

Journal of Advanced Research in Applied Sciences and Engineering Technology 44, Issue 1 (2025) 225-238

225

Journal of Advanced Research in Applied

Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

An Improved Network Intrusion Detection Method Based On CNN-LSTM-
SA

Bian Hui1, 2, Kang Leng Chiew2*

1 Qinyuan (Jiangsu) Technology Co., Ltd., China
2 Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 12 October 2023
Received in revised form 8 December 2023
Accepted 19 March 2024
Available online 25 April 2024

Network intrusion detection is an essential component of contemporary cybersecurity
strategies, and the development of efficient techniques to accurately identify malicious
activities has become a priority. This study investigates the performance of various
conventional machine learning algorithms, including decision trees, naive Bayes, naive
Bayes trees, random forest, random trees, MLP, and SVM, in detecting network
intrusions using binary and multi-classification approaches. Furthermore, the study
proposes a deep learning method, CNN-LSTM-SA, which consistently outperforms
conventional machine learning techniques in terms of precision, recall, F1 score, and
overall accuracy for network intrusion detection. Specifically, the proposed method
combines CNN and LSTM with SA in machine learning theory to extract more optimized,
strongly correlated features. The proposed method is evaluated using the benchmark
NSL-KDD database. The results indicate that the CNN-LSTM-SA method holds great
potential in enhancing the efficacy of network intrusion detection systems.

Keywords:

Network intrusion detection; Machine
learning; Deep learning; Long short-
term memory

1. Introduction

The Internet has become the main infrastructure for people's daily lives and work, and its
importance in politics, culture, economy, military and other fields has been continuously
demonstrated. It has become a powerful driving force for promoting economic and social
development in the 21st century [1-3]. With the popularization of the Internet, various network
services and applications have emerged and penetrated into all aspects of people's work and life.
Along with the rapid development of the Internet and Internet-based applications, the network
environment has become increasingly complex, resulting in many issues related to network security.
Intrusion detection, as a major component of network security measures, can actively defend against
network attacks and respond before the network is harmed, playing a very important role. In today's
rapidly developing information technology era, it is an urgent task to effectively combat attacks and
ensure the security of Internet-based information systems [4]. Due to the complexity and diversity of
attackers’ behaviors, it is very difficult to model both normal and attack behaviors by identifying

* Corresponding author.

E-mail address: klchiew@unimas.my

https://doi.org/10.37934/araset.44.1.225238

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

226

correlations and summarizing patterns from massive network access behaviors [5]. Therefore,
research on intrusion detection systems has always been an important content of network security
research. Studying intrusion detection methods and improving the detection accuracy of intrusion
detection systems have significant scientific and social significance [6].

As machine learning technology has become increasingly mature, it has emerged as a potential
solution [7]. The vast amount of heterogeneous big data originating from various sources presents a
challenge for conventional data analytics and shallow machine learning (ML) techniques, rendering
them inadequate for addressing security concerns [8]. It is worth noting that conventional ML
methods face limitations in terms of latency, computational complexity, and the ability to learn
complex, time-varying, and nonlinear relationships within large datasets [9-11].

To address these issues, this paper proposed a combination of Convolutional Neural Networks
(CNNs) and Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs) with self-attention
mechanism (CNN-LSTM-SA) to process network intrusion behavior. Section 2 will discuss about the
related work. Section 3 presents material and method used in this paper, including the description
of dataset, conventional and proposed machine learning method. In Section 4, all the experiments’
outcomes are examined, and the concluding remarks with some recommendations for further work
are presented in Section 5.

2. Related Work

The concept of intrusion detection originated from a technical report entitled "Computer security
threat monitoring and surveillance" in 1980 by Anderson [12], which detailed the concept of intrusion
detection for the first time. A groundbreaking work conducted by Xiao et al., [13] suggested a basic
model for intrusion detection, which had officially launched the research in the field of intrusion
detection. Since then, many researchers have conducted intrusion detection studies for different
computer systems and network environments, achieving significant results [14]. Computer and
network security protection systems now typically include intrusion detection systems as a crucial
component of their overall architecture. Many pertinent methods have been applied to the network
intrusion detection since the introduction of data mining and machine learning. In the topic of
intrusion detection, research on intrusion detection algorithms that are based on data mining and
machine learning has continued to be a significant study issue up until the present day.

Vitrià et al., [15] proposed a hybrid method combining genetic algorithms and decision trees to
detect network intrusions. They used a genetic algorithm to optimize decision tree parameters and
effectively classify normal and attack activities. The method achieved high detection rates and low
false alarm rates, but it may suffer from increased computational complexity due to the genetic
algorithm component.

Kim et al., [16] proposed a deep learning-based Network Intrusion Detection System (NIDS) using
CNNs. The authors showed that the CNNs model could automatically learn and extract relevant
features from raw network data, resulting in high detection accuracy. However, the model's primary
disadvantage is that it requires significant computation resources and training time to achieve
optimal results.

Garcia et al., [17] and Catania and Garino [18] both presented ensemble-based approaches to
network intrusion detection. Ensemble methods, such as bagging and boosting, were employed to
combine multiple classifiers, improving overall detection accuracy and reducing false positives. The
primary disadvantage of these approaches is the increased complexity and computational
requirements associated with using multiple classifiers.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

227

Mukkamala et al., [19] applied SVM to network intrusion detection, demonstrating its
effectiveness in classifying different types of attacks. SVMs are particularly suitable for intrusion
detection due to their ability to handle high-dimensional datasets and their generalization
capabilities. However, SVMs can be computationally expensive, especially for large datasets, and may
not be well-suited for real-time detection.

Feature selection and dimensionality reduction have been prominent research areas in NIDS.
Alazab et al., [20] and Wang et al., [21] applied techniques like mutual information and principal
component analysis (PCA) to reduce the feature space's size and enhance the detection performance
of classifiers. These methods helped improve the efficiency and effectiveness of NIDS, but their
success depends on the quality of selected features.

Deep learning techniques, such as CNNs and recurrent neural networks (RNNs), have become
increasingly popular in NIDS. Vinayakumar et al., [22] and Brown et al., [23] demonstrated the
effectiveness of deep learning in learning complex patterns and extracting relevant features from
raw network data. However, these approaches require significant computational resources and
training time, posing challenges for real-time applications.

Ensemble techniques have gained attention for improving the performance of intrusion detection
systems. Yin et al., [24] and Ahmad et al., [25] utilized methods like bagging, boosting, and stacking
to combine multiple classifiers, resulting in better detection accuracy and reduced false positives.
Despite their effectiveness, these approaches may suffer from increased complexity and
computational requirements.

Benaddi et al., [26] applied reinforcement learning algorithms to train NIDS that can adapt to
evolving network environments and dynamically update their detection strategies. This adaptability
enables NIDS to counter new and previously unseen attacks. However, reinforcement learning-based
NIDS can suffer from convergence issues and may require longer training times compared to other
machine learning techniques.

In summary, deep learning-based network anomaly detection technology has become a major
research direction and hotspot in the field of intrusion detection and botnet detection, but there are
still many unresolved issues in the existing research: First, deep learning is mostly used in the pre-
training stage, and related research mainly uses deep learning algorithms as generative models and
traditional supervised machine learning methods in combination, without a comprehensive separate
research on the detection and classification capabilities of deep learning. Secondly, most of the
studies focus on the binary classification task, this aspect has less of an impact on the efficacy of deep
learning when it is used to tackle complex multi-classification tasks. Third, both the theory and the
technology behind deep learning are advancing at a rapid rate. Despite the advent of hybrid neural
networks and attention mechanisms in recent years, it is still important to keep up with the most
recent findings in the field of deep learning research and to investigate how deep learning can be
applied in network anomaly detection technology. Thus, this paper proposed a combination of CNNs
and LSTM-RNNs with self-attention mechanism (CNN-LSTM-SA) to process network intrusion
behavior to address these issues.

3. Material and Method
3.1 NSL-KDD Database Description and Preprocessing

Since the KDD CUP 99 dataset was used as a knowledge discovery competition dataset, it has
been one of the most commonly used datasets for evaluating network anomaly detection methods
in the field of intrusion detection. The dataset is based on network traffic captured by the U.S.
Department of Defense with about seven weeks of network traffic captured as training data and it

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

228

has approximately five million connection records. Another two weeks of network data were
captured as testing data, with about two million connection records. There are five categories in the
KDD CUP 99 dataset with one normal and four abnormal categories (i.e., Dos, Probe, R2L, U2R). For
the four abnormal categories, there are a total of 39 attack types, of which 22 are included in the
training set, and the remaining 17 attack types are reserved for the testing set. This distribution is to
ensure that the dataset can be fairly and effectively used to evaluate the model's ability to detect
unknown attacks. The five categories and their attack types of KDD CUP 99 dataset are shown in
Table 1. In the KDD CUP 99 dataset, for each row of data, there are 41 fixed features, and a category.

Table 1
Categories and their attack types of the KDD CUP 99 dataset
Normal DoS Probe R2L U2R

 apache2
back
land
mailbomb
Neptune
pod
processtable
smurf
teardrop
udpstorm

ipsweep
mscan
nmap
portsweep
saint
satan

Spy
warezclient
ftp_ write guesspasswd httptunnel
imap
multihop
named
phf
sendmail snmpgetattack warezmaster
xlock
xsnoop

bufferoverflow loadmodule
perl
ps
rootkit
snmpguess sqlattack
worm
xterm

The major concern in the KDD Cup 99 dataset is the presence of a large number of redundant

records, which causes the trained algorithm model to be biased towards categories with more
labeled samples, thus greatly affecting the actual detection performance of the model. In addition,
the large number of duplicate records in the testing set also affect the evaluation results. For
example, the smurf and neptune attacks from DoS category, which have accounted for more than
71% of the testing set can be easily detected by any intrusion detection system. Clearly, this dataset
is not appropriate to be used for a proper evaluation of model performance.

A better dataset will be the NSL-KDD dataset and it will be used in this paper. This dataset has
solved the problem of redundant records in the KDD Cup 99 dataset and optimized the record
configuration of each category [27]. Compare to KDD CUP 99, the 43rd column is added in NSL-KDD
dataset to measure the difficulty of predicting corresponding categories. The NSL-KDD dataset
includes two training sets, KDDTrain+ and KDDTrain+20%, and two testing sets, KDDTest+ and
KDDTest-21. Table 2 summarizes the five categories of label data in the training and testing sets.
KDDTrain+20% is a 20% subset of the KDDTrain+ set, and KDDTest-21 is a subset obtained by
removing records marked as 0-21 in the 43rd column of the KDDTest+ set. The records in this
KDDTest-21 are relatively difficult to detect.

Table 2
Samples sizes and proportions of categories in the NSL-KDD dataset
Dataset Total Normal DoS Probe U2R R2L

KDDTrain+20% 25192
13449 9234 2289 11 209
(53.00%) (37.00%) (9.16%) (0.04%) (0.80%)

KDDTrain+ 125973
67343 45927 11656 52 995
(53.00%) (37.00%) (9.11%) (0.04%) (0.85%)

KDDTest+ 22544
9711 7458 2421 200 2754
(43.00%) (33.00%) (11.00%) (0.90%) (12.10%)

KDDTest-21 11 850
2152 4342 2402 200 2754
(18.00%) (37.00%) (20.00%) (2.00%) (23.00%)

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

229

In order to use the NSL-KDD dataset in the proposed method, data preprocessing is necessary. As

mentioned before, NSL-KDD has 41 fixed features, which include 34 continuous attributes, 4 binary
attributes and 3 symbolic attributes (including protocols, flags, service). Based on the 3 symbolic
attributes, a set of 84 features are further derived. Namely, 3 features of one-hot encoding from
protocols, 11 features from flags and 70 features from service. Therefore, the features set from NSL-
KDD will be 122 features (i.e., 34+4+3+11+70=122). The "num_outbound_crnds", which is one of the
122 features is observed to have the value of zero in all the samples. This feature will be removed
and resulted in a final features set of 121.

Since convolutional neural networks can only handle two-dimensional data, the final features set
are transformed into an 11x11 matrix.

The data preprocessing steps are as follows:
(1) Convert symbolic features to numerical features using attribute mapping based on one-hot

encoding.
(2) Normalize the numerical data obtained in step 1 with the normalization formula as shown in

Eq. (1) to get the range of [0,1].

𝑦𝑖 =
𝑥𝑖 − 𝑚𝑚𝑖𝑛

𝑚𝑚𝑎𝑥 − 𝑚𝑚𝑖𝑛
 (1)

where xi is the i-th attribute, xmin and xmax is the smallest and largest value of the attribute record,
respectively.

(3) Different binary numbers are used to represent different intrusion behaviors: 000 represents
DoS, 001 represents Normal, 010 represents Probe, 011 represents R2L, and 100 represents
U2R. This completes the labeling of intrusion types. After the preprocessing of intrusion
records, the original 41 features discussed were transformed into 121 features. To meet the
input data format requirements of convolutional neural networks, the one-dimensional

feature data is transformed into a two-dimensional feature matrix with a size of 11 11, as
shown in Figure 1.

Fig. 1. The processing of attribute mapping for CNN-LSTM-SA method

3.2 Proposed CNN-LSTM-SA

Based on the previous study conducted by Krizhevsky et al., [28], the CNNs are a form of deep

learning technique that are widely utilized for image processing and computer vision tasks. CNNs are
built with many convolutional layers, pooling layers, and fully connected layers. These layers are
responsible for automatically extracting features from raw pixel data. Figure 2 illustrates a simple

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

230

convolutional neural network structure. The convolutional layers extract local features of the image
using convolutional filters, while the pooling layers reduce the dimensionality of the feature maps.
The fully connected layers transform the feature maps into the final prediction. CNNs can handle
high-dimensional data, and are robust to translations, rotations, and scaling of images, making them
widely used in tasks such as image classification, object detection, and image segmentation.

Fig. 2. Simple convolutional neural network structure

The LSTM by Hochreiter and Schmidhuber [29] is a typical RNNs model that is used mostly for

processing sequential data such as speech recognition, natural language processing, and time series
prediction tasks. The model of LSTM is as shown in Figure 3. The σ (sigma) parameter in Figure 3
refers to the sigmoid activation function, which is commonly used in the gating mechanisms of an
LSTM network. A real-valued input is processed by the sigmoid function, which then returns a value
in the range of 0 to 1. By gating the input, output, and forget actions, this function is utilized to control
the flow of information that is transmitted throughout the network. This is a reference to the
hyperbolic tangent activation function, which is also frequently utilized in an LSTM network. It is
abbreviated as tanh. A real-valued input is processed by the tanh function, which then returns a value
in the range of-1 to 1. This function is used to construct the candidate activation vector as well as to
update the current state of the cell. The parameter x refers to the input to the LSTM network at a
given time step. It is a vector of features that represent the input data. Whereas the symbol + refers
to the element-wise addition operation, which is used in the LSTM network to combine the input
with the previous hidden state. In an LSTM network, these terms are combined to perform the
operations necessary for the network to process sequential data. Specifically, the network uses the
sigmoid function to decide which information to keep or discard from the previous hidden state, the
tanh function to update the cell state, and the element-wise addition to combine the input with the
previous hidden state. Compared to conventional RNNs, LSTM addresses the problems of handling
long sequences and vanishing/exploding gradients by introducing gating mechanisms. Every LSTM
cell has three gates: the input gate, the forget gate, and the output gate. These gates are used to
process information. The input gate is responsible for controlling the insertion of new information,
the forget gate is responsible for controlling the retention of old information, and the output gate is
responsible for controlling the output during the currently active time step. By jointly controlling
these gates, LSTM can balance long-term and short-term memory and better handle sequential data.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

231

Fig. 3. Network structure of LSTM

Self-attention studied by Vaswani et al., [30] is one of the mechanisms used in deep learning

model and is largely utilized in natural language processing tasks like machine translation and text
categorization. During processing, the model is able to concentrate its attention on various
components of the input sequence, which also assists in the identification of long-range
dependencies. Long-range dependencies refer to the relationships between elements in a sequence
that are far apart. In natural language processing tasks, for instance, a word at the beginning of a
sentence may influence the interpretation of a word appearing much later. Deep learning models
with self-attention mechanisms are designed to capture these relationships, thereby significantly
improving their performance on tasks such as machine translation and text categorization. The self-
attention mechanism works by computing the similarity between all pairs of positions in the input
sequence and using the resulting scores to weight the contributions of each position to the final
output. It has been demonstrated that self-attention is an effective strategy for enhancing
performance in a variety of natural language processing tasks.

To optimize the performance of network intrusion detection and improve the accuracy while
reducing the false positive rate, this paper proposes the CNN-LSTM-SA method.

Firstly, three blocks of convolutional layer and max pooling are used to form the CNN (Figure 5 is
referred). Input to the CNN is the 11x11 features matrix. The introduction of a batch normalization
layer to the CNN network will enhance the training speed and effectiveness of CNN, and mitigate the
influence of starting parameters on the training process.

Secondly, to address the impact of the temporal features of the preceding and following feature
points on each attribute, an LSTM model consisting of memory modules is used for long-distance
dependency feature extraction. The previous obtained feature map from CNN is input into LSTM
network to mine the hidden relationship between features and temporal features.

Finally, the attention mechanism is used in order to determine the weight that should be given
to each attribute feature, and a Softmax classifier is utilized in order to get the results of the
classification.

The flow chart of the proposed method is shown in Figure 4. The structure of the proposed CNN-
LSTM-SA is shown in Figure 5 (The number inside the parentheses represents the number of filters,
and convolution kernel size. Note that this is an optimized structure and the optimization process will
be discussed in Section 4. 1).

The number of convolution kernels is increased from 32 to 128, in deep learning, especially in
CNNs, lower layers tend to learn low-level features such as edges and textures, while deeper layers
capture high-level, more abstract features like shapes or specific objects. By increasing the number
of filters, CNNs enable the model to learn a wider range of high-level features.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

232

Fig. 4. Flow chart of CNN-LSTM-SA based network intrusion detection

Fig. 5. The structure of the proposed CNN-LSTM-SA

4. Results and Discussions
4.1 Experimental Setup

The machine learning process is executed on a high-performance GPU GeForce RTX 2080 Ti and

16 cores Intel(R) Core (TM) i7-8000K CPU processor with 64 GB RAM. The training and testing sets
are KDDTrain+ and KDDTest+, respectively. Python 3.8 and Pytorch 2.0 are used.

During the model training process, we found that the size of convolutional kernels, the number
of hidden layers of LSTM and the number of neurons per layer have some influence on the error of
the training set, and we tuned these parameters to get the model with the best results. The Adam
optimizer is selected with the learning rate is set to 0.001 as the default value and the training epoch

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

233

is set to 3000. The range of hyperparameters which will be used is shown in Table 3 and one of the
combinations with the least training error will be selected as the optimum setting. After the training
has completed, the model with the smallest training error within 3000 steps was selected as the best
model, each training experiment took about 6 hours. Table 4 shows the list of combinations based
on the hyperparameters range in Table 3 and their respective training errors.

Table 3
The range of hyperparameters

Item Range

The number of convolutional kernels (2, 2), (3, 3), (4, 4)
The number of hidden layers of LSTM 3, 4, 5
The number of neurons per layer 32, 64, 128

Table 4
Hyperparameters and their respective training error

Combination Train error

(2, 2), 3, 32 0.1419
(2, 2), 3, 64 0.3653
(2, 2), 3, 128 0.0622
(2, 2), 4, 32 0.4964
(2, 2), 4, 64 0.3557
(2, 2), 5, 128 0.1277
(2, 2), 5, 32 0.1088
(2, 2), 5, 64 0.5200
(2, 2), 5, 128 0.0785
(3, 3), 3, 32 0.1795
(3, 3), 3, 64 0.2585
(3, 3), 3, 128 0.3292
(3, 3), 4, 32 0.4170
(3, 3), 4, 64 0.4328
(3, 3), 4, 128 0.5895
(3, 3), 5, 32 0.1941
(3, 3), 5, 64 0.3339
(3, 3), 5, 128 0.2236
(4, 4), 3, 32 0.2390
(4, 4), 3, 64 0.4349
(4, 4), 3, 128 0.3729
(4, 4), 4, 32 0.1980
(4, 4), 4, 64 0.2173
(4, 4), 4, 128 0.4381
(4, 4), 5, 32 0.1787
(4, 4), 5, 64 0.0916

(4, 4), 5, 128 0.3590

From Table 4, the combination with convolutional kernels of (3, 3), hidden layers of LSTM of 3

and number of neurons per layer of 128 has the best performance. Thus, the proposed CNN-LSTM-
SA will be using this combination of hyperparameters for all the classification tasks.

In order to evaluate the performance of the proposed CNN-LSTM-SA, this paper will use seven
conventional machine learning algorithms classifiers, namely decision trees studied by Breiman et
al., [31], naive Bayes studied by Rish [32], naive Bayes trees studied by Webb et al., [33], random
forest studied by Breiman [34], random trees studied by Geurts et al., [35], multilayer perceptron
studied by Rumelhart et al., [36] and support vector machines studied by Cortes and Vapnik [37] as
the comparative algorithms. The inputs to these conventional machine learning algorithms will be

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

234

using the same dataset with all the samples have been transformed into the 121-length features by
the data preprocessing as described in Section 3. 1.

4.2 Binary Classification

This study uses a variety of performance metrics, such as accuracy, precision, recall, and F1 Score

to objectively evaluate the performance of the classification models.
In this context, the term true positive (TP) refers to the number of occurrences that were

successfully classified as abnormal, whereas true negative (TN) refers to the number of instances that
were successfully classified as normal. The number of normal patterns that were mistakenly
identified as anomalous is referred to as false positive (FP), and the number of anomalous patterns
that were mistakenly identified as normal is indicated by false negative (FN).

In the binary classification experiment, normal class consists of the normal samples and abnormal
class consists of all the DoS, Probe, U2R and R2L samples, Table 5 presents the results of binary
classification. The proposed CNN-LSTM-SA achieved F1 scores of 92. 95% and 89.4% for identifying
normal and abnormal classes, respectively and attained the highest average F1 score of 91. 17%.
These results have verified that the proposed method is superior compared to the conventional
benchmarked classifiers. Finally, the CNN-LSTM-SA surpassed the previously mentioned methods in
terms of accuracy (refer to Figure 6), attaining the highest accuracy at 89. 36%.

Table 5
Comparison results of binary classification in term of precision, recall and F1 score using KDDTest+ testing set

Category
Proposed CNN-
LSTM-SA

Decision
trees

Naive
Bayes

Naive Bayes
trees

Random
forest

Random
trees

MLP SVM

 Precision
Normal 88.31% 85.41% 82.46% 80.93% 87.79% 81.62% 83.96% 79.95%
Abnormal 85.93% 83.05% 81.95% 79.58% 80.17% 84.24% 81.44% 82.94%
AVG 87.12% 84.23% 82.21% 80.26% 83.98% 82.93% 82.70% 81.45%
 Recall
Normal 98.10% 78.47% 84.01% 81.79% 87.92% 86.72% 77.86% 71.25%
Abnormal 93.16% 84.45% 78.76% 87.11% 70.49% 92.83% 82.48% 89.23%
AVG 95.63% 81.46% 81.39% 84.45% 79.21% 89.78% 80.17% 80.24%
 F1 score
Normal 92.95% 81.79% 83.23% 81.36% 87.85% 84.09% 80.80% 75.35%
Abnormal 89.40% 83.74% 80.32% 83.17% 75.02% 88.33% 81.96% 85.97%
AVG 91.17% 82.77% 81.78% 82.27% 81.44% 86.21% 81.38% 80.66%

Fig. 6. Comparison results of binary classification in term of accuracy using KDDTest+ testing set

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

235

4.3 Multi-Classification

Table 6 presents the results of multi-classification experiments, the proposed CNN-LSTM-SA

method surpassed all other conventional classifiers, yielding an average F1 scores as high as 93. 26%.
Moreover, it is important to note that the proposed CNN-LSTM-SA method also outperformed all
other conventional classifiers in terms of accuracy, achieving the highest accuracy of 93. 72% (as
illustrated in Figure 7).

The recall of U2R is relatively poor due to class imbalance. Specifically, the number of instances
of U2R is significantly lower than the others. The models tend to be biased towards the class with a
larger number of instances, which can cause lower recall for the minority class.

Table 6
Comparison results of multi-classification in term of precision, recall and F1 score using KDDTest+ testing set

Category Proposed CNN-
LSTM-SA

Decision
trees

Naive
Bayes

Naive Bayes
trees

Random
forest

Random
trees

MLP SVM

 Precision
Normal 87.32% 78.01% 75.87% 77.92% 73.98% 78.89% 76.45% 77.32%
Dos 99.16% 73.97% 82.49% 78.91% 94.66% 93.57% 78.26% 78.48%
Probe 83.39% 75.32% 79.01% 73.64% 78.44% 80.59% 75.47% 74.58%
R2L 97.66% 93.87% 90.36% 92.29% 93.16% 77.64% 82.46% 91.04%
U2R 91.69% 85.33% 81.91% 86.63% 89.02% 83.01% 84.29% 86.28%
AVG 91.84% 81.30% 81.93% 81.88% 85.85% 82.74% 79.39% 81.54%
 Recall
Normal 98.87% 91.96% 86.84% 84.96% 88.27% 87.11% 90.43% 89.86%
Dos 97.82% 92.13% 92.35% 85.15% 93.49% 87.25% 89.75% 87.68%
Probe 95.56% 93.49% 87.68% 88.07% 88.91% 89.65% 84.72% 85.79%
R2L 93.68% 87.51% 85.89% 85.32% 87.84% 89.11% 89.97% 88.81%
U2R 89.16% 93.63% 90.08% 91.27% 89.99% 89.78% 94.06% 87.07%
AVG 95.02% 91.74% 88.57% 86.95% 89.70% 88.58% 89.79% 87.84%
 F1 score
Normal 92.74% 84.41% 80.99% 81.29% 80.50% 82.80% 82.85% 83.12%
Dos 98.49% 82.06% 87.14% 81.91% 94.07% 90.30% 83.61% 82.83%
Probe 89.06% 83.43% 83.12% 80.21% 83.35% 84.88% 79.83% 79.79%
R2L 95.63% 90.58% 88.07% 88.67% 90.42% 82.98% 86.05% 89.91%
U2R 90.41% 89.29% 85.80% 88.89% 89.50% 86.26% 88.91% 86.67%
AVG 93.26% 85.95% 85.02% 84.19% 87.57% 85.44% 84.25% 84.46%

Fig. 7. Comparison results of multi-classification in term of accuracy using KDDTest+ testing set

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

236

4.4 Performance Comparison

With the same configuration, we compared the following three papers.
I. Gurung et al., [38] claimed that their deep learning method achieved 87.20% accuracy and

88.51% F1 score in the binary classification evaluation using the same NSL-KDD dataset.
This result is lower than the F1 score and accuracy that the proposed CNN-LSTM-SA
method had achieved.

II. Shone et al., [39] claimed that their deep learning method achieved 85.42% accuracy and
average F1 score of 87.37% in performing the 5 classes based on the NSL-KDD dataset.
This result is lower than the 93.72% accuracy and average F1 score of 93.26% that we have
achieved.

III. Ieracitano et al., [40] used the same configuration environment as ours, and their binary
classification accuracy and multi-classification accuracy are 84.24% and 87.00%,
respectively.

The comparison results of binary classification and multi-classification between the proposed
method and the similar researches discussed above are tabulated in Table 7 and 8. All the values (F1
score and Accuracy) reported here the average. These results have further validated the superiority
of the proposed method.

Table 7
Comparison results of binary classification for different researches
 Proposed CNN-LSTM-SA Gurung et al., [38] Ieracitano et al., [40]

F1 score 91.17% 88.51% 81.98%
Accuracy 89.36% 87.20% 84.24%

Table 8
Comparison results of multi-classification for different researches

 Proposed CNN-LSTM-SA Shone et al., [39] Ieracitano et al., [40]

Average F1 score 93.26% 87.37% 81.21%
Accuracy 93.72% 85.42% 87.00%

5. Conclusion and Future Works

In conclusion, this study has demonstrated the effectiveness of various machine learning

algorithms for network intrusion detection, highlighting the superior performance of the proposed
CNN-LSTM-SA method over other conventional classifiers. The proposed CNN-LSTM-SA method
achieved highest F1 scores and accuracy in both binary and multi-classification experiments. By
leveraging deep learning techniques, the proposed method significantly improved the detection of
network intrusions, underscoring the potential of integrating advanced machine learning approaches
in NID systems to strengthen cybersecurity defenses.

While the proposed CNN-LSTM-SA method has shown promising results, there remains many
opportunities for further research and development in network intrusion detection. Future work may
include further investigation on the applicability and performance of other advanced machine
learning and deep learning techniques, such as GANs, reinforcement learning and transformer-based
models in the NID systems. Another direction is to research the potential of incorporating explainable
AI methods to provide insights into the decision-making processes of NID systems, increasing the
transparency and trustworthiness.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

237

Acknowledgement
The funding for this research is made possible through the Faculty of Computer Science and

Information Technology, UNIMAS.

References
[1] El Omda, Mahmoud, Mohamed Helmy Megahed, and Mohamed Hassan Abdel Azeem. "Design and Simulation of

New Anonymous Intelligent Authentication for 4G (LTE) Mobile Communication Network." Journal of Advanced
Research in Applied Mechanics 41, no. 1 (2018): 1-8. https://doi.org/10.21608/iceeng.2018.30166

[2] Jusoh, WWI Wan, KA Mohd Annuar, S. H. Johari, M. H. Harun, and I. M. Saadon. "Motorcycle security system using
GSM and RFID." Journal of Advanced Research in Applied Mechanics 16, no. 1 (2015): 1-9.

[3] Noroozi, E., S. M. Daud, and A. Sabouhi. "A Security Enhanced Robust Image Hiding Algorithm from Digital
Signature." Journal of Advanced Research in Applied Mechanics 8, no. 1 (2015):1-12.

[4] Ibrahim, Musibau Adekunle, Patrick Ozoh, and Oladotun Ayotunde Ojo. "Fraud Detection Model for Illegal
Transactions." Journal of Computing and Social Informatics 3, no. 1 (2024): 8-17.
https://doi.org/10.33736/jcsi.6449.2024

[5] Li, Guoquan, Zheng Yan, Yulong Fu, and Hanlu Chen. "Data fusion for network intrusion detection: a
review." Security and Communication Networks 2018 (2018). https://doi.org/10.1155/2018/8210614

[6] Chaabouni, Nadia, Mohamed Mosbah, Akka Zemmari, Cyrille Sauvignac, and Parvez Faruki. "Network intrusion
detection for IoT security based on learning techniques." IEEE Communications Surveys & Tutorials 21, no. 3 (2019):
2671-2701. https://doi.org/10.1109/COMST.2019.2896380

[7] Shone, Nathan, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. "A deep learning approach to network intrusion
detection." IEEE transactions on emerging topics in computational intelligence 2, no. 1 (2018): 41-50.
https://doi.org/10.1109/TETCI.2017.2772792

[8] Lazarevic, Aleksandar, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivastava. "A comparative study of
anomaly detection schemes in network intrusion detection." In Proceedings of the 2003 SIAM international
conference on data mining, pp. 25-36. Society for Industrial and Applied Mathematics, 2003.
https://doi.org/10.1137/1.9781611972733.3

[9] Ghorbani, Ali A., Wei Lu, and Mahbod Tavallaee. Network intrusion detection and prevention: concepts and
techniques. Vol. 47. Springer Science & Business Media, 2009. https://doi.org/10.1007/978-0-387-88771-5

[10] Dokas, Paul, Levent Ertoz, Vipin Kumar, Aleksandar Lazarevic, Jaideep Srivastava, and Pang-Ning Tan. "Data mining
for network intrusion detection." In Proc. NSF Workshop on Next Generation Data Mining, pp. 21-30. Citeseer,
2002.

[11] Olofintuyi, Sunday Samuel. "A Three-Tier Model for Intrusions Classification on a Computer Network." Journal of
Computing and Social Informatics 2, no. 2 (2023): 1-8.

[12] Anderson, James P. "Computer security threat monitoring and surveillance." Technical Report, James P. Anderson
Company (1980).

[13] Xiao, Yihan, Cheng Xing, Taining Zhang, and Zhongkai Zhao. "An intrusion detection model based on feature
reduction and convolutional neural networks." IEEE Access 7 (2019): 42210-42219.
https://doi.org/10.1109/ACCESS.2019.2904620

[14] Sinclair, Chris, Lyn Pierce, and Sara Matzner. "An application of machine learning to network intrusion detection."
In Proceedings 15th annual computer security applications conference (ACSAC'99), pp. 371-377. IEEE, 1999.

[15] Vitrià, Jordi, Petia Radeva, and Isabel Aguiló, eds. "Recent Advances in Artificial Intelligence Research and
Development." (2004).

[16] Kim, Kwangjo, Muhamad Erza Aminanto, and Harry Chandra Tanuwidjaja. Network intrusion detection using deep
learning: a feature learning approach. Springer, 2018. https://doi.org/10.1007/978-981-13-1444-5

[17] Garcia-Teodoro, Pedro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique Vázquez. "Anomaly-based
network intrusion detection: Techniques, systems and challenges." computers & security 28, no. 1-2 (2009): 18-28.
https://doi.org/10.1016/j.cose.2008.08.003

[18] Catania, Carlos, and Carlos García Garino. "Towards reducing human effort in network intrusion detection." In 2013
IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), vol.
2, pp. 655-660. IEEE, 2013. https://doi.org/10.1109/IDAACS.2013.6663006

[19] Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung. "Intrusion detection using neural networks and
support vector machines." In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02
(Cat. No. 02CH37290), vol. 2, pp. 1702-1707. IEEE, 2002.

[20] Alazab, Mamoun, Sitalakshmi Venkatraman, Paul A. Watters, and Moutaz Alazab. "Zero-day Malware Detection
based on Supervised Learning Algorithms of API call Signatures." AusDM 11 (2011): 171-182.

https://doi.org/10.21608/iceeng.2018.30166
https://doi.org/10.33736/jcsi.6449.2024
https://doi.org/10.1155/2018/8210614
https://doi.org/10.1109/COMST.2019.2896380
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1137/1.9781611972733.3
https://doi.org/10.1007/978-0-387-88771-5
https://doi.org/10.1109/ACCESS.2019.2904620
https://doi.org/10.1007/978-981-13-1444-5
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1109/IDAACS.2013.6663006

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 44, Issue 1 (2025) 225-238

238

[21] Wang, Wei, Yiqiang Sheng, Jinlin Wang, Xuewen Zeng, Xiaozhou Ye, Yongzhong Huang, and Ming Zhu. "HAST-IDS:
Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection." IEEE
access 6 (2017): 1792-1806. https://doi.org/10.1109/ACCESS.2017.2780250

[22] Vinayakumar, Ravi, Mamoun Alazab, K. Padannayil Soman, Prabaharan Poornachandran, Ameer Al-Nemrat, and
Sitalakshmi Venkatraman. "Deep learning approach for intelligent intrusion detection system." Ieee Access 7
(2019): 41525-41550. https://doi.org/10.1109/ACCESS.2019.2895334

[23] Brown, Andy, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. "Recurrent neural network attention mechanisms
for interpretable system log anomaly detection." In Proceedings of the first workshop on machine learning for
computing systems, pp. 1-8. 2018. https://doi.org/10.1145/3217871.3217872

[24] Yin, Chuanlong, Yuefei Zhu, Jinlong Fei, and Xinzheng He. "A deep learning approach for intrusion detection using
recurrent neural networks." Ieee Access 5 (2017): 21954-21961. https://doi.org/10.1109/ACCESS.2017.2762418

[25] Ahmad, Muhammad, Qaiser Riaz, Muhammad Zeeshan, Hasan Tahir, Syed Ali Haider, and Muhammad Safeer Khan.
"Intrusion detection in internet of things using supervised machine learning based on application and transport
layer features using UNSW-NB15 data-set." EURASIP Journal on Wireless Communications and Networking 2021
(2021): 1-23. https://doi.org/10.1186/s13638-021-01893-8

[26] Benaddi, Hafsa, Khalil Ibrahimi, Abderrahim Benslimane, and Junaid Qadir. "A deep reinforcement learning based
intrusion detection system (drl-ids) for securing wireless sensor networks and internet of things." In Wireless
Internet: 12th EAI International Conference, WiCON 2019, TaiChung, Taiwan, November 26–27, 2019, Proceedings
12, pp. 73-87. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-52988-8_7

[27] Cup, K. D. D. "http://kdd. ics. uci. edu/databases/kddcup99/kddcup99. html." The UCI KDD Archive (1999).
[28] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural

networks." Advances in neural information processing systems 25 (2012).
[29] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9, no. 8 (1997): 1735-

1780. https://doi.org/10.1162/neco.1997.9.8.1735
[30] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017).
[31] Breiman, L., J. H. Friedman, R. Olshen, and C. J. Stone. "Classification and Regression Trees." (1984).
[32] Rish, Irina. "An empirical study of the naive Bayes classifier." In IJCAI 2001 workshop on empirical methods in

artificial intelligence, vol. 3, no. 22, pp. 41-46. 2001.
[33] Webb, Geoffrey I., Janice R. Boughton, and Zhihai Wang. "Not so naive Bayes: aggregating one-dependence

estimators." Machine learning 58 (2005): 5-24. https://doi.org/10.1007/s10994-005-4258-6
[34] Breiman, Leo. "Random forests." Machine learning 45 (2001): 5-32. https://doi.org/10.1023/A:1010933404324
[35] Geurts, Pierre, Damien Ernst, and Louis Wehenkel. "Extremely randomized trees." Machine learning 63 (2006): 3-

42. https://doi.org/10.1007/s10994-006-6226-1
[36] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating

errors." nature 323, no. 6088 (1986): 533-536. https://doi.org/10.1038/323533a0
[37] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20 (1995): 273-297.

https://doi.org/10.1007/BF00994018
[38] Gurung, Sandeep, Mirnal Kanti Ghose, and Aroj Subedi. "Deep learning approach on network intrusion detection

system using NSL-KDD dataset." International Journal of Computer Network and Information Security 11, no. 3
(2019): 8-14. https://doi.org/10.5815/ijcnis.2019.03.02

[39] Shone, Nathan, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. "A deep learning approach to network intrusion
detection." IEEE transactions on emerging topics in computational intelligence 2, no. 1 (2018): 41-50.
https://doi.org/10.1109/TETCI.2017.2772792

[40] Ieracitano, Cosimo, Ahsan Adeel, Francesco Carlo Morabito, and Amir Hussain. "A novel statistical analysis and
autoencoder driven intelligent intrusion detection approach." Neurocomputing 387 (2020): 51-62.
https://doi.org/10.1016/j.neucom.2019.11.016

https://doi.org/10.1109/ACCESS.2017.2780250
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1145/3217871.3217872
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1186/s13638-021-01893-8
https://doi.org/10.1007/978-3-030-52988-8_7
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10994-005-4258-6
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/BF00994018
https://doi.org/10.5815/ijcnis.2019.03.02
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1016/j.neucom.2019.11.016

