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Preserving wildlife habitats is crucial in mitigating climate change. Species like 
orangutans and monkeys contribute to fruiting and planting in forests. The World Wide 
Fund Sabah Malaysia faces challenges in manually identifying and classifying orangutan 
nests for studying their behaviour and conserving their habitats. To address this, we 
propose automating the classification of captured images using machine learning 
algorithms. This research involves three key components: image processing, feature 
extraction, and image classification. Our proposed image processing includes several 
steps, such as image pre-processing and enhancement techniques like local contrast 
enhancement, sharpening, intensity adjustment, histogram equalization, and colour 
thresholding. We applied four different Convolutional Neural Networks (CNNs) to 
extract and identify orangutan nests’ features. Subsequently, we utilize Support Vector 
Machine (SVM) for image classification. The results reveal that the Inception Residual 
Network Version 2 (ResNet-v2) achieves the best performance. This architecture is then 
combined with a kernel SVM to classify Bornean orangutan nests. Our approach 
demonstrates impressive results, boasting an accuracy of 96.60%, an F1-score of 
96.60%, a precision of 96.59%, and a recall of 96.58%. These metrics underscore the 
high accuracy and effectiveness of our proposed methodology for classifying Bornean 
orangutan nests. By reducing the need for extensive human intervention in image 
analysis, our method presents a valuable tool for conservationists and researchers 
committed to studying and safeguarding these endangered orangutans and their 
habitats. In future work, we aim to develop orangutan nest detector, contributing to 
wildlife conservation research. 
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1. Introduction 
 

The International Union for Conservation of Nature (IUCN) has listed the Bornean orangutan, or 
Pongo Pygmaeus as one of the critically endangered animals [1]. Wildlife researchers and Non-
Government Organizations (NGOs) such as the World Wide Fund (WWF) have been making many 
efforts to estimate the population for several years using spotting the nest in the forest [2,3] in order 
to monitor their population. Simon et al., [3] have been using aerial imagery to spot the Bornean 
orangutan nest from the top view. The aerial imagery captured using drones and Unmanned Aerial 
Vehicles (UAVs) is high resolution, but small objects are very blurry, particularly for the Bornean 
orangutan nest, due to various challenges. The challenges of viewing Bornean orangutan nests from 
the top view using aerial imagery are foliage cover, camouflage and blend-in, nest concealment, nest 
size and scale, and nest degradation [4]. Thus, a technique is required to improve the quality of the 
images before useful information can be extracted from the sources. Image processing plays critical 
role and it is a fundamental step of image recognition research such as object detection [5], remote 
sensing [6] and object classification [7]. Surprisingly, there is no research conducted thus far to 
recognize Bornean orangutan nests using machine learning algorithms.  

In this work, the objectives are to design an image processing algorithm to improve the quality of 
the data source captured using UAV, to extract the orangutan’s nests features using several 
Convolutional Neural Networks (CNNs), and lastly to train and test the Bornean orangutan nest using 
Support Vector Machine (SVM). In image classification, there are many important steps, which 
include image labelling and image segmentation. For this work, we propose image classification, 
which includes edge threshold, sharpening, intensity adjustment and colour thresholding L*a*b*. To 
test the effectiveness of image classification, we extract the images’ features using several CNNs and 
then classified the results using Kernel Multi SVM. Lastly, the results are compared and discussed. 
The subsequent sections of this article are organized as follows: Section 2 discusses related research, 
Section 3 elaborates on the methodology, Section 4 presents the experimental results, Section 5 
covers the discussions, and Section 6 concludes the paper. 

 
2. Literature Review 
2.1 Wildlife Image Processing 

 
Aerial photography is a powerful tool in various domains, including environmental monitoring [8] 

and wildlife analysis [9]. However, aerial images often suffer from challenges such as low contrast 
[10], noise [11], and inconsistent lighting conditions [12], which can hinder the identification and 
analysis of important features like animal nests. To overcome these limitations, researchers have 
explored various image processing techniques specifically tailored for aerial photography [13]. 

The quality of wildlife images significantly affects subsequent processing tasks [14]. Recent 
advancements in camera technology have allowed researchers to capture high-resolution images 
with increased accuracy and detail [15]. The use of high precision equipment, such as camera traps 
[16] and UAVs [17], has enabled efficient and non-intrusive data collection. Researchers have also 
explored techniques to automate image acquisition using motion-triggered cameras [18] and sensor 
networks [19], to capture images in a continuous and unobtrusive manner. Pre-processing 
techniques are applied to enhance the quality of wildlife images and improve subsequent processing 
steps. Noise reduction [20], contrast adjustment [21], and colour correction [22] algorithms are 
commonly used to improve image quality. Segmentation techniques are crucial for separating wildlife 
objects from complex backgrounds. Various approaches, including thresholding [23], edge detection 
[24], and clustering algorithms [25], have been applied to identify and extract wildlife regions 
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accurately. Additionally, advanced techniques like deep learning-based segmentation [26] have 
shown promising results in segmenting wildlife objects with high precision and recall rates. 

Once wildlife objects are segmented, object recognition techniques are applied to identify and 
classify species. Traditional approaches relied on handcrafted features and machine learning 
algorithms, such as SVM [27] and Random Forests (RF) [28]. However, with the advent of deep 
learning, CNNs have demonstrated remarkable performance in species classification tasks [29]. By 
training on large annotated datasets, CNN models can learn discriminative features [30] and 
generalise well to unseen wildlife images [31], enabling accurate and automated species 
identification [32]. 

 
2.2 Convolutional Neural Network (CNN) as Feature Extractor 

 
Feature extraction plays a critical role in machine learning tasks, enabling the transformation of 

raw data into meaningful representations that capture relevant information [33]. CNNs have 
emerged as powerful tools in computer vision, demonstrating remarkable capabilities in feature 
extraction from various types of data [34]. 

The evolution of CNNs is characterised by significant milestones that have shaped their 
architecture and performance. The pioneering work of Lecun et al., [35] introduced the LeNet 
architecture, which demonstrated the efficacy of CNNs in character recognition. Subsequent 
advancements, such as the development of ResNet [36], have significantly improved the depth and 
capacity of CNNs, enabling them to extract more complex and abstract features. The introduction of 
transfer learning further revolutionised the field by leveraging pre-trained models and enabling the 
transfer of learned features to new tasks, even with limited labelled data. 

The architecture of CNNs is designed to extract hierarchical features from input data by utilizing 
filters in convolutional layers to conduct localized operations, capturing spatial details and acquiring 
knowledge about spatial structures in a hierarchical manner [37]. Following the convolutional layers, 
there are pooling layers that down sampling the data, promoting spatial invariance and decreasing 
computational complexity [38]. Non-linear activation functions introduce non-linearity to the 
network, enabling the extraction of more complex features [39]. Finally, fully connected layers are 
responsible for classification or regression tasks, making predictions based on the extracted features. 

CNNs have achieved remarkable success in image classification tasks. CNN architecture such as 
Inception-ResNet [40], have pushed the boundaries of image recognition accuracy. These networks 
leverage deep architectures, skip connections, and parallel operations to extract discriminative 
features from images. Additionally, transfer learning approaches have been widely used, enabling 
the adaptation of pre-trained models to new tasks, even with limited labelled data. The combination 
of deep architectures, transfer learning, and large-scale datasets has propelled CNNs to achieve 
state-of-the-art performance in image classification. 

 
2.3 Kernel Support Vector Machines (SVMs) as Classifier 

 
Kernel SVMs have emerged as a potent machine learning method for performing classification 

tasks across diverse domains [41]. Kernel SVM is a supervised learning algorithm that performs binary 
classification by finding an optimal hyperplane that maximally separates data points belonging to 
different classes [42]. Unlike linear SVM, kernel SVM allows for non-linear decision boundaries by 
transforming the input data into a high-dimensional feature space using a kernel function [43]. The 
decision boundary is then computed in this transformed feature space, enabling the classification of 
complex and non-linear patterns. 
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The choice of kernel function plays a crucial role in the performance of kernel SVM. Various kernel 
functions, such as linear, polynomial, Radial Basis Function (RBF), and sigmoid, have been proposed 
and extensively studied. The linear kernel is suitable for linearly separable data, while polynomial and 
RBF kernels [44] effectively handle non-linear data. The sigmoid kernel is often used for similarity-
based learning tasks [45]. Researchers have explored the impact of different kernel functions on 
classification accuracy, computational efficiency, and generalisation ability, leading to advancements 
in kernel function selection and design [46]. 

Kernel SVM involves the selection of optimal model parameters, including the regularisation 
parameter (C) and the kernel-specific parameters (such as the degree of polynomial kernel or the 
gamma parameter for RBF kernel) [47]. Various techniques have been proposed for model selection 
and parameter tuning, including cross-validation, grid search, and genetic algorithms [48]. These 
approaches aim to balance model complexity and generalisation, ensuring the SVM achieves optimal 
performance on unseen data. Feature selection and dimensionality reduction techniques play a vital 
role in enhancing the efficiency and accuracy of kernel SVM [49]. Feature selection methods aim to 
identify the most informative features for classification, thereby reducing the input space's 
dimensionality and improving the model's generalisation ability [50]. Several studies have explored 
integrating these techniques with kernel SVM to enhance classification performance. 

 
3. Methodology  
3.1 Data Source and Sampling 

 
Collecting orangutan nest images is challenging and costly. Therefore, we collaborated with WWF 

Malaysia, Sabah branch, for the Bornean orangutan nest detection project. The researchers from 
WWF Malaysia have shared their dataset, which consists of 746 photos captured using high-spec 
drones. The drone images include Bornean orangutan nests, dead trees (brown trees), branches, 
buildings, automobiles, and other trees. Dead trees and Bornean orangutan nests having similar 
characteristics, nearly identical colour and roughly identical shape. Consequently, identifying 
orangutan nests without expert assistance from WWF is very challenging. Due to limited Bornean 
orangutan’s nest, data augmentation was applied. Data augmentation is a technique commonly used 
in machine learning and computer vision to increase the size and diversity of a training dataset 
artificially. It involves applying various transformations or modifications to the existing data samples, 
resulting in new, slightly altered versions of the original data. 

For sampling, we have created a dataset of 5,000 images by cropping and augmented the UAV 
images. This dataset includes 1,000 images of Bornean orangutan nests, 1,000 images of brown trees 
and branches, 1,000 images of buildings, 1,000 images of automobiles, and 1,000 images of trees 
without any nests. The data is then sent for image enhancement before features are extracted. Data 
is trained and tested later using raw data, raw data without background information, and enhanced 
data without background information for each CNN architecture. 

The decision to compare vehicles and structures to orangutan nests rather than bird nests, which 
may resemble gorilla nests more, was made for a number of reasons, including structural dissimilarity 
to make clear distinctions. Structures such as cars and buildings may differ significantly from 
orangutan nests. This difference can aid in creating a classification model that is more reliable. The 
uniqueness of the structural elements may make it easier to distinguish between orangutan nests 
and artificial constructions. Furthermore, more difficult classification scenarios could arise from using 
cars and structures as comparisons. Differentiating between artificial structures like automobiles and 
houses and natural habitats like orangutan nests could demonstrate the model's ability to distinguish 
between disparate elements. 
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3.2 Image Enhancement Frameworks 
 
As depicted in Figure 1, the acquired images undergo an initial augmentation process. This step 

is to generate additional images, enhancing the extraction capabilities and overall robustness of the 
training model. Next, these images go through local contrast enhancement to further refine their 
quality. Local contrast enhancement aims to improve the visibility and definition of edges in an image 
by adjusting the contrast local as seen in Eq. (1). By considering the local contrast characteristics, this 
technique enhances not only the edges but also other details and textures in the image.  

 
𝐸!" 	= 	𝐼	 + 	(𝐼	 − 	𝐿)	𝐸#                                                                                                                                                  (1) 

 
𝐸!"is Enhanced Pixel Value, and it represents the adjusted pixel value after local contrast 

enhancement. The 𝐼 is the input which is the original image or data that will undergo the process. 𝐿 is 
the Local Mean Value which represents the mean value of the pixels within a local neighbourhood 
centred around the pixel being processed. It measures the difference in pixel values between 
neighbouring pixels within a local neighbourhood. 𝐸#  is the Enhancement Factor which determines 
the magnitude of contrast enhancement applied to a pixel. It is typically a positive scalar value greater 
than 1. In this process, is the edge threshold value where the constant number 0.5 is being set. 

 

 
 

Fig. 1. The proposed image enhancement framework 
 
Then, the images are applied for sharpening process to further enhance the details and edges in 

the image refer to Eq. (2). Sharpening is used to enhance an image's edges and fine details, making 
them appear more pronounced and visually appealing.  

 
𝑆	 = 	𝐸!" 	+ (	𝐸!" 	+ 	𝐵)𝐴                                                                                            (2) 

 
S is the sharpened image, which represents the resulting image after applying the sharpening 

operation. 𝐸!"  is a locally contrasted image that has been improved from the previous process. Here, 
it acts as an input image to run the process of sharpening. B is the blurred image that represents a 
blurred version of the original image obtained by applying a blurring filter. A is the amount that 
determines the strength of the sharpening effect. It is typically a positive scalar value. This is the 
function where we put the amount of sharpening, radius, and threshold.  
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After sharpening the images, the sharpened image is converted from RGB to L*a*b*. The 
conversion is to enable colour-based analysis and adjustments. It involves manipulating the colour 
values to compensate for variations in lighting conditions, colour cast, or inaccuracies introduced 
during image capture, digitisation, or display. The resulting Lab image will have separate channels for 
the L, a, and b components, representing the luminance, green-red chromaticity, and blue-yellow 
chromaticity. This can be seen from Eq. (3) to Eq. (8).  

 
𝐶𝑆𝐼	 = 	𝑅𝐺𝐵𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝐿𝐴𝐵(𝑆)            (3) 
 
𝐿	 = 	116	 ∙ 𝑓(𝑌/𝑌$%& − 16)	            (4) 
 
𝑎	 = 	500	 ∙ [𝑓(𝑋/𝑋$%& 	− 		𝑓(𝑌/𝑌$%&)]           (5) 
 
𝑏	 = 	200	 ∙ 	 [𝑓(𝑌/𝑌$%&) 	− 𝑓(𝑍/𝑍$%&)]          (6) 

 
𝐿, a, and b are the Lab colour components. 𝑋, 𝑌, and 𝑍 are tristimulus values of the original RGB 

image. Tristimulus refers to a concept used in colour science and colourimetry to describe the three 
independent quantities that are used to specify a colour sensation or stimulus in a three-dimensional 
colour space. Tristimulus refers to the three independent quantities used to specify a colour sensation 
or stimulus in a three-dimensional colour space, typically represented as 𝑋, 𝑌, and 𝑍 values. 

𝑋$%&, 𝑌$%&, and 𝑍$%& are tristimulus values of the original RGB image. Tristimulus refers to a concept 
used in colour science and colourimetry to describe the three independent quantities that are used to 
specify a colour sensation or stimulus in a three-dimensional colour space. For the Luminance (L) 
equation in Eq. (4), the luminance component represents the image's brightness. 𝑌  is the tristimulus 
value of the image's luminance from the RGB colour space. Chromaticity (a) calculation in Eq. (5) is a 
component that represents the green-red chromaticity. 𝑋 is the tristimulus value of the image's red 
channel from the RGB colour space. 𝑋$%& is the reference white point tristimulus value. 𝑌$%& is the 
reference white point tristimulus value. Then, the resulting L*a*b* colour image is stored in a variable 
CSI. For now, the L is the main component that is needed to be focused on. Next, maximum luminosity 
is assigned to the value of 100. The maximum luminosity value is used as a scaling factor or reference 
point to normalise the luminance values within a specific range. The resulting values are typically 
mapped to a normalised range between 0 and 1 by dividing the luminance values by the maximum 
luminosity value. The reason why the max luminosity is 100 is to provide visually appealing results. t 
extracts the luminance values from the L*a*b* image's first channel (index 1) using the indexing 
operation shadowRGB (:,:,1). The extracted luminance values are then divided by the maximum 
luminosity value. All of these can be seen in Eq. (7). 

In Eq. (7) and Eq. (8), 𝑓(𝑡) is a non-linear function defined as:  
 

𝑓(𝑡) = 𝑡
!
"		𝑓𝑜𝑟	𝑡	 > 	 I '

()
J
*
	            (7) 

 
𝑓(𝑡) 	= 	 +

(*('/())#)	
	+ 	 0

()
	 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          (8) 

 
𝑓(𝑡) is a non-linear function that transforms the tristimulus value to a perceptually uniform scale.  
𝑓(𝑡) is the same non-linear function as mentioned above. 

𝐿𝑢𝑚𝑖𝑛𝑎𝑡𝑒_𝐼𝑚𝑎𝑔𝑒	 = 	𝐶𝑆𝐼(: , : ,1)/𝑚𝑎𝑥_𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡y              (9) 
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The purpose of dividing the luminance values by the maximum luminosity is to scale the 
luminance values within a specific range. The luminance values are mapped to a normalised range 
between 0 and 1 by dividing by the maximum luminosity. This normalisation process is for contrast 
enhancement of the object that must be trained. The purpose of L*a*b* also is to separate the colour 
information from the brightness information and create a colour space that is more perceptually 
uniform. This allows for more effective colour-based analysis and manipulation of the image. 

Furthermore, the process of adjusting luminance, histogram equalization, and converting back to 
the RGB colour space is applied for enhancement and restoration. The purpose of adjusting 
luminance is for fine-tuning the luminance and achieving the desired visual enhancement in the RGB 
image. By modifying the luminance values, we can emphasise or de-emphasise certain image 
features, highlight details, or improve overall visual quality.  

Then, we enhance the contrast and improve the overall visual appearance of an image using 
histogram equalization. It achieves this by redistributing the pixel intensity values of the image's 
histogram, effectively stretching the dynamic range to utilise the full available range of intensities. 
The first step in histogram equalisation is to compute the histogram of the input image as can be 
seen in Eq. (10). 

 
H(i) = n(i) / (M * N)                                          (10) 

 
H(i) represents the normalised histogram value at intensity level i, n(i) represents the number of 

pixels with intensity i, and (M, N) represents the dimensions of the image. 
 Next, the Cumulative Distribution Function (CDF) is computed. The CDF represents the 

accumulated probability of encountering a pixel with an intensity value up to a certain point. To 
ensure that the CDF spans the full range of intensity values (0 to 255 in an 8-bit grayscale image), the 
CDF is normalised by dividing each value by the total number of pixels in the image. The cumulative 
distribution function represents the cumulative sum of histogram values up to a certain intensity level, 
as seen in Eq. (11). 

 
CDF(i) = Σ H(j) for j = 0 to I                                (11) 

 
where CDF(i) represents the cumulative distribution function value at intensity level i. 

The next step is to transform the intensity values of the input image using the computed CDF. The 
transformed intensity value is denoted as T(x, y), as seen in Eq. (12). 

 
T(x, y) = CDF(I(x, y)) * L                                     (12) 

 
Where L represents the maximum possible intensity level (e.g., 255 for an 8-bit image), the CDF(I(x, 

y)) represents the value of the cumulative distribution function at the intensity level of the pixel I(x, y). 
Finally, the transformed image is normalised to the range [0, L] to obtain the final result, as seen in 

Eq. (13). 
 

T_norm(x, y) = (T(x, y) - min(T)) / (max(T) - min(T)) * L                   (13) 
 

where T_norm(x, y) represents the normalised transformed image, min(T) represents the minimum 
intensity value in the transformed image, and max(T) represents the maximum intensity value in the 
transformed image. 
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The resulting T_norm(x, y) represents the histogram-equalised image with enhanced contrast. 
Next, the equalised image is created by assigning the new intensity values to the corresponding pixels 
based on the mapping obtained in the previous step. Lastly, the input images are converted back to 
the RGB format and background removal is applied before objects are cropped. 

 
3.3 Convolutional Neural Networks 

 
CNNs draw inspiration from the visual cortex's organization and comprise layers: convolutional, 

pooling, fully connected, and activation layers. They learn hierarchical features from raw pixel values 
to interpret visual patterns. Convolutional layers extract local features, pooling layers preserve vital 
features, fully connected layers enable high-level representations and predictions, and activation 
functions like ReLU introduce non-linearity. CNNs excel in recognizing complex visual patterns 
through backpropagation during training. 

In this study, we compare the performance of CNN-based ReLU with ResNet architectures 
(ResNet-18, ResNet-50, ResNet-101) and Inception ResNet-V2 for feature extraction. We specifically 
chose a three-layer CNN-based ReLU due to its characteristics and performance in computer vision 
tasks. These deep CNN architectures, including the three-layer version, effectively capture intricate 
features, allowing for accurate and discriminative representations.  

CNNs offer several advantages over other feature extractors. One key benefit lies in their 
proficiency in local feature extraction, where convolutional layers enable effective identification of 
edges, textures, and forms within images. The second advantage is the ability of CNNs to extract 
hierarchical features, progressively learning more sophisticated representations of input images. 
Additionally, CNNs exhibit the third benefit of transferring learned features from pre-trained models, 
such as those trained on extensive datasets like ImageNet, to smaller datasets through fine-tuning. 
This feature proves particularly valuable when dealing with limited wildlife image databases, 
addressing challenges posed by small sample sizes. While architectures like Recurrent Neural 
Networks (RNNs) or Transformers may excel in sequential or language-related tasks due to their 
comparative efficiency, they might not be as well-suited for image-based tasks. This is because they 
prioritize temporal relationships or global context over local features within images. In contrast, 
CNNs prove more practical for processing extensive amounts of image-based wildlife data, 
showcasing computational efficiency in handling both the complexity and calculations associated 
with image data. 

 
3.3.1 The ResNet-18 

 
ResNet-18, a variant of the ResNet architecture introduced by Kaiming He et al., [36], is widely 

adopted for image classification tasks. It comprises 18 layers, including convolutional, batch 
normalization, ReLU activation, max-pooling, and a fully connected layer for classification, organized 
sequentially. What sets ResNet-18 apart is its use of residual connections (skip connections), allowing 
information to flow directly from early layers to later ones, mitigating the vanishing gradient problem 
and facilitating training of deeper networks. Serving as a feature extractor, ResNet-18 transforms an 
input image into hierarchical feature maps, capturing both low-level and high-level information. Its 
pre-trained models are commonly used for transfer learning, leveraging learned weights to fine-tune 
on smaller datasets or specific tasks, ensuring efficient and accurate training even with limited data. 
Figure 2 shows the ResNet-18 architecture. 
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Fig. 2. ResNet-18 architecture 
 

3.3.2 The ResNet-50 
 
ResNet-50, with its 50 layers, is a deeper and more complex architecture compared to ResNet-

18. It retains the same structure of residual connections and building blocks but incorporates 
additional layers to enhance its representational capacity. These building blocks include basic ones 
with two stacked 3x3 convolutional layers and more intricate bottleneck blocks, which use 1x1, 3x3, 
and 1x1 convolutions to reduce computational cost while maintaining representational power. Like 
ResNet-18, ResNet-50 employs down sampling via stride convolutions or max-pooling layers to 
decrease feature map dimensions progressively and increase channel numbers at specific stages in 
the network. The ResNet-50 architecture is shown in Figure 3 below. 

 

 
 

Fig. 3. ResNet-50 architecture 
 

3.3.3 The ResNet-101 
 
ResNet-101, with its 101 layers, represents an even deeper and more potent iteration of the 

ResNet model, engineered to capture intricate and abstract image features. It retains the 
foundational structure of ResNet models, incorporating residual connections and building blocks, but 
extends its complexity for enhanced representational capacity. Employing residual connections, also 
known as skip connections, ResNet-101 facilitates direct information flow from earlier layers to later 
ones, mitigating the vanishing gradient problem and enabling effective training of exceptionally deep 
neural networks. Similar to other ResNet variants, it combines basic blocks, featuring two stacked 
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3x3 convolutional layers, and bottleneck blocks, which optimize computation by using 1x1, 3x3, and 
1x1 convolutions. Serving as a feature extractor, ResNet-101 progressively extracts hierarchical 
representations from input images, encompassing both fine-grained details and high-level semantic 
information. These representations prove valuable in diverse tasks, including image classification, 
object detection, and image segmentation. Figure 4 shows the ResNet-101 architecture. 
 

 
 

Fig. 4. ResNet-101 architecture 
 

3.3.4 Inception ResNet-V2 
 
Inception ResNet-V2 is an advanced CNN architecture that merges the strengths of the Inception 

module and residual connections. Building upon the Inception architecture, known for its 
effectiveness in capturing multi-scale features using parallel convolutional operations, it also 
incorporates residual connections inspired by the ResNet architecture to facilitate deep network 
training. The Inception module utilizes 1x1, 3x3, and 5x5 convolutions and max-pooling to capture 
features at various spatial scales, enabling effective handling of objects of different sizes. At the heart 
of Inception ResNet-V2 are the Inception-ResNet modules, which combine the Inception module with 
residual connections, enhancing feature extraction and gradient flow during training. To aid training 
and address the vanishing gradient issue, Inception ResNet-V2 includes auxiliary classifiers at 
intermediate network stages, introducing supplementary supervision signals and gradients to 
facilitate network training. The ResNet-V2 architecture is shown in Figure 5. 
 

 
 

Fig. 5. Inception ResNet-V2 architecture 
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3.3.5 Experimental setup for CNNs 
 
The total training dataset is divided into training, validation, and testing. Specifically, the training 

dataset comprises 70% of the total data, 20% for the validation dataset, and the testing dataset 
covers the remaining 10%. To initiate the training process, an initial learning rate of 0.01 is chosen. 
This selection prioritizes the stability of the training process, mitigating the risk of instability or 
divergence that can occur with higher learning rates like 0.1. It also aligns with best practices for fine-
tuning pre-trained CNN models, where smaller learning rates are preferred to make precise 
adjustments to pre-learned features. Additionally, the lower learning rate promotes smoother 
convergence, reduces the risk of overshooting optimal solutions, and ensures consistent progress 
during training. During training, the data is shuffled, and the process continues for a maximum of 100 
epochs or until convergence, whichever is reached earlier. Performance evaluations of the model are 
conducted at 30-epoch intervals. These settings adhere to the recommendations outlined in [36]. 

 
3.4 Kernel Multiclass Support Vector Machine (SVM) 

 
SVM, a supervised machine learning algorithm, excels in classification and regression tasks by 

finding the optimal decision boundary or hyperplane that separates data points into classes or 
predicts continuous outcomes. SVM is renowned for its efficacy in handling high-dimensional data 
and its versatility in addressing both linear and non-linear classification challenges. In this study, we 
used multiclass SVM equations, utilizing the Error-Correcting Output Codes (ECOC) method. ECOC's 
core concept involves decomposing the original multiclass problem into a series of binary 
classification tasks, each tackled with a two-class SVM.  

In this research, the SVM serves as the classifier, as illustrated in Figure 6 below. Initially, the input 
images undergo an enhancement process detailed in Section 3.2. Subsequently, feature extraction is 
carried out utilizing ResNet18, ResNet50, ResNet10, and Inception ResNet-V2. The CNN model that 
demonstrates superior performance is then fed into the Kernel SVM for classification.  

Default settings were used for parameter configuration in the Kernel Multiclass SVM 
implementation. The choice to use default configurations was based on the recognition of the 
parameters' sensitivity as well as the lack of specialized knowledge and resources for thorough 
parameter adjustment. It is acknowledged that while default parameters provide a basic framework 
for implementing the model, they may not fully maximize performance for our particular dataset. 
This consideration draws attention to the possible influence on the model's capacity to identify fine-
grained decision boundaries or capture complex data patterns. 

 

 
 

Fig. 6. The proposed hybrid CNN-SVM classification framework 
 

4. Results 
4.1 Image Processing Results 

 
Figure 7 below shows the samples of UAV. Figure 7(a) shows the original images of orangutan 

nests, tree branches, other trees, buildings, and a car. In Figure 7(b), the enhanced quality of the 
samples after applying local contrast enhancement. Moving on to Figure 7(c), it shows further 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 49, Issue 2 (2025) 187-204 

198 
 

refinement of the samples, with an emphasis on enhancing the edges and fine details, resulting in a 
more pronounced and visually appealing appearance. Figure 7(d) proofs that the luminance 
adjustments algorithm has highlighted the image features, and overall visual quality. Figure 7(e) 
reveals the samples of images after undergoing histogram equalization, further enhancing their visual 
appeal. Finally, in Figure 7(f), it shows the samples after background removal.   

 

 
(a) Samples of original images from top view 

 
(b) Samples after local contrast enhancement 

 
(c) Samples after sharpening 

 
(d) Samples after luminance adjustment 

 
(e) Samples after histogram equalization 

 
(f) Samples after background removal 

 
Fig. 7. Samples of image processing results 

 
4.2 The Comparison Results of CNNs Models 

 
Table 1 summarizes model performance evaluated with metrics including accuracy, precision, 

recall, and F1-Score across three datasets: original images without backgrounds, enhanced images 
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with backgrounds, and enhanced images without backgrounds. Initial training and testing on original 
images without backgrounds showcased Inception ResNet-V2 + Kernel SVM as the top performer, 
with ResNet-101 + Kernel SVM slightly trailing both ResNet-50 + Kernel SVM and Inception ResNet-
V2 + Kernel SVM. Table 1 also presents some surprising results obtained when the models were 
trained and tested with enhanced images including backgrounds.  

The results indicate that the ResNet-18 + Kernel SVM model outperformed both the ResNet-50 + 
Kernel SVM and ResNet-101 + Kernel SVM models. Moreover, the ResNet-18 + Kernel SVM model 
performed as well as the Inception ResNet-V2 + Kernel SVM model. In theory, both ResNet-50 + 
Kernel SVM and ResNet-101 + Kernel SVM should have outperformed the ResNet-18 + Kernel SVM, 
given their ability to capture deeper features. 

Finally, the performance of the proposed models was compared using enhanced images without 
backgrounds. The results indicated that ResNet-18 + Kernel SVM was slightly better than both 
ResNet-50 + Kernel SVM and ResNet-101 + Kernel SVM. However, it performed just slightly worse 
than Inception ResNet-V2 + Kernel SVM. Additionally, ResNet-50 + Kernel SVM showed slightly better 
performance than ResNet-101 + Kernel SVM. 
 
Table 1 
Comparison of CNNs models + Kernel SVM using three different datasets 

 Performance 
Metrics 

ResNet-18 + 
Kernel SVM 

ResNet-50 + 
Kernel SVM 

ResNet-101 + 
Kernel SVM 

Inception ResNet-V2 + 
Kernel SVM 

Original images without 
Background 

Accuracy 0.9120 0.9320 0.9240 0.9380 
Precision 0.9145 0.9337 0.9242 0.9425 
Recall 0.9120 0.9320 0.9240 0.9380 
F-1 Score 0.9132 0.9328 0.9242 0.9402 

 Training Time 5 min 59 sec 19 min 53 sec 50 min 14 sec 63 min 20 sec 
Enhanced images 
including background 

Accuracy 0.9220 0.8840 0.8600 0.9220 
Precision 0.9235 0.8849 0.8618 0.9218 
Recall 0.9220 0.8840 0.8600 0.9220 
F-1 Score 0.9228 0.8845 0.8609 0.9219 

 Training Time 6 min 3 sec 20 min 21 sec 45 min 52 sec  56 min 48 sec 
Enhanced images without 
background 

Accuracy 0.9620 0.9580 0.9460 0.9660 
Precision 0.9621 0.9583 0.9470 0.9659 
Recall 0.9620 0.9580 0.9460 0.9658 
F-1 Score 0.9621 0.9582 0.9465 0.9660 

 Training Time 5 min 54 sec 20 min 28 sec 46 min 1 sec 57 min 2 sec 
 
In terms of training time, the experimental results consistently demonstrated that ResNet-18 + 

Kernel SVM outperformed the other models in terms of speed. This can be attributed to ResNet-18 
having fewer layers and parameters, resulting in reduced computational intensity during training. On 
the other hand, the slowest training time among the proposed models was observed for Inception 
ResNet-V2 + Kernel SVM. This was expected due to the complexity of its architecture. However, it's 
worth noting that the difference in training time between Inception ResNet-V2 + Kernel SVM and 
ResNet-18 + Kernel SVM was relatively small, with Inception ResNet-V2 + Kernel SVM being only a 
few minutes slower on average in the training results. 

When considering the utilization of original images for training, validation, and testing across the 
proposed CNN architectures, it becomes evident that their performances, including metrics such as 
accuracy, recall, precision, and F1-scores, tend to be quite low. This phenomenon appears because 
the models trained on these images end up encompassing not only the objects of interest but also 
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their backgrounds. Similarly, when working with enhanced images that retains the background, the 
training process tends to yield lower model performances. This occurs because the enhanced images 
contain additional values, including background information. However, a notable observation is that 
using original images without backgrounds results in a slight improvement in the training of each 
model. Consequently, this underscores the significance of using image enhancement techniques and 
background removal, facilitated by the Lab colour thresholding algorithm during image pre-
processing. These steps are crucial to ensure that the model exclusively learns the designated target 
objects within the data. 

Figure 8 displays the confusion matrix for the Inception ResNet-V2 + Kernel SVM model. The 
findings reveal that there was a single instance where a branch was misclassified as a building, eight 
cases where buildings were misclassified as cars, six occurrences where cars were incorrectly 
classified as buildings, one instance where a nest was wrongly labelled as a branch, and one more 
case where another tree was inaccurately classified as a branch.  
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Fig. 8. Confusion matrix for inception ResNet-V2 + Kernel SVM for 
Bornean orangutan nest classification 

 
5. Discussions 

 
In summary, the study's results shed light on various aspects of model performance for orangutan 

nest classification. In the initial assessment, Inception ResNet-V2 + Kernel SVM excelled with original 
images, showcasing its deep architecture's effectiveness. Surprisingly, ResNet-18 + Kernel SVM 
outperformed more complex models when tested on enhanced images with backgrounds, 
emphasizing the need to consider dataset-specific characteristics. However, in scenarios with 
enhanced images without backgrounds, Inception ResNet-V2 + Kernel SVM led the pack, 
underscoring the influence of image pre-processing techniques. Notably, ResNet-18 + Kernel SVM 
consistently outperformed other models in training speed due to its shallower architecture, while 
Inception ResNet-V2 + Kernel SVM took longer to train but with only a slight difference, suggesting 
its complex architecture doesn't hinder training efficiency significantly. The study also highlights the 
impact of image characteristics on model performance, where original images without backgrounds 
yielded the best results. This underscores the importance of proper image enhancement techniques 
and background removal during pre-processing. In conclusion, the research underscores the 
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significance of thoughtful model selection, considering dataset nuances, and image pre-processing in 
wildlife image classification tasks. The discussion on confusion matrix insights and the trade-offs 
between model complexity and training time enriches our understanding, offering valuable insights 
for future studies in orangutan nest recognition. 

 
6. Conclusions 

 
This work introduces an innovative Bornean orangutan nest classification algorithm, harnessing 

the power of machine learning to identify nests from UAV-captured images. To elevate the quality of 
the input imagery, we have devised a novel image processing pipeline involving techniques such as 
edge thresholding, sharpening, intensity adjustment, histogram equalization, and colour 
thresholding within the L*a*b* colour space. Subsequently, we explored the efficacy of various CNN 
models as feature extractors, identifying Inception ResNet-V2 as the standout performer based on 
key metrics such as accuracy, precision, recall, F1-score, and proven from the confusion matrix. As a 
conclusion of our efforts, we have introduced a hybrid model, Inception ResNet-V2 + Kernel SVM, for 
the purpose of classifying Bornean orangutan nests and other objects. These advancements in 
wildlife image processing, feature extraction via CNNs, and classification with kernel SVMs 
collectively contribute to the domain's continued progress and hold potential for numerous 
applications in environmental and wildlife research. In the future, our goal includes the creation of a 
Bornean orangutan nest detecting technology to aid WWF researchers in the identification and 
localisation of these critical orangutan habitats. 
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