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 ABSTRACT 

 
Many areas in Malaysia that have never experienced flooding have been affected by the 
floods over the past few years. As a result of these events, water levels can change 
abruptly, resulting in extreme hydrological data values. This study investigated the 
characteristics of daily rainfall amounts at the Petaling Jaya station using two statistical 
tests, the Mann-Kendall test and Anderson-Darling test. After that, two machine 
learning models, namely Artificial Neural Networks and Support Vector Machines, were 
tested to predict and analyze the hydrological data. These investigations assessed the 
impact of multiple hidden nodes on rainfall amounts in ANN. In addition, they assessed 
performance accuracy based on the use of different kernels in SVM. The results of four 
performance metrics were examined, including Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of 
correlation (R) to demonstrate that ANNs are more accurate than SVMs with respect to 
prediction accuracy. In addition to stable prediction, ANN can capture extreme events 
more effectively than SVM.   
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1. Introduction 
 

Hydrology is the study of water movement, distribution, and quality on Earth. The field is critical 
because it aids an understanding of the water cycle, water resources availability, and climate change 
effects. Managing resources, understanding the water cycle, and predicting climate change impacts 
require hydrological data. Climate change affects many aspects of the natural water management 
system. These aspects include the elements and mechanisms of precipitation-runoff, as well as the 
amplitude, intensity, and river flow during floods and droughts, which affect peak flow hydrograph 
events during particular times. Future impacts of these factors are likely to persist, and they may 
negatively impact freshwater availability and sustainability as well as the natural environment [1]. It is 
crucial to understand precipitation trends when developing and managing water reserves. This is 
especially important given new evidence of hydrological extreme events and their unpredictability. It 
is one of the primary reasons for natural accidents, for instance, when massive flooding occurs in a 
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particular area. This causes financial harm, extensive property destruction, and sometimes fatalities 
[2,3]. 

Extreme events such as storms have a profound impact on how hydrologic systems are 
characterized and water infrastructure is designed in hydrology. Hydrology remains challenged to 
capture and describe extremes in natural systems due to their complexity and variability. Extreme 
Value Theory (EVT) is commonly applied to studying extreme values in hydrological systems [4, 5]. 
Noise or missing values can greatly impact a model's precision due to the quality of the input data. 
Pre-processing input data with Singular Spectrum Analysis (SSA) and hybrid Artificial Neural Network 
and Empirical Mode Decomposition (EMD) models can enhance precision [6]. The choice of a model 
considers elements during decision making, such as data type, problem difficulty, computing 
resources, and insights needed. Ensemble techniques, hybrid models, and domain knowledge 
integration can improve prediction capability and interpretability in hydrological abnormalities 
analyses [7]. 

It has become increasingly popular over the past decade to use machine learning approaches to 
model hydrological processes and predict hydrological variables based on historical hydrological data 
[8-11]. There has been a significant increase in the popularity of machine learning techniques over the 
last few years, including Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and many 
others based on historical data [3, 12, 13]. In the advanced technology era, the use of ANN is a 
common method of implementing macro data into daily activities. Due to their ability to learn and 
generalize from enough data pairs, artificial neural networks are capable of handling large-scale and 
difficult problems. 

ANNs are based on biological neurons in the human brain [14]. Although it is impossible to directly 
imitate biological neuron functions, it is still able to solve a wide variety of complicated problems. In 
ANNs, neurons are arranged in layers, with input, hidden, and output layers, with neurons from one 
layer connecting to neurons from the next layer [15-17]. Data flow begins with the input layer, which 
accepts data and forwards it to the next node. The data then performs all the complicated procedures 
in the hidden layer. A hidden layer may be present in each issue based on the needs of the issue. The 
results are stored in the output layer, which is the last layer. The neural network is generally capable 
of generating the best outcome without modifying the input data in any way. In addition to offering 
adequate precision in hydrological research, this type of system also provides more durable 
equipment for engineering applications than traditional approaches. 

ANNs have previously been shown to be the most popular machine learning model in hydrology. 
ANN has demonstrated its capability in predicting a broad range of hydrological variables, including 
stream flow, groundwater level, and water quality [17]. The results of a previous study [18], showed 
that ANNs could provide reliable predictions of stream flow, especially when combined with other 
models, such as physical models or other machine learning models. As a result, the ANN proved to be 
superior in modelling hourly rainfall-runoff data as well as being able to establish the relationship 
between rainfall and runoff [19]. 

Additionally, numerous studies have demonstrated that nonlinear hydrologic processes can be 
effectively modelled using ANNs, such as precipitation, runoff from rain, river flows, groundwater 
resources, water integrity models, and streams. According to Banhatti et al., [20], the ANN model is 
sufficiently robust to change dramatically when the training data is changed, which indicates it is 
sensitive to the analysed data. Moreover, the effectiveness of the model has a significant impact on 
training procedures, model design, and data pre-processing approaches. Through a downscaling 
model, ANNs could be used to predict flood peak discharges and seasonal stream flows. Other than 
that, utilizing ANN ensembles, stream flow conditions were predicted using a downscaling model [21]. 
They also found that ANNs for hydrological prediction had increased in recent years, with many studies 
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showing promising results. 
An ANN prediction's accuracy depends on many factors, including the choice of input variables, 

the design of the model, and the training and testing techniques. As a result of the nature of ANNs, 
they are often called "black-box" models, which pose many challenges when it comes to creating 
predictions. Aside from this, ANNs require a greater amount of training time than other models. To 
overcome the limitations of ANNs, a new method was developed called Support Vector Machines 
(SVM). 

SVM has been demonstrated to be superior in many research areas, including image classification, 
financial forecasting, medical diagnosis, and many others. SVMs are powerful tools that are efficient 
and effective at solving complex problems. In addition to its ability to identify patterns in data quickly, 
it can also assist in making decisions based on that data. SVM is also able to learn from new data and 
adjust its predictions accordingly. There has been a lot of interest in SVM in hydrological studies. SVM 
has been frequently used in modelling runoff forecasting due to their advantages, which include 
theoretical global optimization, avoiding dimensionality catastrophes, and large sample sizes [22]. 
Previous study by Han et al., [23] proposed SVM implementation in flood forecasting. The study 
revealed a fascinating result in SVM with respect to different rainfall volumes. According to Hirani et 
al., [24], SVM is more reliable than other forecasting approaches, both statistical and numerical, in 
predicting rainfall values. Although SVM models are effective in achieving better classification and 
prediction results, they are also subject to some limitations. These limitations include the fact that 
their accuracy is strongly influenced by parameter settings and kernel functions [25]. 

Since hydrological data is often nonlinear and nonstationary, this research aims to prove that 
hydrological characteristics can be demonstrated using Mann-Kendall and Anderson Darling tests. The 
next step is to test the capability of ANNs and SVMs to analyse extreme values within hydrological 
datasets. In this study, ANNs and SVMs are employed with a variety of hidden layers and kernel types. 
Finally, comparative analyses were done based on several performance measurements. This study 
provides insight into the analysis of hydrological extreme values and the best model to deal with them. 
 
2. Methodology  
 

In the methodology part, the methods and material used in the study will be discussed and 
explained in detail. 
 
2.1 Data Collection 
 

The data was acquired from the Malaysian Meteorological Department (Met Malaysia) and 
represents hydrological data for the Petaling Jaya, Selangor region. In this study, the daily rainfall 
amount (mm) variable from 2010 to 2020 is used to forecast the daily rainfall amount (mm) for 2021. 
There are eight variables including year, month, day, daily maximum, and minimum temperatures in 
degrees Celsius, daily relative humidity in percentages, daily rainfall totals in millimeters and daily 
mean sea level pressure in hPa. Total observations of 5844 data points in this dataset. The accuracy 
of the forecast was evaluated between the optimal selection of hidden layer to determine which 
model could provide the greatest accuracy. Figure 1 showed the time series plot of daily rainfall used 
in this study. The time series plot shows a high fluctuation up-down indicating seasonal and irregular 
variations. 
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     Fig. 1. Time series of daily rainfall amount in mm for 11 years 

 
2.2 Preliminary Test 
 

Preliminary tests are run to make sure the data meet the assumptions before moving further with 
the experiment. The purpose of the preliminary tests is to examine the dataset's trend existence, and 
normality. The Mann-Kendall, and Anderson Darling tests have been used in this investigation. 
 
2.2.1 Mann-Kendall test 
 

The Mann-Kendall test is a nonparametric method applied for recognition monotonic patterns in 
time series data. Monotonic trends refer to trends where the direction of the trend is consistent, but 
the magnitude of the trend may not be constant. The test statistic for the Mann-Kendall test is the 
Kendall's tau statistic, which determines the strength of the relationship between the data and a 
monotonic function. To perform the test, the data are first ranked, and then the difference in ranks 
between each pair of observations is computed. The test statistic is then computed as the sum of the 
signed differences. A positive tau statistic indicates an upward trend, a negative tau statistic indicates 
a downward trend, and a tau statistic of zero indicates no trend. The null hypothesis for the test is 
that there is no monotonic trend in the data. 

 
2.2.2 Anderson Darling test 
 

The Anderson-Darling test is a statistical test that can be used to check if a sample of data comes 
from a specific probability distribution, most commonly the normal distribution. The test statistic for 
the Anderson-Darling test is calculated by comparing the sample cumulative distribution function 
(CDF) with the theoretical CDF of the normal distribution. The null hypothesis for the Anderson-
Darling test is that the sample comes from a normal distribution. If the calculated test statistic is 
larger than a critical value from the Anderson-Darling table, the null hypothesis is rejected, and it 
suggests that the data does not come from a normal distribution.   
 
2.3 Pre-Processing Data 
 

Data screening and cleansing were done at the pre-processing stage. Boxplots were plotted to 
show outliers, while histograms with normal curves are used to verify normal distributions. In 
addition, the quantity of missing data, kurtosis, and skewness are computed and analyzed in the 
statistics descriptive table. Although, the outliers are left in the data since it was used to identify 
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extreme values. The data was split into 20% of the dataset for testing set while another 80% of the 
dataset for testing set. Therefore, training datasets were normalized to transform the data into 
smaller and appropriate range using Minimum-Maximum scaler. 
 
2.4 Model Development using ANN 
 

An Artificial Neural Network (ANN) mimics the basic activities of neurons in the human brain by 
simulating the core functions of a biological neuron. Based on robust computational power, artificial 
intelligence algorithms mimic the operation of biological neurons that can solve a wide range of 
problems. It is apparent that the exceptional computational resilience of ANN algorithms is the 
source of their intelligence. 

In these neural networks, three layers are involved, including input layers, hidden layers, and 
output layers. Input layer nodes define the independent variables, whilst output layer nodes define 
the dependent variable. Processing is performed by each node and each node's synaptic weight 
describes the amount it contributes to the overall output. As a nonlinear functional mapping of the 
explanatory variable is performed between each node, the relationship between them can be 
described as, 
 

𝑋(𝑡) = 𝑏 + ∑ 𝑤𝑖 × 𝑓(∑ 𝑊𝑖𝑘 × 𝑋(𝑡 − 𝑘) + 𝐵
𝐿
𝑘=1

𝑛𝑛
𝑖=1          (1) 

 
where the output is the forecast value, X(t) , input variables, 𝑋(𝑡 − 𝑘) and 𝑘 = 1, 2, . . ., L , synaptic 

weight which relates hidden layer nodes , 𝑤𝑖  , output layer node, 𝑖 , synaptic weight which relates 
input layer nodes, 𝑊𝑖𝑘, activation function , 𝑓 , bias factors that correspond to the output is 𝐵 while 
bias factors that correspond to the hidden layer is 𝑏. Table 1 showed the hyperparameter setting for 
ANN model used in this study. Based on Table 1, the activation function used in this study was 
"logistic", which refers to the logistic sigmoid function, and the solver used was "lbfgs", otherwise 
known as an optimization method in the family of quasi-Newton methods. The alpha value, batch 
size, primary learning rate, power t, and momentum value applied in this study are 0.0001, 32, 0.001, 
0.5, and 0.9 respectively which is the default of the values. The learning rate used in the study is 
“adaptive” in which the learning rate remains constant as long as the training loss declines. The 
maximum number of iterations, also known as the maximum number of epochs used in the study is 
100. 

 
  Table 1 
  Hyperparameter of ANN model 

Parameter Value 

ANN 

Activation Logistic 

Solver lbfgs 

Alpha 0.0001 

Batch size 32 

Learning rate Adaptive 

Initial learning rate 0.001 

Power t 0.5 

Maximum epochs 100 

Momentum 0.9 

 
Table 2 displays the value for each hidden layer selected. For the selection of hidden layers, it is 

advisable that the data with more complex structure apply a bigger size of hidden layer to obtain an 
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optimal solution. In this research, only one hidden layer is used with several selection of hidden layer 
nodes which are n/2, n+3, 2n and 2n+1.  
 

  Table 2 
  Number of hidden layers 

Hidden layer Nodes 

n/2 4 

n+3 10 

2n 14 

2n+1 15 

 
2.5 Model Development using Support Vector Machine (SVM) 
 

SVM is a previously developed machine learning technique based on the minimum principle of 
structural risk and the VC dimension theory of statistical learning theory. It chooses the ideal level of 
model complexity and learning capacity to optimize promotion ability based on the data properties. 
In contrast to the conventional linear model, SVM has a simpler calculation procedure which is also 
appropriate in cases with less data and produces the global optimal search method. Accordingly, SVM 
can be divided into three types: the One Class SVM for distribution estimation, the Support Vector 
Regression (SVR) for regression problems, and the Support Vector Classifier (SVC) for classification 
problems. The following is a brief overview of SVR. 

Training samples 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2, … 𝑛}, (𝑥1 ∈ 𝑅
𝑑), (𝑦𝑖 ∈ 𝑅), where 𝑥𝑖 

represents the input column vector corresponding to the 𝑖th training sample and  𝑦𝑖 is the output 
value corresponding to 𝑥𝑖. The linear regression function is established as follows: 

 
𝑓(𝑥) = 𝑤𝑇 ∙ 𝜙(𝑥) + 𝑏                (2) 

 
where 𝑤  is the weight vector in the feature space, 𝑏 is the bias and 𝜙 is a nonlinear mapping function. 
The optimization of formula (5) requires a minimum 𝑤 value, attainable using convex quadratic 
programming: 
 

𝑚𝑖𝑛 
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 − 𝜉𝑖

∗)𝑛
𝑖=1             (3) 

 
These are constraint conditions: 
 

𝑠. 𝑡.

{
 

 
𝑦𝑖 − 𝑤 ∙ 𝜙(𝑥) − 𝑏 ≤ 𝜀 + 𝜉𝑖
𝑤 ∙ 𝜙(𝑥) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖 ≥ 0

𝜉𝑖
∗ ≥ 0

, 𝑖 = 1,2, . . . 𝑛         (4) 

 
where the function of 𝐶 is to maintain a balance between generalization ability and model complexity 
as penalty parameter, 𝜀 indicates the regression function's error requirement, which ensures sparsity 
and 𝜉𝑖 , 𝜉𝑖

∗ are two slack variables and restrict the upper and lower bounds of the output value. Their 
method involves using the Lagrange function and introducing a kernel function for solving the best 
approach. 

By incorporating kernel functions, the nonlinearity of input data issue can be solved. Considering 
the historical data concerning water consumption incorporates other insights, such as holiday data 
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and weather information, it is possible to resolve the complicated aspects associated with water 
consumption in cities by altering the kernel function into an environment with higher dimensions. A 
nonlinear SVM function model is created by using the following equation. 
 
𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑘(𝑥, 𝑥′) + 𝑏𝑛
𝑖=1             (5) 

 
where 𝑘(𝑥, 𝑥′) represents the kernel function, and 𝛼𝑖 − 𝛼𝑖

∗ are Lagrange multipliers.  
 
2.6 Different Types of Kernels in SVM 
 

There are four types of kernels that are used in this paper such as Radial Basis Function (RBF) 
kernel, Sigmoid kernel, Linear kernel, and Polynomial kernel, and where 𝑘(𝑥, 𝑥′) refer to kernel 
function while 𝑥 and 𝑥′ are the input vectors. 
 
2.6.1 RBF kernel 
 

As shown below, the formula of the RBF kernel contains 𝛾 as a parameter that determines the 
spread of the radial basis functions. 

 

𝑘(𝑥, 𝑥′) =  𝑒(−𝛾‖𝑥−𝑥
′‖
2
)             (6) 

2.6.2 Sigmoid kernel 
 

The following expression describes the sigmoid kernel where 𝛼 and 𝛽 are user-defined 
parameters. 

 
𝑘(𝑥, 𝑥′) =  𝑡𝑎𝑛ℎ(𝛼 ∙ 𝑥 ∙ 𝑥′ + 𝛽)           (7) 

2.6.3 Linear kernel 
 

This formula demonstrates how the linear kernel can be defined as the dot product between two 
input vectors. 

 
𝑘(𝑥, 𝑥′) =  𝑥 ∙ 𝑥′             (8) 

2.6.4 Polynomial kernel 
 
The polynomial kernel is defined as formula below where 𝛾 refer to scaling parameter, 𝑟 is a 

coefficient and 𝑑 is the degree of the polynomial. 
 

𝑘(𝑥, 𝑥′) =  (𝛾 ∙ 𝑥 ∙ 𝑥′ + 𝑟)𝑑                (9) 

2.7 Performance Metrics 
 

The following four performance indicators were considered when evaluating the models 
produced which are Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE) and Coefficient of Correlation (R). In this study, these metrics applied to 
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check the accuracy and error of the prediction. The equations for evaluation metrics are as the Eqs. 
(10) to (13) whereas the 𝑛 is the number of outputs, 𝑝𝑖 is the ith predicted output and 𝑑𝑖 is the ith 
observed output. 
 
2.7.1 Mean Absolute Percentage Error (MAPE) 
 

MAPE is used widely to measure accuracy and obtaining significant information from the dataset. 
The formula of MAPE is shown as below: 
 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑

𝑝𝑖−𝑑𝑖

𝑝𝑖

𝑛
𝑖             (10) 

 
2.7.2 Mean Absolute Error (MAE) 
 

The following equation is the formula for Mean Absolute Error (MAE) which is usually used in 
time series forecasting. 
 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑝𝑖 − 𝑑𝑖|
𝑛
𝑖=1            (11) 

 
2.7.3 Root Mean Squared Error (RMSE) 
 

Root Mean Squared Error (RMSE) is the standard deviation of the residuals where it shows the 
general overview of the errors that involved in the prediction. Therefore, the lower the RMSE value, 
the better. The RMSE is determined using the following expression. 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑝𝑖 − 𝑑𝑖)

2𝑛
𝑖=1           (12) 

 
2.7.4 Coefficient of correlation (R) 

 
In general, the coefficient of correlation (R) indicates the degree to which the output seen and 

expected were related linearly. Increasing similarity between projected and actual outputs increases 
the correlation coefficient. To achieve better results, the correlation coefficient should be greater. 
The correlation coefficient (R) can be calculated using the following expression. 
 

𝑅 =
∑ (𝑝𝑖−

𝑝𝑖
𝑛
)𝑛

𝑖=1 (𝑑𝑖−
𝑑𝑖
𝑛
)

√∑ (𝑝𝑖−
𝑝𝑖
𝑛
)
2

𝑛
𝑖=1   𝑥 √∑ (𝑑𝑖−

𝑑𝑖
𝑛
)
2

𝑛
𝑖=1    

          (13) 

 
3. Results  
 

An appropriate statistical test should be conducted to prove the observations normality, and the 
existence of the trend. The Anderson Darling (AD) test checks the normality of the dataset. The p-
value of the AD test is less than 0.05, as shown in Table 3. Thus, the null hypothesis is rejected which 
means the data does not follow a normal distribution. Then, the Mann-Kendall test was also used to 
check the existence of the trend. Since the value of p in Mann-Kendall test is smaller than 0.01, the 
null hypothesis is rejected which indicates that there is trend in the dataset. Next, the dataset 
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undergoes the pre-processing data where the data is clean and screen. However, the outliers in the 
dataset are kept because it indicates the extreme values of hydrological data. 
 

  Table 3 
  Statistical tests 

Statistical tests Value p-value 

Anderson Darling (AD) test 825.907 <0.05 

Mann-Kendall test - <0.01 

 
Once the dataset has been pre-processed, it can be used for prediction and forecasting. Table 4 

presents the results of the study based on the performance measures used, which are the MAPE, 
MAE, RMSE and R values. During the training set, ANN with 15 hidden nodes exhibits superior 
performance as it has the lowest MAPE, MAE, RMSE and highest R values. The training set is used to 
train the model, which enables the model to learn patterns, relationships, and features based on the 
data. The testing set, on the other hand, is used to evaluate the model's performance and to 
determine its generalization ability to new and previously unknown data. Based on the results of the 
testing set, it can be observed that the ANN network architecture with 14 nodes shows the lowest 
MAE, RMSE, and highest R values in comparison with other network architectures. Even though the 
results of the training period indicated that the model with 2n+1 was the most accurate, the network 
architecture with 2n hidden nodes was chosen because of its stability.   

Next, Table 4 also presents experimental results for SVM. The results from the training and testing 
sets showed that SVM with a polynomial kernel archived better results than SVM with another kernel. 
This is primarily because the polynomial kernel is relatively simpler than either RBF or sigmoid 
kernels. Moreover, polynomial kernels allow the complexity of decision boundaries to be controlled 
and minimizes the risk of overfitting and underfitting. A polynomial kernel is also capable of capturing 
the complex relationships between variables without the need to add new features to capture them, 
which is a weakness of other kernels. RFB kernels also provide competitive results to sigmoid and 
linear kernels due to their close proximity to each other. 
 
  Table 4 
  Forecast accuracy of the ANN and SVM model during the training and testing period 

Model Number of hidden 

Nodes / different 

types of kernels 

Training Testing 

MAPE MAE RMSE R MAPE MAE RMSE R 

ANN n/2 3.0805 8.9234 15.0004 0.582 2.3422 8.7603 14.2080 0.597 

n+3 4.6899 8.8772 14.9418 0.586 2.3911 8.8076 14.2760 0.592 

2n 6.0954 8.8316 14.9130 0.589 2.4429 8.6899* 14.1347* 0.603* 

2n+1 2.5210* 8.8158* 14.8321* 0.595* 1.6299* 8.9348 14.4611 0.583 

SVM RBF 8.8377 9.0118 18.6280 0.515 1.4678* 9.2126 18.0407 0.533 

Sigmoid 1.4136* 9.2797 19.0746 0.474 1.7608 9.5152 18.5106 0.495 

Linear 2.7837 9.1880 18.6656 0.486 2.8889 9.3768 18.0681 0.513 

Polynomial 2.3981 8.2328* 16.0016* 0.558* 2.0911 8.2225* 15.4304* 0.560* 

* Represents the best result among others selection of hidden layers and different kernels 

 
The hydrograph for both the best performing model using ANN and SVM can be seen in Figures 

2 and 3. The Figures 2 and 3 illustrate distinct patterns that can explain and describe the degree of fit 
between the forecast value model and the actual values for both ANN and SVM models. Figure 3 
illustrates that some points are under-forecast in comparison with Figure 2. Despite this, both models 
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shown can follow the fluctuation trend of the daily amount of rainfall throughout the years, despite 
being not very close to the actual amount of rainfall. 
 

 
Fig. 2. Observed versus predicted values using ANN model 

 

 
Fig. 3. Observed versus predicted values using SVM model 

 
4. Conclusions 

 
This study tested the hydrological dataset using two statistical tests known as Mann-Kendall and 

Anderson-Darling tests. Furthermore, the capability of two machine learning models, ANN and SVM, 
in predicting and analyzing hydrological extreme values was also investigated. The hydrological data 
used in this study met the assumptions of non-normality and had an existing trend. When analyzing 
hydrological data, underlying trends are considered based on this assumption. Without considering 
the trends, it is impossible to accurately predict and analyze extreme values existed in the dataset. It 
is also possible to determine the appropriate model to be used for prediction purposes based on the 
results of the statistical tests. Experimental results indicated that ANN performs better than SVM in 
terms of performance. It is likely that this is because ANN has the capacity to handle complex and 
non-linear data and are more suited to large-scale datasets than SVM. Moreover, the study indicates 
that the number of hidden nodes has an impact on performance measurement. Model accuracy can 
be improved by adjusting the number of hidden nodes in a model, since hidden nodes are a 
parameter that can be adjusted. It is generally believed that the more hidden nodes the model 
contains, the more complex it is and the better it is at analyzing large datasets.  

Moreover, it was found that SVM with a polynomial kernel performed the best compared to other 
kernels. It may be attributed to the robustness of the polynomial kernel to outliers, which enables it 
to capture trends in data and handle complex non-linear interactions more effectively than other 
kernels. Due to its ability to handle complex non-linear interactions and its robustness to outliers, 
polynomial kernels are better suited to hydrological data. The findings of this study should be further 
studied and validated through further experimental analysis. 
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