm, a maximum delay reduction of 
15% is observed, and for increasing nanosheet width from 24 to 50 nm, a delay reduction of 
approximately 10% is observed. Avila et al., [6] reported that the gate length and fin spacing have a 
significant impact on the intrinsic gate latency in FinFET technology. The observations indicate that 
the parasitic gate resistance has a significant impact on the performance of the circuit. 

Based on the aforementioned literatures, it is evident that variations in geometrical and process 
parameters had a significant effect on the intrinsic gate delay of all transistor types. Numerous 
researches on application of optimization approaches have been conducted to improve the 
performances of semiconductor devices [7-9]. Design of experiments (DoE) have been widely utilized 
to assists designers to model the design parameters of the semiconductor devices and other 
engineering fields in conjunction with its desired performance [10-17]. Therefore, this paper will 
introduce a predictive and comprehensive approach for modelling multiple design parameters of 
Junctionless Double Gate Strained Transistor (JLDGST) for lower intrinsic gate delay using a DoE-
based genetic algorithm. The novel contributions of this research work are listed as below: 

 
i. A proposed predictive and systematic approach using a design of experiments (DoE)-

based genetic algorithm was introduced. 
ii. The impact of design parameters of JLDGST device towards intrinsic gate delay was 

systematically analysed and studied. The analysis showed that metal work-function was 
the most significant design parameter contributing the considerable variance on the 
intrinsic gate delay. 

iii. The optimal design parameters of the JLDGST device that produced the lowest possible 
intrinsic gate delay were optimized and predicted. The intrinsic gate delay was 
successfully reduced by approximately 70%. 
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2. Methodology  
2.1 2D Simulation 

 
2D simulation for n-type junctionless double-gate strained transistor (JLDGST) was performed by 

using Silvaco TCAD tools. The 2D simulation was carried out using two separate modules in which the 
process and device simulation were conducted using Athena and Atlas module respectively. The 
process simulation flow for the device is depicted in Figure 1. 

 

 
Fig. 1. Process simulation flow for n-type JLDGST [18] 

 
The main substrate of the device was silicon germanium (SiGe) with the initial Ge mole fraction 

of 0.2 (20%). A very thin Si film with thickness of 1 nm was then deposited on the top of the SiGe 
substrate in order to form a tensely strained channel. Next, the strained body was doped with high 
Arsenic concentration of 1 x 1017 cm-3 for n+ region formation. The process was then followed by 
HKMG formation in which the Hafnium dioxide (HfO2) and Tungsten silicide (WSix) were used as a 
high-k dielectric insulator and metal-gate respectively [19]. The thickness of Hafnium dioxide (HfO2) 
and work-function of the metal-gate (WSix) were initially set at 2 nm and 4.7 eV respectively. 
Subsequently, the side of the substrate body was considerably doped with 2 x 1013 cm-3 of Arsenic 
concentration for n region formation. Both channel and S/D region were doped with same polarity 
dopant (Arsenic) in order to form junctionless configuration (n - n+- n). After that, Aluminium was 
sputtered on the surface of the structure and subsequently etched to form contact for S/D regions. 
Lastly, the cross-sectional structure of the n-type JLDGST was completed by reflecting the left x-axis 
and upper y-axis as shown in Figure 2. The initial magnitude of the design parameters of the device 
were summarized in Table 1. 
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Fig. 2. Cross-sectional structure of n-type JLDGST 

 
After the device structure was completed through Athena module, the structure file was used as 

an input of the Atlas module for extracting the related device characteristics. AC small signal analysis 
was conducted to extract the intrinsic capacitances (Cint) by supplying an input AC frequency (f) of 1 
MHz as the gate-to-source voltage (Vgs) was swept from 0 V to 1 V at a constant drain-to-source 
voltage (Vds) of 0.5 V. The intrinsic capacitances (Cint) of the JLDGST can be measured by summing up 
the magnitude of gate-to-source capacitance (Cgs) and gate-to-drain capacitance (Cgd), 
mathematically expressed as: 
 

gdgs CCC +=int              (1) 

 
Table 1 
Initial magnitude of design parameters for n-type JLDGST 
Design Parameters Units Magnitude 

Ge mole fraction in SiGe layer - 0.2 (20%) 
High-k material Thickness, Thigh-k nm 2 
S/D Doping, Nsd cm-3 2.0E13 
Metal Workfunction (WF) eV 4.7 

 
Figure 3 depicts the plot of Cint-Vgs at a constant Vds = 0.5 V as the the Vgs is shifted from 0 V to 1 

V. It is observed that the magnitude of Cint is increased as the Vgs is biased towards maximum. The 
increase in Cint magnitude becomes more prominent as the device operates in saturation mode. 
Theoretically, the larger Cint magnitude would result in higher intrinsic gate delay (τint) as 
mathematically described by: 

 

ds

DD

I

VC 
= int

int               (2) 
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However, intrinsic gate delay for n-type JLDGST is still heavily depended on the drain current (Ids) 
due to its large magnitude. Since the Ids is inversely proportional with the delay, large number of 
induced Ids would dominantly govern the delay over the Cint variation. Figure 4 depicts the initial plot 
of τint-Vds at a constant Vgs = 0.5 V as the the Vds is shifted from 0 V to 1 V. Based on the plot, it can be 
observed that the intrinsic gate delay of the device is directly proportional to the Vds as the delay 
tremendously increases as a higher Vds is supplied. The initial magnitude of the intrinsic gate delay of 
the device at a maximum Vds (1V) is measured to be 5.6 psec. In the subsequent sections, the design 
parameters (Ge mole fraction, Thigh-k, Nsd and WF) will be predictively optimized for much lower 
intrinsic gate delay using a MRA-GA model. 

 

  
Fig. 3. Plot of Cint-Vgs transfer characteristic Fig. 4. Plot of τint-Vds transfer characteristic 

 
2.2 Predictive Optimization using DoE-Based Genetic Algorithm 

 
The optimization process of the n-type JLDGST was conducted using a hybrid Multiple Regression 

Analysis – Genetic Algorithm (MRA-GA) predictive model. The proposed model comprised two stages 
known as Multiple Regression Analysis (MRA) and Genetic Algorithm. Figure 5 shows the general 
flowchart of the predictive optimization using a hybrid MRA-GA model. 
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Fig. 5. General flowchart of a hybrid MRA-GA predictive optimization 

 
2.2.1 Multiple regression analysis (MRA) 

 
Multiple Regression Analysis (MRA) is one of many types of linear regression analysis. As a 

predictive approach, the MRA is often utilized to express the relationship between one continuous 
dependent output and two or more independent inputs [20-24]. In this study, a continuous 
dependent output is the intrinsic gate delay (τint) denoted by y while the four independent inputs are 
Ge mole fraction, Thigh-k, Nsd and WF denoted by x1, x2, x3 and x4 respectively. The independent inputs 
are varied into three multiple levels in order to design 18 sets of experiment. The independent inputs 
with multiple levels and the design of experiment (DoE) involved in this study are shown in Table 2 
and Table 3 respectively. 

 
Table 2 
Independent inputs with multiple levels 
Symbol Parameter Unit Level 

Low Medium High 

x1 Ge mole fraction in SiGe layer - 0.1 (10%) 0.2 (20%) 0.3 (30%) 
x2 High-k material Thickness, Thigh-k nm 1 2 3 
x3 S/D Doping, Nch cm-3 1x1013 2x1013 3 x1013 
x4 Metal Workfunction (WF) eV 4.6 4.7 4.8 

 
The multiple regression equation that includes four independent inputs (x1, x2, x3 and x4) and one 

dependable output can be expressed as: 
 

exbxbxbxbaY +++++= 44332211            (3) 
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where a is the intercept, b1b2b3b4 is the regression coefficients and e is the error term. Based on Table 
3, the relationship between the inputs, output and their corresponding coefficients can be written in 
generalized matrix form as: 
 

            (4) 

 
where n is the number of matrix rows which are 18. In order to estimate the regression coefficients, 
the error term (e) will be neglected. Hence, the corresponding magnitude of a, b1, b2, b3, b4 can be 
determined by solving the matrices. Finally, the objective function based on the multiple regression 
model can be derived as: 

 

           (5) 

 
Table 3 
18 sets of design of experiment 
No.Exp. x1 x2 (nm) x3 (x1013) x4 (eV) y (ps) 

1 0.1 1 1 4.6 3.8 
2 0.1 1 1 4.7 11 
3 0.1 1 2 4.8 57.8 
4 0.1 2 2 4.6 2.4 
5 0.1 2 3 4.7 5.1 
6 0.1 2 3 4.8 25.5 
7 0.2 3 1 4.6 3 
8 0.2 3 1 4.7 5.7 
9 0.2 3 2 4.8 13.7 
10 0.2 1 2 4.6 2.6 
11 0.2 1 3 4.7 6.1 
12 0.2 1 3 4.8 43 
13 0.3 2 1 4.6 2.9 
14 0.3 2 1 4.7 6.6 
15 0.3 2 2 4.8 24.1 
16 0.3 3 2 4.6 2 
17 0.3 3 3 4.7 3.1 
18 0.3 3 3 4.8 9.3 

 
2.2.2 Genetic algorithm 

 
Genetic algorithm (GA) is a heuristic search-based predictive optimization that is inspired by 

natural evolution. It is commonly utilized to generate the most optimal or near-optimal solutions to 
numerous complicated problems [25-29]. The working principle of GA is fundamentally based on a 
population of chromosomes that act as a set of multiple solutions to the specific optimization 
problems. In the process of a generation of a population, the chromosomes are randomly kept 
changed for newly better chromosomes with higher evaluation scores. Predictive approach using GA 
requires multiple subsequent steps consists of initial population, objective function, fitness scaling, 
selection, crossover and mutation as depicted in Figure 6. 
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In this case, the initial population was the initial magnitude of the Ge mole fraction, Thigh-k, Nsd 
and WF which were previously stated in Table 1. Based on the 18 sets of DoE, the objective function 
was derived by using MRA as described in previous section. Next, the derived objective function was 
scaled to fit within a specific pre-determined lower and upper boundary called the fitness function 
(fi). Since the optimization problem was to search the least possible magnitude of the intrinsic gate 
delay (τint), the fitness function (fi) for this particular problem can be written as: 

 
Minimize f(x1, x2, x3, x4) 
Subject to the constraints: 
0.1≤x1≤0.3 
1≤x2≤3 
1≤x3≤3 
4.6≤x4≤4.8 
 

Initial Population

(Ge mole fraction, Thigh-k, 

Nsd and WF)

Crossover

Mutation

Objective Function 

Evaluation

Selection

New Population

(Ge mole fraction, Thigh-k, 

Nsd and WF)

Fitness Scaling

Terminate ?

YES

NO

 
Fig. 6. Flowchart of the 
Genetic Algorithm 

 
Selection is a process to select a part of the existing population in order to foster a new 

generation. In this case, each individual solution was selected via a process in which a fitter solution 
measured by the fitness function was more preferably to be selected. The subsequent step was to 
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perform crossover in which the genes from the parent chromosomes was opted to form a new 
offspring. Next step was to perform mutation in order to prevent descending all the possible solutions 
in population into local optimum of the solved problem. The process of selection, crossover and 
mutation were repeated until there is no further improvement on the fitness magnitude for certain 
preset number of generations. The final magnitude of the fitness function was identified at this point, 
implying that the iterations had been terminated. As a result, the new populations (Ge mole fraction, 
Thigh-k, Nsd and WF) that generate the best fitness magnitude will be successfully predicted. The GA 
preferences for this particular study were set as: 

 
Type  =  real-valued  
Population size =  50  
Number of generations = 1000  
Elitism =  2  
Crossover probability = 0.8  
Mutation probability = 0.1  
 

3. Results and Discussion 
 
In this section, the results of the predictive optimization for τint of the JLDGST, involving both MRA 

and GA approaches will be discussed. After processing all the associated magnitudes of both 
dependent and independent variables using MRA, the multiple regression plots of the τint for 18 
experimental rows were generated as shown in Figure 7. 

 

 
Fig. 7. Multiple Regression plots for Intrinsic 
Gate Delay (τint) 

 
The final results of the multiple regression analysis (MRA) are summarized in Table 4. According 

to the estimated regression coefficients (a, b1, b2, b3, b4) in column 2 of Table 4, the objective function 
of this study can be relationally expressed as: 

 

4321 278.141139.2522.6389.15956.630 xxxxY +−+−−=           (6) 
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Table 4 
Results of the Multiple Regression Analysis 
Regression Coefficients Estimation Std. Error t value Pr (>|t|) Significant code 

Intercept -630.956 158.61 -3.98 0.0016 ** 
x1 -15.389 34.420 -0.45 0.6622  
x2 -6.522 3.442 -1.9 0.0806 . 
x3 -2.139 3.442 -0.62 0.5451  
x4 141.278 34.420 4.1 0.0012 ** 
Significant Code: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 0.1-1 ‘ ’ 

 
It is shown that the most independent variables that contribute significant impact on the 

objective function are intercept and x4 statistically due to their least Pr (>|t|). Hence, it can be 
concluded that metal work-function (WF) is the most dominant design parameter influencing the 
variation in intrinsic gate delay. Based on the specified upper and lower boundaries, the objective 
function is converted into a fitness function for searching the global minimum. The search of the 
global minimum finished after 504 generations as the optimum fitness magnitude was found. The 
plot of the fitness magnitude as the number of generations focalize at the most optimum point are 
depicted in Figure 8. 

 

 
Fig. 8. Performance of GA during convergence 

 
The most optimum design parameters that yield the lowest intrinsic gate delay were successfully 

predicted by the GA as summarized in Table 5. The highest possible fitness magnitude is measured 
to be at 11.26682. Since the previous 18 sets of DoE does not comprise the predicted optimum design 
parameters (Ge mole fraction = 0.29, Thigh-k = 3 nm, Nsd = 2.96 x 1013 cm-3 and WF = 4.6 eV), the device 
simulation needs to be repeated for validation purpose.  
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  Table 5 
  Summary of the final results of Genetic Algorithm 

Parameters Magnitude and its unit 

Fitness Magnitude 11.26682 
Ge mole fraction in SiGe layer 0.29 (29%) 
High-k material Thickness, Thigh-k 3 nm 
S/D Doping, Nch 2.96 x 1013 cm-3 
Metal Workfunction (WF) 4.6 eV 

 
After running the device simulation with the predicted design parameters, the τint-Vds curve is 

generated and compared to the initial curve as depicted in Figure 9. It is shown that the intrinsic gate 
delay (τint) of the n-type JLDGST is deducted for approximately 70% after applying the predictive 
optimization.  
 

 
Fig. 9. Overlay plot of the τint –Vds curve before and 
after predictive optimization in linear mode 

 
The intrinsic gate delay of the device is extremely small measured at 1.7 psec, implying the 

optimized device requires lesser time to generate an output for a given input. Thus, it can be 
concluded that the proposed predictive optimization method using a hybrid MRA-GA model is 
capable of minimizing the intrinsic gate delay of the device by predicting the optimum magnitude of 
Ge mole fraction, high-k material thickness, source/drain doping concentration and metal work-
function. However, the optimization results can be further improved by considering more 
geometrical and process parameters. The proposed approach could also be applied to other 
semiconductor devices and engineering problems. 

 
4. Conclusions 

 
In summary, a hybrid model of Multiple Regression Analysis (MRA) and Genetic Algorithm (GA) 

are utilized as a predictive optimization method to minimize the intrinsic gate delay (τint) of the n-
type JLDGST. The initial approach is to derive a mathematical relationship (objective function) 
between the dependent variable (τint) and the independent variables (Ge mole fraction, Thigh-k, Nsd 
and WF) by using the MRA. In addition, MRA results shows that metal workfunction is the most 
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significant design parameter contributing the considerable variance on the intrinsic gate delay. After 
deriving the objective function, the GA is employed by fitting the objective function within the preset 
upper and lower boundaries called the fitness function (fi). Throughout the iterative process of 
selection, crossover and mutation, the most optimum fitness magnitude (11.26682) is identified after 
504 cycles of generation. As a result, a hybrid MRA-GA model has successfully reduced the intrinsic 
gate delay by ~70% in which the optimum Ge mole fraction, Thigh-k, Nsd and WF are predicted to be 
0.3 (30%), 3 nm, 2.96x1013 cm-3 and 4.6 eV respectively. Thus, it is concluded that a hybrid MRA-GA 
model can be one of the practical approaches for reducing the τint of the device as well as predicting 
the optimum magnitude of the design parameters. In future work, more design parameters could be 
considered using the proposed predictive approach for better optimization solutions. 
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